
Process Management Interface
for Exascale (PMIx) Standard

Version 4.1
October 2021

This document describes the Process Management Interface for Exascale (PMIx) Standard, version
4.1.

Comments: Please provide comments on the PMIx Standard by filing issues on the document
repository https://github.com/pmix/pmix-standard/issues or by sending them to the PMIx
Community mailing list at https://groups.google.com/forum/#!forum/pmix. Comments should
include the version of the PMIx standard you are commenting about, and the page, section, and line
numbers that you are referencing. Please note that messages sent to the mailing list from an
unsubscribed e-mail address will be ignored.

Copyright © 2018-2020 PMIx Administrative Steering Committee (ASC).
Permission to copy without fee all or part of this material is granted, provided the PMIx ASC
copyright notice and the title of this document appear, and notice is given that copying is by
permission of PMIx ASC.

https://github.com/pmix/pmix-standard/issues
https://groups.google.com/forum/#!forum/pmix

This page intentionally left blank

Contents

1. Introduction 1
1.1. Background . 1
1.2. PMIx Architecture Overview . 1
1.3. Portability of Functionality . 3

1.3.1. Attributes in PMIx . 3

2. PMIx Terms and Conventions 6
2.1. Notational Conventions . 8
2.2. Semantics . 9
2.3. Naming Conventions . 10
2.4. Procedure Conventions . 10

3. Data Structures and Types 12
3.1. Constants . 13

3.1.1. PMIx Return Status Constants . 14
3.1.1.1. User-Defined Error and Event Constants 15

3.2. Data Types . 16
3.2.1. Key Structure . 16

3.2.1.1. Key support macros . 16
3.2.2. Namespace Structure . 18

3.2.2.1. Namespace support macros . 18
3.2.3. Rank Structure . 19

3.2.3.1. Rank support macros . 20
3.2.4. Process Structure . 20

3.2.4.1. Process structure support macros 21
3.2.5. Process State Structure . 24
3.2.6. Process Information Structure . 25

3.2.6.1. Process information structure support macros 26
3.2.7. Job State Structure . 27

i

3.2.8. Value Structure . 28
3.2.8.1. Value structure support macros 29

3.2.9. Info Structure . 33
3.2.9.1. Info structure support macros 33
3.2.9.2. Info structure list macros . 35

3.2.10. Info Type Directives . 38
3.2.10.1. Info Directive support macros 39

3.2.11. Environmental Variable Structure . 41
3.2.11.1. Environmental variable support macros 41

3.2.12. Byte Object Type . 43
3.2.12.1. Byte object support macros . 43

3.2.13. Data Array Structure . 44
3.2.13.1. Data array support macros . 44

3.2.14. Argument Array Macros . 46
3.2.15. Set Environment Variable . 49

3.3. Generalized Data Types Used for Packing/Unpacking 50
3.4. General Callback Functions . 52

3.4.1. Release Callback Function . 52
3.4.2. Op Callback Function . 53
3.4.3. Value Callback Function . 53
3.4.4. Info Callback Function . 54
3.4.5. Handler registration callback function 54

3.5. PMIx Datatype Value String Representations . 55

4. Client Initialization and Finalization 59
4.1. PMIx_Initialized . 59
4.2. PMIx_Get_version . 60
4.3. PMIx_Init . 60

4.3.1. Initialization events . 63
4.3.2. Initialization attributes . 63

4.3.2.1. Connection attributes . 63
4.3.2.2. Programming model attributes 64

4.4. PMIx_Finalize . 65
4.4.1. Finalize attributes . 65

ii PMIx Standard – Version 4.1 – October 2021

4.5. PMIx_Progress . 65

5. Synchronization and Data Access Operations 67
5.1. PMIx_Fence . 67
5.2. PMIx_Fence_nb . 69

5.2.1. Fence-related attributes . 71
5.3. PMIx_Get . 72

5.3.1. PMIx_Get_nb . 74
5.3.2. Retrieval attributes . 77

5.4. Query . 78
5.4.1. PMIx_Resolve_peers . 79
5.4.2. PMIx_Resolve_nodes . 79
5.4.3. PMIx_Query_info . 80
5.4.4. PMIx_Query_info_nb . 85
5.4.5. Query-specific constants . 89
5.4.6. Query attributes . 90
5.4.7. Query Structure . 92

5.4.7.1. Query structure support macros 93
5.5. Using Get vs Query . 95
5.6. Accessing attribute support information . 95

6. Reserved Keys 98
6.1. Data realms . 98

6.1.1. Session realm attributes . 99
6.1.2. Job realm attributes . 101
6.1.3. Application realm attributes . 103
6.1.4. Process realm attributes . 104
6.1.5. Node realm keys . 105

6.2. Retrieval rules for reserved keys . 107
6.2.1. Accessing information: examples . 107

6.2.1.1. Session-level information . 108
6.2.1.2. Job-level information . 109
6.2.1.3. Application-level information 109
6.2.1.4. Process-level information . 110

Contents iii

6.2.1.5. Node-level information . 110

7. Process-Related Non-Reserved Keys 112
7.1. Posting Key/Value Pairs . 113

7.1.1. PMIx_Put . 113
7.1.1.1. Scope of Put Data . 114

7.1.2. PMIx_Store_internal . 114
7.1.3. PMIx_Commit . 115

7.2. Retrieval rules for non-reserved keys . 116

8. Publish/Lookup Operations 118
8.1. PMIx_Publish . 118
8.2. PMIx_Publish_nb . 120
8.3. Publish-specific constants . 121
8.4. Publish-specific attributes . 121
8.5. Publish-Lookup Datatypes . 122

8.5.1. Range of Published Data . 122
8.5.2. Data Persistence Structure . 122

8.6. PMIx_Lookup . 123
8.7. PMIx_Lookup_nb . 125

8.7.1. Lookup Returned Data Structure . 127
8.7.1.1. Lookup data structure support macros 127

8.7.2. Lookup Callback Function . 130
8.8. Retrieval rules for published data . 130
8.9. PMIx_Unpublish . 131
8.10. PMIx_Unpublish_nb . 133

9. Event Notification 135
9.1. Notification and Management . 135

9.1.1. Events versus status constants . 137
9.1.2. PMIx_Register_event_handler 137
9.1.3. Event registration constants . 140
9.1.4. System events . 140
9.1.5. Event handler registration and notification attributes 141

9.1.5.1. Fault tolerance event attributes 142

iv PMIx Standard – Version 4.1 – October 2021

9.1.5.2. Hybrid programming event attributes 142
9.1.6. Notification Function . 142
9.1.7. PMIx_Deregister_event_handler 144
9.1.8. PMIx_Notify_event . 145
9.1.9. Notification Handler Completion Callback Function 149

9.1.9.1. Completion Callback Function Status Codes 149

10.Data Packing and Unpacking 150
10.1. Data Buffer Type . 150
10.2. Support Macros . 151
10.3. General Routines . 152

10.3.1. PMIx_Data_pack . 152
10.3.2. PMIx_Data_unpack . 154
10.3.3. PMIx_Data_copy . 156
10.3.4. PMIx_Data_print . 156
10.3.5. PMIx_Data_copy_payload . 157
10.3.6. PMIx_Data_load . 158
10.3.7. PMIx_Data_unload . 159
10.3.8. PMIx_Data_compress . 159
10.3.9. PMIx_Data_decompress . 160

11.Process Management 162
11.1. Abort . 162

11.1.1. PMIx_Abort . 162
11.2. Process Creation . 163

11.2.1. PMIx_Spawn . 163
11.2.2. PMIx_Spawn_nb . 169
11.2.3. Spawn-specific constants . 174
11.2.4. Spawn attributes . 174
11.2.5. Application Structure . 178

11.2.5.1. App structure support macros 178
11.2.5.2. Spawn Callback Function . 180

11.3. Connecting and Disconnecting Processes . 181
11.3.1. PMIx_Connect . 182

Contents v

11.3.2. PMIx_Connect_nb . 184
11.3.3. PMIx_Disconnect . 185
11.3.4. PMIx_Disconnect_nb . 187

11.4. Process Locality . 189
11.4.1. PMIx_Load_topology . 189
11.4.2. PMIx_Get_relative_locality 190

11.4.2.1. Topology description . 190
11.4.2.2. Topology support macros . 191
11.4.2.3. Relative locality of two processes 192
11.4.2.4. Locality keys . 192

11.4.3. PMIx_Parse_cpuset_string . 192
11.4.4. PMIx_Get_cpuset . 193

11.4.4.1. Binding envelope . 193
11.4.5. PMIx_Compute_distances . 194
11.4.6. PMIx_Compute_distances_nb 195
11.4.7. Device Distance Callback Function . 196
11.4.8. Device type . 196
11.4.9. Device Distance Structure . 197
11.4.10. Device distance support macros . 198
11.4.11. Device distance attributes . 199

12.Job Management and Reporting 200
12.1. Allocation Requests . 200

12.1.1. PMIx_Allocation_request . 200
12.1.2. PMIx_Allocation_request_nb 203
12.1.3. Job Allocation attributes . 206
12.1.4. Job Allocation Directives . 207

12.2. Job Control . 208
12.2.1. PMIx_Job_control . 208
12.2.2. PMIx_Job_control_nb . 211
12.2.3. Job control constants . 214
12.2.4. Job control events . 214
12.2.5. Job control attributes . 215

vi PMIx Standard – Version 4.1 – October 2021

12.3. Process and Job Monitoring . 216
12.3.1. PMIx_Process_monitor . 216
12.3.2. PMIx_Process_monitor_nb . 218
12.3.3. PMIx_Heartbeat . 220
12.3.4. Monitoring events . 221
12.3.5. Monitoring attributes . 221

12.4. Logging . 222
12.4.1. PMIx_Log . 222
12.4.2. PMIx_Log_nb . 225
12.4.3. Log attributes . 228

13.Process Sets and Groups 230
13.1. Process Sets . 230

13.1.1. Process Set Constants . 231
13.1.2. Process Set Attributes . 232

13.2. Process Groups . 232
13.2.1. Relation to the host environment . 232
13.2.2. Construction procedure . 233
13.2.3. Destruct procedure . 234
13.2.4. Process Group Events . 234
13.2.5. Process Group Attributes . 235
13.2.6. PMIx_Group_construct . 237
13.2.7. PMIx_Group_construct_nb . 240
13.2.8. PMIx_Group_destruct . 243
13.2.9. PMIx_Group_destruct_nb . 244
13.2.10. PMIx_Group_invite . 246
13.2.11. PMIx_Group_invite_nb . 249
13.2.12. PMIx_Group_join . 252
13.2.13. PMIx_Group_join_nb . 254

13.2.13.1.Group accept/decline directives 255
13.2.14. PMIx_Group_leave . 255
13.2.15. PMIx_Group_leave_nb . 257

Contents vii

14.Fabric Support Definitions 259
14.1. Fabric Support Events . 262
14.2. Fabric Support Datatypes . 262

14.2.1. Fabric Endpoint Structure . 262
14.2.2. Fabric endpoint support macros . 263
14.2.3. Fabric Coordinate Structure . 264
14.2.4. Fabric coordinate support macros . 264
14.2.5. Fabric Geometry Structure . 266
14.2.6. Fabric geometry support macros . 266
14.2.7. Fabric Coordinate Views . 267
14.2.8. Fabric Link State . 268
14.2.9. Fabric Operation Constants . 268
14.2.10. Fabric registration structure . 269

14.2.10.1.Initialize the fabric structure . 272
14.3. Fabric Support Attributes . 272
14.4. Fabric Support Functions . 275

14.4.1. PMIx_Fabric_register . 276
14.4.2. PMIx_Fabric_register_nb . 277
14.4.3. PMIx_Fabric_update . 278
14.4.4. PMIx_Fabric_update_nb . 279
14.4.5. PMIx_Fabric_deregister . 279
14.4.6. PMIx_Fabric_deregister_nb 280

15.Security 281
15.1. Obtaining Credentials . 281

15.1.1. PMIx_Get_credential . 282
15.1.2. PMIx_Get_credential_nb . 283
15.1.3. Credential Attributes . 284

15.2. Validating Credentials . 285
15.2.1. PMIx_Validate_credential . 285
15.2.2. PMIx_Validate_credential_nb 286

viii PMIx Standard – Version 4.1 – October 2021

16.Server-Specific Interfaces 289
16.1. Server Initialization and Finalization . 289

16.1.1. PMIx_server_init . 289
16.1.2. PMIx_server_finalize . 293
16.1.3. Server Initialization Attributes . 293

16.2. Server Support Functions . 294
16.2.1. PMIx_generate_regex . 294
16.2.2. PMIx_generate_ppn . 296
16.2.3. PMIx_server_register_nspace 296

16.2.3.1. Namespace registration attributes 307
16.2.3.2. Assembling the registration information 308

16.2.4. PMIx_server_deregister_nspace 317
16.2.5. PMIx_server_register_resources 317
16.2.6. PMIx_server_deregister_resources 318
16.2.7. PMIx_server_register_client 319
16.2.8. PMIx_server_deregister_client 321
16.2.9. PMIx_server_setup_fork . 321
16.2.10. PMIx_server_dmodex_request 322

16.2.10.1.Server Direct Modex Response Callback Function 323
16.2.11. PMIx_server_setup_application 324

16.2.11.1.Server Setup Application Callback Function 327
16.2.11.2.Server Setup Application Attributes 328

16.2.12. PMIx_Register_attributes . 328
16.2.12.1.Attribute registration constants 330
16.2.12.2.Attribute registration structure 330
16.2.12.3.Attribute registration structure descriptive attributes 331
16.2.12.4.Attribute registration structure support macros 331

16.2.13. PMIx_server_setup_local_support 333
16.2.14. PMIx_server_IOF_deliver . 335
16.2.15. PMIx_server_collect_inventory 336
16.2.16. PMIx_server_deliver_inventory 337
16.2.17. PMIx_server_generate_locality_string 338

Contents ix

16.2.18. PMIx_server_generate_cpuset_string 339
16.2.18.1.Cpuset Structure . 340
16.2.18.2.Cpuset support macros . 340

16.2.19. PMIx_server_define_process_set 341
16.2.20. PMIx_server_delete_process_set 342

16.3. Server Function Pointers . 342
16.3.1. pmix_server_module_tModule 343
16.3.2. pmix_server_client_connected_fn_t 344
16.3.3. pmix_server_client_connected2_fn_t 345
16.3.4. pmix_server_client_finalized_fn_t 347
16.3.5. pmix_server_abort_fn_t . 348
16.3.6. pmix_server_fencenb_fn_t . 350

16.3.6.1. Modex Callback Function . 353
16.3.7. pmix_server_dmodex_req_fn_t 353

16.3.7.1. Dmodex attributes . 355
16.3.8. pmix_server_publish_fn_t . 355
16.3.9. pmix_server_lookup_fn_t . 357
16.3.10. pmix_server_unpublish_fn_t 360
16.3.11. pmix_server_spawn_fn_t . 362

16.3.11.1.Server spawn attributes . 367
16.3.12. pmix_server_connect_fn_t . 367
16.3.13. pmix_server_disconnect_fn_t 368
16.3.14. pmix_server_register_events_fn_t 370
16.3.15. pmix_server_deregister_events_fn_t 372
16.3.16. pmix_server_notify_event_fn_t 374
16.3.17. pmix_server_listener_fn_t 375

16.3.17.1.PMIx Client Connection Callback Function 376
16.3.18. pmix_server_query_fn_t . 377
16.3.19. pmix_server_tool_connection_fn_t 379

16.3.19.1.Tool connection attributes . 382
16.3.19.2.PMIx Tool Connection Callback Function 382

16.3.20. pmix_server_log_fn_t . 382
16.3.21. pmix_server_alloc_fn_t . 384

x PMIx Standard – Version 4.1 – October 2021

16.3.22. pmix_server_job_control_fn_t 387
16.3.23. pmix_server_monitor_fn_t . 390
16.3.24. pmix_server_get_cred_fn_t 393

16.3.24.1.Credential callback function . 394
16.3.25. pmix_server_validate_cred_fn_t 395
16.3.26. Credential validation callback function 397
16.3.27. pmix_server_iof_fn_t . 398

16.3.27.1.IOF delivery function . 401
16.3.28. pmix_server_stdin_fn_t . 402
16.3.29. pmix_server_grp_fn_t . 403

16.3.29.1.Group Operation Constants . 406
16.3.30. pmix_server_fabric_fn_t . 406

17.Tools and Debuggers 408
17.1. Connection Mechanisms . 408

17.1.1. Rendezvousing with a local server . 411
17.1.2. Connecting to a remote server . 412
17.1.3. Attaching to running jobs . 413
17.1.4. Tool initialization attributes . 413
17.1.5. Tool initialization environmental variables 414
17.1.6. Tool connection attributes . 414

17.2. Launching Applications with Tools . 415
17.2.1. Direct launch . 415
17.2.2. Indirect launch . 419

17.2.2.1. Initiator-based command line parsing 420
17.2.2.2. Intermediate Launcher (IL)-based command line parsing 423

17.2.3. Tool spawn-related attributes . 424
17.2.4. Tool rendezvous-related events . 425

17.3. IO Forwarding . 425
17.3.1. Forwarding stdout/stderr . 426
17.3.2. Forwarding stdin . 428
17.3.3. IO Forwarding Channels . 429
17.3.4. IO Forwarding constants . 430
17.3.5. IO Forwarding attributes . 430

Contents xi

17.4. Debugger Support . 431
17.4.1. Co-Location of Debugger Daemons . 433
17.4.2. Co-Spawn of Debugger Daemons . 435
17.4.3. Debugger Agents . 436
17.4.4. Tracking the job lifecycle . 437

17.4.4.1. Job lifecycle events . 438
17.4.4.2. Job lifecycle attributes . 439

17.4.5. Debugger-related constants . 439
17.4.6. Debugger attributes . 439

17.5. Tool-Specific APIs . 441
17.5.1. PMIx_tool_init . 441
17.5.2. PMIx_tool_finalize . 444
17.5.3. PMIx_tool_disconnect . 445
17.5.4. PMIx_tool_attach_to_server 446
17.5.5. PMIx_tool_get_servers . 447
17.5.6. PMIx_tool_set_server . 448
17.5.7. PMIx_IOF_pull . 449
17.5.8. PMIx_IOF_deregister . 451
17.5.9. PMIx_IOF_push . 452

18.Storage Support Definitions 455
18.1. Storage support constants . 455
18.2. Storage support attributes . 457

A. Python Bindings 459
A.1. Design Considerations . 459

A.1.1. Error Codes vs Python Exceptions . 459
A.1.2. Representation of Structured Data . 459

A.2. Datatype Definitions . 460
A.2.1. Example . 466

A.3. Callback Function Definitions . 467
A.3.1. IOF Delivery Function . 467
A.3.2. Event Handler . 467

xii PMIx Standard – Version 4.1 – October 2021

A.3.3. Server Module Functions . 468
A.3.3.1. Client Connected . 468
A.3.3.2. Client Finalized . 469
A.3.3.3. Client Aborted . 469
A.3.3.4. Fence . 470
A.3.3.5. Direct Modex . 471
A.3.3.6. Publish . 471
A.3.3.7. Lookup . 472
A.3.3.8. Unpublish . 472
A.3.3.9. Spawn . 473
A.3.3.10. Connect . 473
A.3.3.11. Disconnect . 474
A.3.3.12. Register Events . 474
A.3.3.13. Deregister Events . 475
A.3.3.14. Notify Event . 475
A.3.3.15. Query . 475
A.3.3.16. Tool Connected . 476
A.3.3.17. Log . 476
A.3.3.18. Allocate Resources . 477
A.3.3.19. Job Control . 477
A.3.3.20. Monitor . 478
A.3.3.21. Get Credential . 478
A.3.3.22. Validate Credential . 479
A.3.3.23. IO Forward . 479
A.3.3.24. IO Push . 480
A.3.3.25. Group Operations . 480
A.3.3.26. Fabric Operations . 481

A.4. PMIxClient . 482
A.4.1. Client.init . 482
A.4.2. Client.initialized . 482
A.4.3. Client.get_version . 483
A.4.4. Client.finalize . 483
A.4.5. Client.abort . 483

Contents xiii

A.4.6. Client.store_internal . 484
A.4.7. Client.put . 484
A.4.8. Client.commit . 485
A.4.9. Client.fence . 485
A.4.10. Client.get . 486
A.4.11. Client.publish . 486
A.4.12. Client.lookup . 487
A.4.13. Client.unpublish . 487
A.4.14. Client.spawn . 488
A.4.15. Client.connect . 488
A.4.16. Client.disconnect . 489
A.4.17. Client.resolve_peers . 489
A.4.18. Client.resolve_nodes . 490
A.4.19. Client.query . 490
A.4.20. Client.log . 491
A.4.21. Client.allocation_request . 491
A.4.22. Client.job_ctrl . 492
A.4.23. Client.monitor . 492
A.4.24. Client.get_credential . 493
A.4.25. Client.validate_credential . 493
A.4.26. Client.group_construct . 494
A.4.27. Client.group_invite . 494
A.4.28. Client.group_join . 495
A.4.29. Client.group_leave . 496
A.4.30. Client.group_destruct . 496
A.4.31. Client.register_event_handler . 496
A.4.32. Client.deregister_event_handler . 497
A.4.33. Client.notify_event . 497
A.4.34. Client.fabric_register . 498
A.4.35. Client.fabric_update . 498
A.4.36. Client.fabric_deregister . 499
A.4.37. Client.load_topology . 499
A.4.38. Client.get_relative_locality . 500

xiv PMIx Standard – Version 4.1 – October 2021

A.4.39. Client.get_cpuset . 500
A.4.40. Client.parse_cpuset_string . 500
A.4.41. Client.compute_distances . 501
A.4.42. Client.error_string . 501
A.4.43. Client.proc_state_string . 502
A.4.44. Client.scope_string . 502
A.4.45. Client.persistence_string . 503
A.4.46. Client.data_range_string . 503
A.4.47. Client.info_directives_string . 503
A.4.48. Client.data_type_string . 504
A.4.49. Client.alloc_directive_string . 504
A.4.50. Client.iof_channel_string . 505
A.4.51. Client.job_state_string . 505
A.4.52. Client.get_attribute_string . 505
A.4.53. Client.get_attribute_name . 506
A.4.54. Client.link_state_string . 506
A.4.55. Client.device_type_string . 507
A.4.56. Client.progress . 507

A.5. PMIxServer . 507
A.5.1. Server.init . 507
A.5.2. Server.finalize . 508
A.5.3. Server.generate_regex . 508
A.5.4. Server.generate_ppn . 509
A.5.5. Server.generate_locality_string . 509
A.5.6. Server.generate_cpuset_string . 510
A.5.7. Server.register_nspace . 510
A.5.8. Server.deregister_nspace . 511
A.5.9. Server.register_resources . 511
A.5.10. Server.deregister_resources . 512
A.5.11. Server.register_client . 512
A.5.12. Server.deregister_client . 513
A.5.13. Server.setup_fork . 513
A.5.14. Server.dmodex_request . 513

Contents xv

A.5.15. Server.setup_application . 514
A.5.16. Server.register_attributes . 514
A.5.17. Server.setup_local_support . 515
A.5.18. Server.iof_deliver . 515
A.5.19. Server.collect_inventory . 516
A.5.20. Server.deliver_inventory . 516
A.5.21. Server.define_process_set . 517
A.5.22. Server.delete_process_set . 517
A.5.23. Server.register_resources . 518
A.5.24. Server.deregister_resources . 518

A.6. PMIxTool . 519
A.6.1. Tool.init . 519
A.6.2. Tool.finalize . 519
A.6.3. Tool.disconnect . 519
A.6.4. Tool.attach_to_server . 520
A.6.5. Tool.get_servers . 520
A.6.6. Tool.set_server . 521
A.6.7. Tool.iof_pull . 521
A.6.8. Tool.iof_deregister . 522
A.6.9. Tool.iof_push . 522

A.7. Example Usage . 523
A.7.1. Python Client . 523
A.7.2. Python Server . 525

B. Revision History 529
B.1. Version 1.0: June 12, 2015 . 529
B.2. Version 2.0: Sept. 2018 . 530

B.2.1. Removed/Modified Application Programming Interfaces (APIs) 530
B.2.2. Deprecated constants . 530
B.2.3. Deprecated attributes . 531

B.3. Version 2.1: Dec. 2018 . 531
B.4. Version 2.2: Jan 2019 . 532
B.5. Version 3.0: Dec. 2018 . 532

B.5.1. Removed constants . 533

xvi PMIx Standard – Version 4.1 – October 2021

B.5.2. Deprecated attributes . 533
B.5.3. Removed attributes . 533

B.6. Version 3.1: Jan. 2019 . 534
B.7. Version 3.2: Oct. 2020 . 534

B.7.1. Deprecated constants . 535
B.7.2. Deprecated attributes . 536

B.8. Version 4.0: Dec. 2020 . 537
B.8.1. Added Constants . 539
B.8.2. Added Attributes . 542
B.8.3. Added Environmental Variables . 555
B.8.4. Added Macros . 555
B.8.5. Deprecated APIs . 555
B.8.6. Deprecated constants . 556
B.8.7. Removed constants . 556
B.8.8. Deprecated attributes . 557
B.8.9. Removed attributes . 558

B.9. Version 4.1: Oct. 2021 . 559
B.9.1. Added Functions (Provisional) . 559
B.9.2. Added Data Structures (Provisional) . 559
B.9.3. Added Macros (Provisional) . 559
B.9.4. Added Constants (Provisional) . 560
B.9.5. Added Attributes (Provisional) . 560

C. Acknowledgements 563
C.1. Version 4.0 . 563
C.2. Version 3.0 . 564
C.3. Version 2.0 . 565
C.4. Version 1.0 . 566

Bibliography 568

Index 569

Index of APIs 571

Contents xvii

Index of Support Macros 579

Index of Data Structures 583

Index of Constants 585

Index of Environmental Variables 595

Index of Attributes 596

xviii PMIx Standard – Version 4.1 – October 2021

CHAPTER 1

Introduction

Process Management Interface - Exascale (PMIx) is an application programming interface standard1
that provides libraries and programming models with portable and well-defined access to commonly2
needed services in distributed and parallel computing systems. A typical example of such a service3
is the portable and scalable exchange of network addresses to establish communication channels4
between the processes of a parallel application or service. As such, PMIx gives distributed system5
software providers a better understanding of how programming models and libraries can interface6
with and use system-level services. As a standard, PMIx provides APIs that allow for portable7
access to these varied system software services and the functionalities they offer. Although these8
services can be defined and implemented directly by the system software components providing9
them, the community represented by the ASC feels that the development of a shared standard better10
serves the community. As a result, PMIx enables programming languages and libraries to focus on11
their core competencies without having to provide their own system-level services.12

1.1 Background13

The Process Management Interface (PMI) has been used for quite some time as a means of14
exchanging wireup information needed for inter-process communication. Two versions (PMI-1 and15
PMI-2 [2]) have been released as part of the MPICH effort, with PMI-2 demonstrating better16
scaling properties than its PMI-1 predecessor.17

PMI-1 and PMI-2 can be implemented using PMIx though PMIx is not a strict superset of either.18
Since its introduction, PMIx has expanded on earlier PMI efforts by providing an extended version19
of the PMI APIs which provide necessary functionality for launching and managing parallel20
applications and tools at scale.21

The increase in adoption has motivated the creation of this document to formally specify the22
intended behavior of the PMIx APIs.23

More information about the PMIx standard and affiliated projects can be found at the PMIx web24
site: https://pmix.org25

1.2 PMIx Architecture Overview26

The presentation of the PMIx APIs within this document makes some basic assumptions about how27
these APIs are used and implemented. These assumptions are generally made only to simplify the28
presentation and explain PMIx with the expectation that most readers have similar concepts on how29

1

https://pmix.org

computing systems are organized today. However, ultimately this document should only be1
assumed to define a set of APIs.2

A concept that is fundamental to PMIx is that a PMIx implementation might operate primarily as a3
messenger, and not a doer — i.e., a PMIx implementation might rely heavily or fully on other4
software components to provide functionality [1]. Since a PMIx implementation might only deliver5
requests and responses to other software components, the API calls include ways to provide6
arbitrary information to the backend components that actually implement the functionality. Also,7
because PMIx implementations generally rely heavily on other system software, a PMIx8
implementation might not be able to guarantee that a feature is available on all platforms the9
implementation supports. These aspects are discussed in detail in the remainder of this chapter.10

RM

PMIx
Client

FS

Fabric

RAS

APP

Orchestration
Requests

Responses

NIC

Fabric
Mgr

PMIx
Server

MPI

OpenMP

Job
Script

System
Management Stack

Tool Support

Figure 1.1.: PMIx-SMS Interactions

Fig. 1.1 shows a typical PMIx implementation in which the application is built against a PMIx11
client library that contains the client-side APIs, attribute definitions, and communication support12
for interacting with the local PMIx server. PMIx clients are processes which are started through the13
PMIx infrastructure, either by the PMIx implementation directly or through a System Management14
Software stack (SMS) component, and have registered as clients. A PMIx client is created in such a15
way that the PMIx client library will be have sufficient information available to authenticate with16
the PMIx server. The PMIx server will have sufficient knowledge about the process which it17
created, either directly or through other SMS, to authenticate the process and provide information18
the process requests such as its identity and the identity of its peers.19

As clients invoke PMIx APIs, it is possible that some client requests can be handled at the client20
level. Other requests might require communication with the local PMIx server, which subsequently21
might request services from the host SMS (represented here by a Resource Manager (RM)22
daemon). The interaction between the PMIx server and SMS are achieved using callback functions23
registered during server initialization. The host SMS can indicate its lack of support for any24

2 PMIx Standard – Version 4.1 – October 2021

operation by simply providing a NULL for the associated callback function, or can create a function1
entry that returns not supported when called.2

Recognizing the burden this places on SMS vendors, the PMIx community has included interfaces3
by which the host SMS (containing the local PMIx service instance) can request support from local4
SMS elements via the PMIx API. Once the SMS has transferred the request to an appropriate5
location, a PMIx server interface can be used to pass the request between SMS subsystems. For6
example, a request for network traffic statistics can utilize the PMIx networking abstractions to7
retrieve the information from the Fabric Manager. This reduces the portability and interoperability8
issues between the individual subsystems by transferring the burden of defining the interoperable9
interfaces from the SMS subsystems to the PMIx community, which continues to work with those10
providers to develop the necessary support.11

Fig. 1.1 shows how tools can interact with the PMIx architecture. Tools, whether standalone or12
embedded in job scripts, are an exception to the normal client registration process. A process can13
register as a tool, provided the PMIx client library has adequate rendezvous information to connect14
to the appropriate PMIx server (either hosted on the local machine or on a remote machine). This15
allows processes which were not created by the PMIx infrastructure to request access to PMIx16
functionality.17

1.3 Portability of Functionality18

It is difficult to define a portable API that will provide access to the many and varied features19
underlying the operations for which PMIx provides access. For example, the options and features20
provided to request the creation of new processes varied dramatically between different systems21
existing at the time PMIx was introduced. Many RMs provide rich interfaces to specify the22
resources assigned to processes. As a result, PMIx is faced with the challenge of attempting to meet23
the seamingly conflicting goals of creating an API which allows access to these diverse features24
while being portable across a wide range of existing software environments. In addition, the25
functionalities required by different clients vary greatly. Producing a PMIx implementation which26
can provide the needs of all possible clients on all of its target systems could be so burdensome as27
to discourage PMIx implementations.28

To help address this issue, the PMIx APIs are designed to allow resource managers and other29
system management stack components to decide on support of a particular function and allow client30
applications to query and adjust to the level of support available. PMIx clients should be written to31
account for the possibility that a PMIx API might return an error code indicating that the call is not32
supported. The PMIx community continues to look at ways to assist SMS implementers in their33
decisions on what functionality to support by highlighting functions and attributes that are critical34
to basic application execution (e.g., PMIx_Get) for certain classes of applications.35

1.3.1 Attributes in PMIx36

An area where differences between support on different systems can be challenging is regarding the37
attributes that provide information to the client process and/or control the behavior of a PMIx API.38

CHAPTER 1. INTRODUCTION 3

Most PMIx API calls can accept additional information or attributes specified in the form of1
key/value pairs. These attributes provide information to the PMIx implementation that influence the2
behavior of the API call. In addition to API calls being optional, support for the individual3
attributes of an API call can vary between systems or implementations.4

An application can adapt to the attribute support on a particular system in one of two ways. PMIx5
provides an API to enable an application to query the attributes supported by a particular API (See6
5.6). Through this API, the PMIx implementation can provide detailed information about the7
attributes supported on a system for each API call queried. Alternatively, the application can mark8
attributes as required using a flag within the pmix_info_t (See 3.2.9). If the required attribute is9
not available on the system or the desired value for the attribute is not available, the call will return10
the error code for not supported.11

For example, the PMIX_TIMEOUT attribute can be used to specify the time (in seconds) before the12
requested operation should time out. The intent of this attribute is to allow the client to avoid13
“hanging” in a request that takes longer than the client wishes to wait, or may never return (e.g., a14
PMIx_Fence that a blocked participant never enters).15

The application can query the attribute support for PMIx_Fence and search whether16
PMIX_TIMEOUT is listed as a supported attribute. The application can also set the required flag in17
the pmix_info_t for that attribute when making the PMIx_Fence call. This will return an18
error if this attribute is not supported. If the required flag is not set, the library and SMS host are19
allowed to treat the attribute as optional, ignoring it if support is not available.20

It is therefore critical that users and application implementers:21

a) consider whether or not a given attribute is required, marking it accordingly; and22
b) check the return status on all PMIx function calls to ensure support was present and that the23

request was accepted. Note that for non-blocking APIs, a return of PMIX_SUCCESS only24
indicates that the request had no obvious errors and is being processed – the eventual callback25
will return the status of the requested operation itself.26

PMIx clients (e.g., tools, parallel programming libraries) may find that they depend only on a small27
subset of interfaces and attributes to work correctly. PMIx clients are strongly advised to define a28
document itemizing the PMIx interfaces and associated attributes that are required for correct29
operation, and are optional but recommended for full functionality. The PMIx standard cannot30
define this list for all given PMIx clients, but such a list is valuable to RMs desiring to support these31
clients.32

A PMIx implementation may be able to support only a subset of the PMIx API and attributes on a33
particular system due to either its own limitations or limitations of the SMS with which it34
interfaces. A PMIx implemenation may also provide additional attributes beyond those defined35
herein in order to allow applications to access the full features of the underlying SMS. PMIx36
implementations are strongly advised to document the PMIx interfaces and associated attributes37
they support, with any annotations about behavior limitations. The PMIx standard cannot define38
this support for implementations, but such documentation is valuable to PMIx clients desiring to39
support a broad range of systems.40

4 PMIx Standard – Version 4.1 – October 2021

While a PMIx library implementer, or an SMS component server, may choose to support a1
particular PMIx API, they are not required to support every attribute that might apply to it. This2
would pose a significant barrier to entry for an implementer as there can be a broad range of3
applicable attributes to a given API, at least some of which may rarely be used.4

Note that an environment that does not include support for a particular attribute/API pair is not5
“incomplete” or of lower quality than one that does include that support. Vendors must decide6
where to invest their time based on the needs of their target markets, and it is perfectly reasonable7
for them to perform cost/benefit decisions when considering what functions and attributes to8
support.9

Attributes in this document are organized according to their primary usage, either grouped with a10
specific API or included in an appropriate functional chapter. Attributes in the PMIx Standard all11
start with "PMIX" in their name, and many include a functional description as part of their name12
(e.g., the use of "PMIX_FABRIC_" at the beginning of fabric-specific attributes). The PMIx13
Standard also defines an attribute that can be used to indicate that an attribute variable has not yet14
been set:15

PMIX_ATTR_UNDEF "pmix.undef" (NULL)16
A default attribute name signifying that the attribute field of a PMIx structure (e.g., a17
pmix_info_t) has not yet been defined.18

CHAPTER 1. INTRODUCTION 5

CHAPTER 2

PMIx Terms and Conventions

In this chapter we describe some common terms and conventions used throughout this document.1
The PMIx Standard has adopted the widespread use of key-value attributes to add flexibility to the2
functionality expressed in the existing APIs. Accordingly, the ASC has chosen to require that the3
definition of each standard API include the passing of an array of attributes. These provide a means4
of customizing the behavior of the API as future needs emerge without having to alter or create new5
variants of it. In addition, attributes provide a mechanism by which researchers can easily explore6
new approaches to a given operation without having to modify the API itself.7

In an effort to maintain long-term backward compatibility, PMIx does not include large numbers of8
APIs that each focus on a narrow scope of functionality, but instead relies on the definition of fewer9
generic APIs that include arrays of key-value attributes for “tuning” the function’s behavior. Thus,10
modifications to the PMIx standard primarily consist of the definition of new attributes along with a11
description of the APIs to which they relate and the expected behavior when used with those APIs.12

The following terminology is used throughout this document:13

• session refers to a pool of resources with a unique identifier (a.k.a., the session ID) assigned by14
the WorkLoad Manager (WLM) that has been reserved for one or more users. Historically, High15
Performance Computing (HPC) sessions have consisted of a static allocation of resources - e.g., a16
block of nodes assigned to a user in response to a specific request and managed as a unified17
collection. However, this is changing in response to the growing use of dynamic programming18
models that require on-the-fly allocation and release of system resources. Accordingly, the term19
session in this document refers to a potentially dynamic entity, perhaps comprised of resources20
accumulated as a result of multiple allocation requests that are managed as a single unit by the21
WLM.22

• job refers to a set of one or more applications executed as a single invocation by the user within a23
session with a unique identifier (a.k.a, the job ID) assigned by the RM or launcher. For example,24
the command line “mpiexec -n 1 app1 : -n 2 app2” generates a single Multiple Program Multiple25
Data (MPMD) job containing two applications. A user may execute multiple jobs within a given26
session, either sequentially or in parallel.27

• namespace refers to a character string value assigned by the RM or launcher (e.g., mpiexec) to28
a job. All applications executed as part of that job share the same namespace. The namespace29
assigned to each job must be unique within the scope of the governing RM and often is30
implemented as a string representation of a numerical job ID. The namespace and job terms will31
be used interchangeably throughout the document.32

• application refers to a single executable (binary, script, etc.) member of a job.33

6

• process refers to an operating system process, also commonly referred to as a heavyweight1
process. A process is often comprised of multiple lightweight threads, commonly known as2
simply threads.3

• client refers to a process that was registered with the PMIx server prior to being started, and4
connects to that PMIx server via PMIx_Init using its assigned namespace and rank with the5
information required to connect to that server being provided to the process at time of start of6
execution.7

• clone refers to a process that was directly started by a PMIx client (e.g., using fork/exec) and calls8
PMIx_Init, thus connecting to its local PMIx server using the same namespace and rank as its9
parent process.10

• rank refers to the numerical location (starting from zero) of a process within the defined scope.11
Thus, job rank is the rank of a process within its job and is synonymous with its unqualified12
rank, while application rank is the rank of that process within its application.13

• peer refers to another process within the same job.14

• workflow refers to an orchestrated execution plan frequently involving multiple jobs carried out15
under the control of a workflow manager process. An example workflow might first execute a16
computational job to generate the flow of liquid through a complex cavity, followed by a17
visualization job that takes the output of the first job as its input to produce an image output.18

• scheduler refers to the component of the SMS responsible for scheduling of resource allocations.19
This is also generally referred to as the system workflow manager - for the purposes of this20
document, the WLM acronym will be used interchangeably to refer to the scheduler.21

• resource manager is used in a generic sense to represent the subsystem that will host the PMIx22
server library. This could be a vendor-supplied resource manager or a third-party agent such as a23
programming model’s runtime library.24

• host environment is used interchangeably with resource manager to refer to the process hosting25
the PMIx server library.26

• node refers to a single operating system instance. Note that this may encompass one or more27
physical objects.28

• package refers to a single object that is either soldered or connected to a printed circuit board via29
a mechanical socket. Packages may contain multiple chips that include (but are not limited to)30
processing units, memory, and peripheral interfaces.31

• processing unit, or PU, is the electronic circuitry within a computer that executes instructions.32
Depending upon architecture and configuration settings, it may consist of a single hardware33
thread or multiple hardware threads collectively organized as a core.34

• fabric is used in a generic sense to refer to the networks within the system regardless of speed or35
protocol. Any use of the term network in the document should be considered interchangeable36
with fabric.37

CHAPTER 2. PMIX TERMS AND CONVENTIONS 7

• fabric device (or fabric devices) refers to an operating system fabric interface, which may be1
physical or virtual. Any use of the term Network Interface Card (NIC) in the document should be2
considered interchangeable with fabric device.3

• fabric plane refers to a collection of fabric devices in a common logical or physical4
configuration. Fabric planes are often implemented in HPC clusters as separate overlay or5
physical networks controlled by a dedicated fabric manager.6

• attribute refers to a key-value pair comprised of a string key (represented by a pmix_key_t7
structure) and an associated value containing a PMIx data type (e.g., boolean, integer, or a more8
complex PMIx structure). Attributes are used both as directives when passed as qualifiers to9
APIs (e.g., in a pmix_info_t array), and to identify the contents of information (e.g., to10
specify that the contents of the corresponding pmix_value_t in a pmix_info_t represent11
the PMIX_UNIV_SIZE).12

• key refers to the string component of a defined attribute. The PMIx Standard will often refer to13
passing of a key to an API (e.g., to the PMIx_Query_info or PMIx_Get APIs) as a means of14
identifying requested information. In this context, the data type specified in the attribute’s15
definition indicates the data type the caller should expect to receive in return. Note that not all16
attributes can be used as keys as some have specific uses solely as API qualifiers.17

• instant on refers to a PMIx concept defined as: "All information required for setup and18
communication (including the address vector of endpoints for every process) is available to each19
process at start of execution"20

The following sections provide an overview of the conventions used throughout the PMIx Standard21
document.22

2.1 Notational Conventions23

Some sections of this document describe programming language specific examples or APIs. Text24
that applies only to programs for which the base language is C is shown as follows:25

C
C specific text...26

int foo = 42;27

C

Some text is for information only, and is not part of the normative specification. These take several28
forms, described in their examples below:29

Note: General text...30

8 PMIx Standard – Version 4.1 – October 2021

Rationale

Throughout this document, the rationale for the design choices made in the interface specification is1
set off in this section. Some readers may wish to skip these sections, while readers interested in2
interface design may want to read them carefully.3

Advice to users

Throughout this document, material aimed at users and that illustrates usage is set off in this4
section. Some readers may wish to skip these sections, while readers interested in programming5
with the PMIx API may want to read them carefully.6

Advice to PMIx library implementers

Throughout this document, material that is primarily commentary to PMIx library implementers is7
set off in this section. Some readers may wish to skip these sections, while readers interested in8
PMIx implementations may want to read them carefully.9

Advice to PMIx server hosts

Throughout this document, material that is primarily commentary aimed at host environments (e.g.,10
RMs and RunTime Environments (RTEs)) providing support for the PMIx server library is set off in11
this section. Some readers may wish to skip these sections, while readers interested in integrating12
PMIx servers into their environment may want to read them carefully.13

Attributes added in this version of the standard are shown in magenta to distinguish them from14
those defined in prior versions, which are shown in black. Deprecated attributes are shown in green15
and may be removed in a future version of the standard.16

2.2 Semantics17

The following terms will be taken to mean:18

• shall, must and will indicate that the specified behavior is required of all conforming19
implementations20

• should and may indicate behaviors that a complete implementation would include, but are not21
required of all conforming implementations22

CHAPTER 2. PMIX TERMS AND CONVENTIONS 9

2.3 Naming Conventions1

The PMIx standard has adopted the following conventions:2

• PMIx constants and attributes are prefixed with PMIX.3

• Structures and type definitions are prefixed with pmix.4

• Underscores are used to separate words in a function or variable name.5

• Lowercase letters are used in PMIx client APIs except for the PMIx prefix (noted below) and the6
first letter of the word following it. For example, PMIx_Get_version.7

• PMIx server and tool APIs are all lower case letters following the prefix - e.g.,8
PMIx_server_register_nspace.9

• The PMIx_ prefix is used to denote functions.10

• The pmix_ prefix is used to denote function pointer and type definitions.11

Users should not use the "PMIX", "PMIx", or "pmix" prefixes in their applications or libraries12
so as to avoid symbol conflicts with current and later versions of the PMIx Standard.13

2.4 Procedure Conventions14

While the current APIs are based on the C programming language, it is not the intent of the PMIx15
Standard to preclude the use of other languages. Accordingly, the procedure specifications in the16
PMIx Standard are written in a language-independent syntax with the arguments marked as IN,17
OUT, or INOUT. The meanings of these are:18

• IN: The call may use the input value but does not update the argument from the perspective of19
the caller at any time during the calls execution,20

• OUT: The call may update the argument but does not use its input value21

• INOUT: The call may both use and update the argument.22

Many PMIx interfaces, particularly nonblocking interfaces, use a (void*) callback data object23
passed to the function that is then passed to the associated callback. On the client side, the callback24
data object is an opaque, client-provided context that the client can pass to a non-blocking call.25
When the nonblocking call completes, the callback data object is passed back to the client without26
modification by the PMIx library, thus allowing the client to associate a context with that callback.27
This is useful if there are many outstanding nonblocking calls.28

A similar model is used for the server module functions (see 16.3.1). In this case, the PMIx library29
is making an upcall into its host via the PMIx server module callback function and passing a30
specific callback function pointer and callback data object. The PMIx library expects the host to31
call the cbfunc with the necessary arguments and pass back the original callback data obect upon32
completing the operation. This gives the server-side PMIx library the ability to associate a context33

10 PMIx Standard – Version 4.1 – October 2021

with the call back (since multiple operations may be outstanding). The host has no visibility into1
the contents of the callback data object object, nor is permitted to alter it in any way.2

CHAPTER 2. PMIX TERMS AND CONVENTIONS 11

CHAPTER 3

Data Structures and Types

This chapter defines PMIx standard data structures (along with macros for convenient use), types,1
and constants. These apply to all consumers of the PMIx interface. Where necessary for2
clarification, the description of, for example, an attribute may be copied from this chapter into a3
section where it is used.4

A PMIx implementation may define additional attributes beyond those specified in this document.5

Advice to PMIx library implementers

Structures, types, and macros in the PMIx Standard are defined in terms of the C-programming6
language. Implementers wishing to support other languages should provide the equivalent7
definitions in a language-appropriate manner.8

If a PMIx implementation chooses to define additional attributes they should avoid using the9
"PMIX" prefix in their name or starting the attribute string with a "pmix" prefix. This helps the10
end user distinguish between what is defined by the PMIx standard and what is specific to that11
PMIx implementation, and avoids potential conflicts with attributes defined by the Standard.12

Advice to users

Use of increment/decrement operations on indices inside PMIx macros is discouraged due to13
unpredictable behavior. For example, the following sequence:14

PMIX_INFO_LOAD(&array[n++], "mykey", &mystring, PMIX_STRING);15
PMIX_INFO_LOAD(&array[n++], "mykey2", &myint, PMIX_INT);16

will load the given key-values into incorrect locations if the macro is implemented as:17

define PMIX_INFO_LOAD(m, k, v, t) \18
do { \19
if (NULL != (k)) { \20

pmix_strncpy((m)->key, (k), PMIX_MAX_KEYLEN); \21
} \22
(m)->flags = 0; \23
pmix_value_load(&((m)->value), (v), (t)); \24

} while (0)25

since the index is cited more than once in the macro. The PMIx standard only governs the existence26
and syntax of macros - it does not specify their implementation. Given the freedom of27
implementation, a safer call sequence might be as follows:28

12

PMIX_INFO_LOAD(&array[n], "mykey", &mystring, PMIX_STRING);1
++n;2
PMIX_INFO_LOAD(&array[n], "mykey2", &myint, PMIX_INT);3
++n;4

Users are also advised to use the macros for creating, loading, and releasing PMIx structures to5
avoid potential issues with release of memory. For example, pointing a pmix_envar_t element6
at a static string variable and then using PMIX_ENVAR_DESTRUCT to clear it would generate an7
error as the static string had not been allocated.8

3.1 Constants9

PMIx defines a few values that are used throughout the standard to set the size of fixed arrays or as10
a means of identifying values with special meaning. The community makes every attempt to11
minimize the number of such definitions. The constants defined in this section may be used before12
calling any PMIx library initialization routine. Additional constants associated with specific data13
structures or types are defined in the section describing that data structure or type.14

PMIX_MAX_NSLEN Maximum namespace string length as an integer.15

Advice to PMIx library implementers

PMIX_MAX_NSLEN should have a minimum value of 63 characters. Namespace arrays in PMIx16
defined structures must reserve a space of size PMIX_MAX_NSLEN+1 to allow room for the NULL17
terminator18

PMIX_MAX_KEYLEN Maximum key string length as an integer.19

Advice to PMIx library implementers

PMIX_MAX_KEYLEN should have a minimum value of 63 characters. Key arrays in PMIx defined20
structures must reserve a space of size PMIX_MAX_KEYLEN+1 to allow room for the NULL21
terminator22

PMIX_APP_WILDCARD A value to indicate that the user wants the data for the given key from23
every application that posted that key, or that the given value applies to all applications within24
the given namespace.25

CHAPTER 3. DATA STRUCTURES AND TYPES 13

3.1.1 PMIx Return Status Constants1

The pmix_status_t structure is an int type for return status. The tables shown in this section2
define the possible values for pmix_status_t. PMIx errors are required to always be negative,3
with 0 reserved for PMIX_SUCCESS. Values in the list that were deprecated in later standards are4
denoted as such. Values added to the list in this version of the standard are shown in magenta.5

Advice to PMIx library implementers

A PMIx implementation must define all of the constants defined in this section, even if they will6
never return the specific value to the caller.7

Advice to users

Other than PMIX_SUCCESS (which is required to be zero), the actual value of any PMIx error8
constant is left to the PMIx library implementer. Thus, users are advised to always refer to constant9
by name, and not a specific implementation’s value, for portability between implementations and10
compatibility across library versions.11

The following values are general constants used in a variety of places.12

PMIX_SUCCESS Success.13
PMIX_ERROR General Error.14
PMIX_ERR_EXISTS Requested operation would overwrite an existing value - typically15

returned when an operation would overwrite an existing file or directory.16
PMIX_ERR_EXISTS_OUTSIDE_SCOPE The requested key exists, but was posted in a scope17

(see Section 7.1.1.1) that does not include the requester18
PMIX_ERR_INVALID_CRED Invalid security credentials.19
PMIX_ERR_WOULD_BLOCK Operation would block.20
PMIX_ERR_UNKNOWN_DATA_TYPE The data type specified in an input to the PMIx library21

is not recognized by the implementation.22
PMIX_ERR_TYPE_MISMATCH The data type found in an object does not match the expected23

data type as specified in the API call - e.g., a request to unpack a PMIX_BOOL value from a24
buffer that does not contain a value of that type in the current unpack location.25

PMIX_ERR_UNPACK_INADEQUATE_SPACE Inadequate space to unpack data - the number26
of values in the buffer exceeds the specified number to unpack.27

PMIX_ERR_UNPACK_READ_PAST_END_OF_BUFFER Unpacking past the end of the28
provided buffer - the number of values in the buffer is less than the specified number to29
unpack, or a request was made to unpack a buffer beyond the buffer’s end.30

PMIX_ERR_UNPACK_FAILURE The unpack operation failed for an unspecified reason.31
PMIX_ERR_PACK_FAILURE The pack operation failed for an unspecified reason.32
PMIX_ERR_NO_PERMISSIONS The user lacks permissions to execute the specified33

operation.34
PMIX_ERR_TIMEOUT Either a user-specified or system-internal timeout expired.35

14 PMIx Standard – Version 4.1 – October 2021

PMIX_ERR_UNREACH The specified target server or client process is not reachable - i.e., a1
suitable connection either has not been or can not be made.2

PMIX_ERR_BAD_PARAM One or more incorrect parameters (e.g., passing an attribute with a3
value of the wrong type), or multiple parameters containing conflicting directives (e.g.,4
multiple instances of the same attribute with different values, or different attributes specifying5
conflicting behaviors), were passed to a PMIx API.6

PMIX_ERR_EMPTY An array or list was given that has no members in it - i.e., the object is7
empty.8

PMIX_ERR_RESOURCE_BUSY Resource busy - typically seen when an attempt to establish a9
connection to another process (e.g., a PMIx server) cannot be made due to a communication10
failure.11

PMIX_ERR_OUT_OF_RESOURCE Resource exhausted.12
PMIX_ERR_INIT Error during initialization.13
PMIX_ERR_NOMEM Out of memory.14
PMIX_ERR_NOT_FOUND The requested information was not found.15
PMIX_ERR_NOT_SUPPORTED The requested operation is not supported by either the PMIx16

implementation or the host environment.17
PMIX_ERR_PARAM_VALUE_NOT_SUPPORTED The requested operation is supported by the18

PMIx implementation and (if applicable) the host environment. However, at least one19
supplied parameter was given an unsupported value, and the operation cannot therefore be20
executed as requested.21

PMIX_ERR_COMM_FAILURE Communication failure - a message failed to be sent or22
received, but the connection remains intact.23

PMIX_ERR_LOST_CONNECTION Lost connection between server and client or tool.24
PMIX_ERR_INVALID_OPERATION The requested operation is supported by the25

implementation and host environment, but fails to meet a requirement (e.g., requesting to26
disconnect from processes without first connecting to them, inclusion of conflicting27
directives, or a request to perform an operation that conflicts with an ongoing one).28

PMIX_OPERATION_IN_PROGRESS A requested operation is already in progress - the29
duplicate request shall therefore be ignored.30

PMIX_OPERATION_SUCCEEDED The requested operation was performed atomically - no31
callback function will be executed.32

PMIX_ERR_PARTIAL_SUCCESS The operation is considered successful but not all elements33
of the operation were concluded (e.g., some members of a group construct operation chose34
not to participate).35

3.1.1.1 User-Defined Error and Event Constants36

PMIx establishes a boundary for constants defined in the PMIx standard. Negative values larger37
(i.e., more negative) than this (and any positive values greater than zero) are guaranteed not to38
conflict with PMIx values.39

PMIX_EXTERNAL_ERR_BASE A starting point for user-level defined error and event40
constants. Negative values that are more negative than the defined constant are guaranteed not41
to conflict with PMIx values. Definitions should always be based on the42

CHAPTER 3. DATA STRUCTURES AND TYPES 15

PMIX_EXTERNAL_ERR_BASE constant and not a specific value as the value of the constant1
may change.2

3.2 Data Types3

This section defines various data types used by the PMIx APIs. The version of the standard in4
which a particular data type was introduced is shown in the margin.5

3.2.1 Key Structure6

The pmix_key_t structure is a statically defined character array of length7
PMIX_MAX_KEYLEN+1, thus supporting keys of maximum length PMIX_MAX_KEYLEN while8
preserving space for a mandatory NULL terminator.9

PMIx v2.0 C
typedef char pmix_key_t[PMIX_MAX_KEYLEN+1];10

C

Characters in the key must be standard alphanumeric values supported by common utilities such as11
strcmp.12

Advice to users

References to keys in PMIx v1 were defined simply as an array of characters of size13
PMIX_MAX_KEYLEN+1. The pmix_key_t type definition was introduced in version 2 of the14
standard. The two definitions are code-compatible and thus do not represent a break in backward15
compatibility.16

Passing a pmix_key_t value to the standard sizeof utility can result in compiler warnings of17
incorrect returned value. Users are advised to avoid using sizeof(pmix_key_t) and instead rely on18
the PMIX_MAX_KEYLEN constant.19

3.2.1.1 Key support macros20

The following macros are provided for convenience when working with PMIx keys.21

16 PMIx Standard – Version 4.1 – October 2021

Check key macro1
Compare the key in a pmix_info_t to a given value.2

C
PMIX_CHECK_KEY(a, b)3

C

IN a4
Pointer to the structure whose key is to be checked (pointer to pmix_info_t)5

IN b6
String value to be compared against (char*)7

Returns true if the key matches the given value8

Check reserved key macro9
Check if the given key is a PMIx reserved key as described in Chapter 6.10

PMIx v4.0 C
PMIX_CHECK_RESERVED_KEY(a)11

C

IN a12
String value to be checked (char*)13

Returns true if the key is reserved by the Standard.14

Load key macro15
Load a key into a pmix_info_t.16

PMIx v4.0 C
PMIX_LOAD_KEY(a, b)17

C

IN a18
Pointer to the structure whose key is to be loaded (pointer to pmix_info_t)19

IN b20
String value to be loaded (char*)21

No return value.22

CHAPTER 3. DATA STRUCTURES AND TYPES 17

3.2.2 Namespace Structure1

The pmix_nspace_t structure is a statically defined character array of length2
PMIX_MAX_NSLEN+1, thus supporting namespaces of maximum length PMIX_MAX_NSLEN3
while preserving space for a mandatory NULL terminator.4

C
typedef char pmix_nspace_t[PMIX_MAX_NSLEN+1];5

C

Characters in the namespace must be standard alphanumeric values supported by common utilities6
such as strcmp.7

Advice to users

References to namespace values in PMIx v1 were defined simply as an array of characters of size8
PMIX_MAX_NSLEN+1. The pmix_nspace_t type definition was introduced in version 2 of the9
standard. The two definitions are code-compatible and thus do not represent a break in backward10
compatibility.11

Passing a pmix_nspace_t value to the standard sizeof utility can result in compiler warnings of12
incorrect returned value. Users are advised to avoid using sizeof(pmix_nspace_t) and instead rely13
on the PMIX_MAX_NSLEN constant.14

3.2.2.1 Namespace support macros15

The following macros are provided for convenience when working with PMIx namespace16
structures.17

Check namespace macro18
Compare the string in a pmix_nspace_t to a given value.19

PMIx v3.0 C
PMIX_CHECK_NSPACE(a, b)20

C

IN a21
Pointer to the structure whose value is to be checked (pointer to pmix_nspace_t)22

IN b23
String value to be compared against (char*)24

Returns true if the namespace matches the given value25

18 PMIx Standard – Version 4.1 – October 2021

Check invalid namespace macro1
Check if the provided pmix_nspace_t is invalid.2

C
PMIX_NSPACE_INVALID(a)3

C

IN a4
Pointer to the structure whose value is to be checked (pointer to pmix_nspace_t)5

Returns true if the namespace is invalid (i.e., starts with a NULL resulting in a zero-length string6
value)7

Load namespace macro8
Load a namespace into a pmix_nspace_t.9

PMIx v4.0 C
PMIX_LOAD_NSPACE(a, b)10

C

IN a11
Pointer to the target structure (pointer to pmix_nspace_t)12

IN b13
String value to be loaded - if NULL is given, then the target structure will be initialized to14
zero’s (char*)15

No return value.16

3.2.3 Rank Structure17

The pmix_rank_t structure is a uint32_t type for rank values.18
PMIx v1.0 C

typedef uint32_t pmix_rank_t;19

C

The following constants can be used to set a variable of the type pmix_rank_t. All definitions20
were introduced in version 1 of the standard unless otherwise marked. Valid rank values start at21
zero.22

PMIX_RANK_UNDEF A value to request job-level data where the information itself is not23
associated with any specific rank, or when passing a pmix_proc_t identifier to an24
operation that only references the namespace field of that structure.25

PMIX_RANK_WILDCARD A value to indicate that the user wants the data for the given key26
from every rank that posted that key.27

PMIX_RANK_LOCAL_NODE Special rank value used to define groups of ranks. This constant28
defines the group of all ranks on a local node.29

CHAPTER 3. DATA STRUCTURES AND TYPES 19

PMIX_RANK_LOCAL_PEERS Special rank value used to define groups of ranks. This1
constant defines the group of all ranks on a local node within the same namespace as the2
current process.3

PMIX_RANK_INVALID An invalid rank value.4
PMIX_RANK_VALID Define an upper boundary for valid rank values.5

3.2.3.1 Rank support macros6

The following macros are provided for convenience when working with PMIx ranks.7

Check rank macro8
Check two ranks for equality, taking into account wildcard values9

PMIx v4.0 C
PMIX_CHECK_RANK(a, b)10

C

IN a11
Rank to be checked (pmix_rank_t)12

IN b13
Rank to be checked (pmix_rank_t)14

Returns true if the ranks are equal, or at least one of the ranks is PMIX_RANK_WILDCARD15

Check rank is valid macro16
Check if the given rank is a valid value17

PMIx v4.1 C
PMIX_RANK_IS_VALID(a)18

C

IN a19
Rank to be checked (pmix_rank_t)20

Returns true if the given rank is valid (i.e., less than PMIX_RANK_VALID)21

3.2.4 Process Structure22

The pmix_proc_t structure is used to identify a single process in the PMIx universe. It contains23
a reference to the namespace and the pmix_rank_t within that namespace.24

PMIx v1.0 C
typedef struct pmix_proc {25

pmix_nspace_t nspace;26
pmix_rank_t rank;27

} pmix_proc_t;28

C

20 PMIx Standard – Version 4.1 – October 2021

3.2.4.1 Process structure support macros1

The following macros are provided to support the pmix_proc_t structure.2

Initialize the proc structure3
Initialize the pmix_proc_t fields.4

PMIx v1.0 C
PMIX_PROC_CONSTRUCT(m)5

C

IN m6
Pointer to the structure to be initialized (pointer to pmix_proc_t)7

Destruct the proc structure8
Destruct the pmix_proc_t fields.9

C
PMIX_PROC_DESTRUCT(m)10

C

IN m11
Pointer to the structure to be destructed (pointer to pmix_proc_t)12

There is nothing to release here as the fields in pmix_proc_t are either a statically-declared array13
(the namespace) or a single value (the rank). However, the macro is provided for symmetry in the14
code and for future-proofing should some allocated field be included some day.15

Create a proc array16
Allocate and initialize an array of pmix_proc_t structures.17

PMIx v1.0 C
PMIX_PROC_CREATE(m, n)18

C

INOUT m19
Address where the pointer to the array of pmix_proc_t structures shall be stored (handle)20

IN n21
Number of structures to be allocated (size_t)22

Free a proc structure23
Release a pmix_proc_t structure.24

PMIx v4.0 C
PMIX_PROC_RELEASE(m)25

C

IN m26
Pointer to a pmix_proc_t structure (handle)27

CHAPTER 3. DATA STRUCTURES AND TYPES 21

Free a proc array1
Release an array of pmix_proc_t structures.2

PMIx v1.0 C
PMIX_PROC_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_proc_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

Load a proc structure8
Load values into a pmix_proc_t.9

PMIx v2.0 C
PMIX_PROC_LOAD(m, n, r)10

C

IN m11
Pointer to the structure to be loaded (pointer to pmix_proc_t)12

IN n13
Namespace to be loaded (pmix_nspace_t)14

IN r15
Rank to be assigned (pmix_rank_t)16

No return value. Deprecated in favor of PMIX_LOAD_PROCID17

Compare identifiers18
Compare two pmix_proc_t identifiers.19

PMIx v3.0 C
PMIX_CHECK_PROCID(a, b)20

C

IN a21
Pointer to a structure whose ID is to be compared (pointer to pmix_proc_t)22

IN b23
Pointer to a structure whose ID is to be compared (pointer to pmix_proc_t)24

Returns true if the two structures contain matching namespaces and:25

• the ranks are the same value26

• one of the ranks is PMIX_RANK_WILDCARD27

22 PMIx Standard – Version 4.1 – October 2021

Check if a process identifier is valid1
Check for invalid namespace or rank value2

C
PMIX_PROCID_INVALID(a)3

C

IN a4
Pointer to a structure whose ID is to be checked (pointer to pmix_proc_t)5

Returns true if the process identifier contains either an empty (i.e., invalid) nspace field or a rank6
field of PMIX_RANK_INVALID7

Load a procID structure8
Load values into a pmix_proc_t.9

PMIx v4.0 C
PMIX_LOAD_PROCID(m, n, r)10

C

IN m11
Pointer to the structure to be loaded (pointer to pmix_proc_t)12

IN n13
Namespace to be loaded (pmix_nspace_t)14

IN r15
Rank to be assigned (pmix_rank_t)16

Transfer a procID structure17
Transfer contents of one pmix_proc_t value to another pmix_proc_t.18

PMIx v4.1 C
PMIX_PROCID_XFER(d, s)19

C

IN d20
Pointer to the target structure (pointer to pmix_proc_t)21

IN s22
Pointer to the source structure (pointer to pmix_proc_t)23

CHAPTER 3. DATA STRUCTURES AND TYPES 23

Construct a multi-cluster namespace1
Construct a multi-cluster identifier containing a cluster ID and a namespace.2

C
PMIX_MULTICLUSTER_NSPACE_CONSTRUCT(m, n, r)3

C

IN m4
pmix_nspace_t structure that will contain the multi-cluster identifier (pmix_nspace_t)5

IN n6
Cluster identifier (char*)7

IN n8
Namespace to be loaded (pmix_nspace_t)9

Combined length of the cluster identifier and namespace must be less than PMIX_MAX_NSLEN-2.10

Parse a multi-cluster namespace11
Parse a multi-cluster identifier into its cluster ID and namespace parts.12

PMIx v4.0 C
PMIX_MULTICLUSTER_NSPACE_PARSE(m, n, r)13

C

IN m14
pmix_nspace_t structure containing the multi-cluster identifier (pointer to15
pmix_nspace_t)16

IN n17
Location where the cluster ID is to be stored (pmix_nspace_t)18

IN n19
Location where the namespace is to be stored (pmix_nspace_t)20

3.2.5 Process State Structure21

PMIx v2.0 The pmix_proc_state_t structure is a uint8_t type for process state values. The following22
constants can be used to set a variable of the type pmix_proc_state_t.23

Advice to users

The fine-grained nature of the following constants may exceed the ability of an RM to provide24
updated process state values during the process lifetime. This is particularly true of states for25
short-lived processes.26

24 PMIx Standard – Version 4.1 – October 2021

PMIX_PROC_STATE_UNDEF Undefined process state.1
PMIX_PROC_STATE_PREPPED Process is ready to be launched.2
PMIX_PROC_STATE_LAUNCH_UNDERWAY Process launch is underway.3
PMIX_PROC_STATE_RESTART Process is ready for restart.4
PMIX_PROC_STATE_TERMINATE Process is marked for termination.5
PMIX_PROC_STATE_RUNNING Process has been locally fork’ed by the RM.6
PMIX_PROC_STATE_CONNECTED Process has connected to PMIx server.7
PMIX_PROC_STATE_UNTERMINATED Define a “boundary” between the terminated states8

and PMIX_PROC_STATE_CONNECTED so users can easily and quickly determine if a9
process is still running or not. Any value less than this constant means that the process has not10
terminated.11

PMIX_PROC_STATE_TERMINATED Process has terminated and is no longer running.12
PMIX_PROC_STATE_ERROR Define a boundary so users can easily and quickly determine if13

a process abnormally terminated. Any value above this constant means that the process has14
terminated abnormally.15

PMIX_PROC_STATE_KILLED_BY_CMD Process was killed by a command.16
PMIX_PROC_STATE_ABORTED Process was aborted by a call to PMIx_Abort.17
PMIX_PROC_STATE_FAILED_TO_START Process failed to start.18
PMIX_PROC_STATE_ABORTED_BY_SIG Process aborted by a signal.19
PMIX_PROC_STATE_TERM_WO_SYNC Process exited without calling PMIx_Finalize.20
PMIX_PROC_STATE_COMM_FAILED Process communication has failed.21
PMIX_PROC_STATE_SENSOR_BOUND_EXCEEDED Process exceeded a specified sensor22

limit.23
PMIX_PROC_STATE_CALLED_ABORT Process called PMIx_Abort.24
PMIX_PROC_STATE_HEARTBEAT_FAILED Frocess failed to send heartbeat within25

specified time limit.26
PMIX_PROC_STATE_MIGRATING Process failed and is waiting for resources before27

restarting.28
PMIX_PROC_STATE_CANNOT_RESTART Process failed and cannot be restarted.29
PMIX_PROC_STATE_TERM_NON_ZERO Process exited with a non-zero status.30
PMIX_PROC_STATE_FAILED_TO_LAUNCH Unable to launch process.31

3.2.6 Process Information Structure32

The pmix_proc_info_t structure defines a set of information about a specific process33
including it’s name, location, and state.34

PMIx v2.0

CHAPTER 3. DATA STRUCTURES AND TYPES 25

C
typedef struct pmix_proc_info {1

/** Process structure */2
pmix_proc_t proc;3
/** Hostname where process resides */4
char *hostname;5
/** Name of the executable */6
char *executable_name;7
/** Process ID on the host */8
pid_t pid;9
/** Exit code of the process. Default: 0 */10
int exit_code;11
/** Current state of the process */12
pmix_proc_state_t state;13

} pmix_proc_info_t;14

C

3.2.6.1 Process information structure support macros15

The following macros are provided to support the pmix_proc_info_t structure.16

Initialize the process information structure17
Initialize the pmix_proc_info_t fields.18

PMIx v2.0 C
PMIX_PROC_INFO_CONSTRUCT(m)19

C

IN m20
Pointer to the structure to be initialized (pointer to pmix_proc_info_t)21

Destruct the process information structure22
Destruct the pmix_proc_info_t fields.23

PMIx v2.0 C
PMIX_PROC_INFO_DESTRUCT(m)24

C

IN m25
Pointer to the structure to be destructed (pointer to pmix_proc_info_t)26

26 PMIx Standard – Version 4.1 – October 2021

Create a process information array1
Allocate and initialize a pmix_proc_info_t array.2

C
PMIX_PROC_INFO_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_proc_info_t structures shall be stored5
(handle)6

IN n7
Number of structures to be allocated (size_t)8

Free a process information structure9
Release a pmix_proc_info_t structure.10

PMIx v2.0 C
PMIX_PROC_INFO_RELEASE(m)11

C

IN m12
Pointer to a pmix_proc_info_t structure (handle)13

Free a process information array14
Release an array of pmix_proc_info_t structures.15

PMIx v2.0 C
PMIX_PROC_INFO_FREE(m, n)16

C

IN m17
Pointer to the array of pmix_proc_info_t structures (handle)18

IN n19
Number of structures in the array (size_t)20

3.2.7 Job State Structure21

PMIx v4.0 The pmix_job_state_t structure is a uint8_t type for job state values. The following22
constants can be used to set a variable of the type pmix_job_state_t.23

Advice to users

The fine-grained nature of the following constants may exceed the ability of an RM to provide24
updated job state values during the job lifetime. This is particularly true for short-lived jobs.25

CHAPTER 3. DATA STRUCTURES AND TYPES 27

PMIX_JOB_STATE_UNDEF Undefined job state.1
PMIX_JOB_STATE_AWAITING_ALLOC Job is waiting for resources to be allocated to it.2
PMIX_JOB_STATE_LAUNCH_UNDERWAY Job launch is underway.3
PMIX_JOB_STATE_RUNNING All processes in the job have been spawned and are executing.4
PMIX_JOB_STATE_SUSPENDED All processes in the job have been suspended.5
PMIX_JOB_STATE_CONNECTED All processes in the job have connected to their PMIx6

server.7
PMIX_JOB_STATE_UNTERMINATED Define a “boundary” between the terminated states8

and PMIX_JOB_STATE_TERMINATED so users can easily and quickly determine if a job is9
still running or not. Any value less than this constant means that the job has not terminated.10

PMIX_JOB_STATE_TERMINATED All processes in the job have terminated and are no11
longer running - typically will be accompanied by the job exit status in response to a query.12

PMIX_JOB_STATE_TERMINATED_WITH_ERROR Define a boundary so users can easily13
and quickly determine if a job abnormally terminated - typically will be accompanied by a14
job-related error code in response to a query Any value above this constant means that the job15
terminated abnormally.16

3.2.8 Value Structure17

The pmix_value_t structure is used to represent the value passed to PMIx_Put and retrieved18
by PMIx_Get, as well as many of the other PMIx functions.19

A collection of values may be specified under a single key by passing a pmix_value_t20
containing an array of type pmix_data_array_t, with each array element containing its own21
object. All members shown below were introduced in version 1 of the standard unless otherwise22
marked.23

PMIx v1.0 C
typedef struct pmix_value {24

pmix_data_type_t type;25
union {26

bool flag;27
uint8_t byte;28
char *string;29
size_t size;30
pid_t pid;31
int integer;32
int8_t int8;33
int16_t int16;34
int32_t int32;35
int64_t int64;36
unsigned int uint;37

28 PMIx Standard – Version 4.1 – October 2021

uint8_t uint8;1
uint16_t uint16;2
uint32_t uint32;3
uint64_t uint64;4
float fval;5
double dval;6
struct timeval tv;7
time_t time; // version 2.08
pmix_status_t status; // version 2.09
pmix_rank_t rank; // version 2.010
pmix_proc_t *proc; // version 2.011
pmix_byte_object_t bo;12
pmix_persistence_t persist; // version 2.013
pmix_scope_t scope; // version 2.014
pmix_data_range_t range; // version 2.015
pmix_proc_state_t state; // version 2.016
pmix_proc_info_t *pinfo; // version 2.017
pmix_data_array_t *darray; // version 2.018
void *ptr; // version 2.019
pmix_alloc_directive_t adir; // version 2.020

} data;21
} pmix_value_t;22

C
3.2.8.1 Value structure support macros23

The following macros are provided to support the pmix_value_t structure.24

Initialize the value structure25
Initialize the pmix_value_t fields.26

PMIx v1.0 C
PMIX_VALUE_CONSTRUCT(m)27

C
IN m28

Pointer to the structure to be initialized (pointer to pmix_value_t)29

Destruct the value structure30
Destruct the pmix_value_t fields.31

PMIx v1.0 C
PMIX_VALUE_DESTRUCT(m)32

C
IN m33

Pointer to the structure to be destructed (pointer to pmix_value_t)34

CHAPTER 3. DATA STRUCTURES AND TYPES 29

Create a value array1
Allocate and initialize an array of pmix_value_t structures.2

PMIx v1.0 C
PMIX_VALUE_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_value_t structures shall be stored (handle)5

IN n6
Number of structures to be allocated (size_t)7

Free a value structure8
Release a pmix_value_t structure.9

PMIx v4.0 C
PMIX_VALUE_RELEASE(m)10

C

IN m11
Pointer to a pmix_value_t structure (handle)12

Free a value array13
Release an array of pmix_value_t structures.14

PMIx v1.0 C
PMIX_VALUE_FREE(m, n)15

C

IN m16
Pointer to the array of pmix_value_t structures (handle)17

IN n18
Number of structures in the array (size_t)19

Load a value structure20
Load data into a pmix_value_t structure.21

PMIx v2.0

30 PMIx Standard – Version 4.1 – October 2021

C
PMIX_VALUE_LOAD(v, d, t);1

C

IN v2
The pmix_value_t into which the data is to be loaded (pointer to pmix_value_t)3

IN d4
Pointer to the data value to be loaded (handle)5

IN t6
Type of the provided data value (pmix_data_type_t)7

This macro simplifies the loading of data into a pmix_value_t by correctly assigning values to8
the structure’s fields.9

Advice to users

The data will be copied into the pmix_value_t - thus, any data stored in the source value can be10
modified or free’d without affecting the copied data once the macro has completed.11

Unload a value structure12
Unload data from a pmix_value_t structure.13

PMIx v2.2 C
PMIX_VALUE_UNLOAD(r, v, d, t);14

C

OUT r15
Status code indicating result of the operation pmix_status_t16

IN v17
The pmix_value_t from which the data is to be unloaded (pointer to pmix_value_t)18

INOUT d19
Pointer to the location where the data value is to be returned (handle)20

INOUT t21
Pointer to return the data type of the unloaded value (handle)22

This macro simplifies the unloading of data from a pmix_value_t.23

Advice to users

Memory will be allocated and the data will be in the pmix_value_t returned - the source24
pmix_value_t will not be altered.25

CHAPTER 3. DATA STRUCTURES AND TYPES 31

Transfer data between value structures1
Transfer the data value between two pmix_value_t structures.2

C
PMIX_VALUE_XFER(r, d, s);3

C

OUT r4
Status code indicating success or failure of the transfer (pmix_status_t)5

IN d6
Pointer to the pmix_value_t destination (handle)7

IN s8
Pointer to the pmix_value_t source (handle)9

This macro simplifies the transfer of data between two pmix_value_t structures, ensuring that10
all fields are properly copied.11

Advice to users

The data will be copied into the destination pmix_value_t - thus, any data stored in the source12
value can be modified or free’d without affecting the copied data once the macro has completed.13

Retrieve a numerical value from a value struct14
Retrieve a numerical value from a pmix_value_t structure.15

PMIx v3.0 C
PMIX_VALUE_GET_NUMBER(s, m, n, t)16

C

OUT s17
Status code for the request (pmix_status_t)18

IN m19
Pointer to thepmix_value_t structure (handle)20

OUT n21
Variable to be set to the value (match expected type)22

IN t23
Type of number expected in m (pmix_data_type_t)24

Sets the provided variable equal to the numerical value contained in the given pmix_value_t,25
returning success if the data type of the value matches the expected type and26
PMIX_ERR_BAD_PARAM if it doesn’t27

32 PMIx Standard – Version 4.1 – October 2021

3.2.9 Info Structure1

The pmix_info_t structure defines a key/value pair with associated directive. All fields were2
defined in version 1.0 unless otherwise marked.3

C
typedef struct pmix_info_t {4

pmix_key_t key;5
pmix_info_directives_t flags; // version 2.06
pmix_value_t value;7

} pmix_info_t;8

C

3.2.9.1 Info structure support macros9

The following macros are provided to support the pmix_info_t structure.10

Initialize the info structure11
Initialize the pmix_info_t fields.12

PMIx v1.0 C
PMIX_INFO_CONSTRUCT(m)13

C

IN m14
Pointer to the structure to be initialized (pointer to pmix_info_t)15

Destruct the info structure16
Destruct the pmix_info_t fields.17

PMIx v1.0 C
PMIX_INFO_DESTRUCT(m)18

C

IN m19
Pointer to the structure to be destructed (pointer to pmix_info_t)20

Create an info array21
Allocate and initialize an array of info structures.22

PMIx v1.0 C
PMIX_INFO_CREATE(m, n)23

C

INOUT m24
Address where the pointer to the array of pmix_info_t structures shall be stored (handle)25

IN n26
Number of structures to be allocated (size_t)27

CHAPTER 3. DATA STRUCTURES AND TYPES 33

Free an info array1
Release an array of pmix_info_t structures.2

PMIx v1.0 C
PMIX_INFO_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_info_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

Load key and value data into a info struct8 PMIx v1.0 C
PMIX_INFO_LOAD(v, k, d, t);9

C

IN v10
Pointer to the pmix_info_t into which the key and data are to be loaded (pointer to11
pmix_info_t)12

IN k13
String key to be loaded - must be less than or equal to PMIX_MAX_KEYLEN in length14
(handle)15

IN d16
Pointer to the data value to be loaded (handle)17

IN t18
Type of the provided data value (pmix_data_type_t)19

This macro simplifies the loading of key and data into a pmix_info_t by correctly assigning20
values to the structure’s fields.21

Advice to users

Both key and data will be copied into the pmix_info_t - thus, the key and any data stored in the22
source value can be modified or free’d without affecting the copied data once the macro has23
completed.24

34 PMIx Standard – Version 4.1 – October 2021

Copy data between info structures1
Copy all data (including key, value, and directives) between two pmix_info_t structures.2

C
PMIX_INFO_XFER(d, s);3

C

IN d4
Pointer to the destination pmix_info_t (pointer to pmix_info_t)5

IN s6
Pointer to the source pmix_info_t (pointer to pmix_info_t)7

This macro simplifies the transfer of data between twopmix_info_t structures.8

Advice to users

All data (including key, value, and directives) will be copied into the destination pmix_info_t -9
thus, the source pmix_info_t may be free’d without affecting the copied data once the macro10
has completed.11

Test a boolean info struct12
A special macro for checking if a boolean pmix_info_t is true.13

PMIx v2.0 C
PMIX_INFO_TRUE(m)14

C

IN m15
Pointer to a pmix_info_t structure (handle)16

A pmix_info_t structure is considered to be of type PMIX_BOOL and value true if:17

• the structure reports a type of PMIX_UNDEF, or18
• the structure reports a type of PMIX_BOOL and the data flag is true19

3.2.9.2 Info structure list macros20

Constructing an array of pmix_info_t is a fairly common operation. The following macros are21
provided to simplify this construction.22

CHAPTER 3. DATA STRUCTURES AND TYPES 35

Start a list of pmix_info_t structures1
Initialize a list of pmix_info_t structures. The actual list is opaque to the caller and is2
implementation-dependent.3

C
PMIX_INFO_LIST_START(m)4

C

IN m5
A void* pointer (handle)6

Note that the pointer will be initialized to an opaque structure whose elements are7
implementation-dependent. The caller must not modify or dereference the object.8

Add a pmix_info_t structure to a list9
Add a pmix_info_t structure containing the specified value to the provided list.10

PMIx v4.0 C
PMIX_INFO_LIST_ADD(rc, m, k, d, t)11

C

INOUT rc12
Return status for the operation (pmix_status_t)13

IN m14
A void* pointer initialized via PMIX_INFO_LIST_START (handle)15

IN k16
String key to be loaded - must be less than or equal to PMIX_MAX_KEYLEN in length17
(handle)18

IN d19
Pointer to the data value to be loaded (handle)20

IN t21
Type of the provided data value (pmix_data_type_t)22

Advice to users

Both key and data will be copied into the pmix_info_t on the list - thus, the key and any data23
stored in the source value can be modified or free’d without affecting the copied data once the24
macro has completed.25

36 PMIx Standard – Version 4.1 – October 2021

Transfer a pmix_info_t structure to a list1
Transfer the information in a pmix_info_t structure to the provided list.2

C
PMIX_INFO_LIST_XFER(rc, m, s)3

C
INOUT rc4

Return status for the operation (pmix_status_t)5
IN m6

A void* pointer initialized via PMIX_INFO_LIST_START (handle)7
IN s8

Pointer to the source pmix_info_t (pointer to pmix_info_t)9

Advice to users

All data (including key, value, and directives) will be copied into the destination pmix_info_t10
on the list - thus, the source pmix_info_t may be free’d without affecting the copied data once11
the macro has completed.12

Convert a pmix_info_t list to an array13
Transfer the information in the provided pmix_info_t list to a pmix_data_array_t array14

PMIx v4.0 C
PMIX_INFO_LIST_CONVERT(rc, m, d)15

C
INOUT rc16

Return status for the operation (pmix_status_t)17
IN m18

A void* pointer initialized via PMIX_INFO_LIST_START (handle)19
IN d20

Pointer to an instantiated pmix_data_array_t structure where the pmix_info_t array21
is to be stored (pointer to pmix_data_array_t)22

Release a pmix_info_t list23
Release the provided pmix_info_t list24

PMIx v4.0 C
PMIX_INFO_LIST_RELEASE(m)25

C
IN m26

A void* pointer initialized via PMIX_INFO_LIST_START (handle)27

Information contained in the pmix_info_t on the list shall be released in addition to whatever28
backing storage the implementation may have allocated to support construction of the list.29

CHAPTER 3. DATA STRUCTURES AND TYPES 37

3.2.10 Info Type Directives1

PMIx v2.0 The pmix_info_directives_t structure is a uint32_t type that defines the behavior of2
command directives via pmix_info_t arrays. By default, the values in the pmix_info_t3
array passed to a PMIx are optional.4

Advice to users

A PMIx implementation or PMIx-enabled RM may ignore any pmix_info_t value passed to a5
PMIx API that it does not support or does not recognize if it is not explicitly marked as6
PMIX_INFO_REQD. This is because the values specified default to optional, meaning they can be7
ignored in such circumstances. This may lead to unexpected behavior when porting between8
environments or PMIx implementations if the user is relying on the behavior specified by the9
pmix_info_t value. Users relying on the behavior defined by the pmix_info_t are advised to10
set the PMIX_INFO_REQD flag using the PMIX_INFO_REQUIRED macro.11

Advice to PMIx library implementers

The top 16-bits of the pmix_info_directives_t are reserved for internal use by PMIx12
library implementers - the PMIx standard will not specify their intent, leaving them for customized13
use by implementers. Implementers are advised to use the provided PMIX_INFO_IS_REQUIRED14
macro for testing this flag, and must return PMIX_ERR_NOT_SUPPORTED as soon as possible to15
the caller if the required behavior is not supported.16

The following constants were introduced in version 2.0 (unless otherwise marked) and can be used17
to set a variable of the type pmix_info_directives_t.18

PMIX_INFO_REQD The behavior defined in the pmix_info_t array is required, and not19
optional. This is a bit-mask value.20

PMIX_INFO_REQD_PROCESSED Mark that this required attribute has been processed. A21
required attribute can be handled at any level - the PMIx client library might take care of it, or22
it may be resolved by the PMIx server library, or it may pass up to the host environment for23
handling. If a level does not recognize or support the required attribute, it is required to pass it24
upwards to give the next level an opportunity to process it. Thus, the host environment (or the25
server library if the host does not support the given operation) must know if a lower level has26
handled the requirement so it can return a PMIX_ERR_NOT_SUPPORTED error status if the27
host itself cannot meet the request. Upon processing the request, the level must therefore mark28
the attribute with this directive to alert any subsequent levels that the requirement has been29
met.30

PMIX_INFO_ARRAY_END Mark that this pmix_info_t struct is at the end of an array31
created by the PMIX_INFO_CREATE macro. This is a bit-mask value.32

PMIX_INFO_DIR_RESERVED A bit-mask identifying the bits reserved for internal use by33
implementers - these currently are set as 0xffff0000.34

38 PMIx Standard – Version 4.1 – October 2021

Advice to PMIx server hosts

Host environments are advised to use the provided PMIX_INFO_IS_REQUIRED macro for1
testing this flag and must return PMIX_ERR_NOT_SUPPORTED as soon as possible to the caller if2
the required behavior is not supported.3

3.2.10.1 Info Directive support macros4

The following macros are provided to support the setting and testing of pmix_info_t directives.5

Mark an info structure as required6
Set the PMIX_INFO_REQD flag in a pmix_info_t structure.7

PMIx v2.0 C
PMIX_INFO_REQUIRED(info);8

C

IN info9
Pointer to the pmix_info_t (pointer to pmix_info_t)10

This macro simplifies the setting of the PMIX_INFO_REQD flag in pmix_info_t structures.11

Mark an info structure as optional12
Unsets the PMIX_INFO_REQD flag in a pmix_info_t structure.13

PMIx v2.0 C
PMIX_INFO_OPTIONAL(info);14

C

IN info15
Pointer to the pmix_info_t (pointer to pmix_info_t)16

This macro simplifies marking a pmix_info_t structure as optional.17

Test an info structure for required directive18
Test the PMIX_INFO_REQD flag in a pmix_info_t structure, returning true if the flag is set.19

PMIx v2.0 C
PMIX_INFO_IS_REQUIRED(info);20

C

IN info21
Pointer to the pmix_info_t (pointer to pmix_info_t)22

This macro simplifies the testing of the required flag in pmix_info_t structures.23

CHAPTER 3. DATA STRUCTURES AND TYPES 39

Test an info structure for optional directive1
Test a pmix_info_t structure, returning true if the structure is optional.2

C
PMIX_INFO_IS_OPTIONAL(info);3

C
IN info4

Pointer to the pmix_info_t (pointer to pmix_info_t)5

Test the PMIX_INFO_REQD flag in a pmix_info_t structure, returning true if the flag is not6
set.7

Mark a required attribute as processed8
Mark that a required pmix_info_t structure has been processed.9

PMIx v4.0 C
PMIX_INFO_PROCESSED(info);10

C
IN info11

Pointer to the pmix_info_t (pointer to pmix_info_t)12

Set the PMIX_INFO_REQD_PROCESSED flag in a pmix_info_t structure indicating that is13
has been processed.14

Test if a required attribute has been processed15
Test that a required pmix_info_t structure has been processed.16

PMIx v4.0 C
PMIX_INFO_WAS_PROCESSED(info);17

C
IN info18

Pointer to the pmix_info_t (pointer to pmix_info_t)19

Test the PMIX_INFO_REQD_PROCESSED flag in a pmix_info_t structure.20

Test an info structure for end of array directive21
Test a pmix_info_t structure, returning true if the structure is at the end of an array created by22
the PMIX_INFO_CREATE macro.23

PMIx v2.2 C
PMIX_INFO_IS_END(info);24

C
IN info25

Pointer to the pmix_info_t (pointer to pmix_info_t)26

This macro simplifies the testing of the end-of-array flag in pmix_info_t structures.27

40 PMIx Standard – Version 4.1 – October 2021

3.2.11 Environmental Variable Structure1

PMIx v3.0 Define a structure for specifying environment variable modifications. Standard environment2
variables (e.g., PATH, LD_LIBRARY_PATH, and LD_PRELOAD) take multiple arguments3
separated by delimiters. Unfortunately, the delimiters depend upon the variable itself - some use4
semi-colons, some colons, etc. Thus, the operation requires not only the name of the variable to be5
modified and the value to be inserted, but also the separator to be used when composing the6
aggregate value.7

C
typedef struct {8

char *envar;9
char *value;10
char separator;11

} pmix_envar_t;12

C

3.2.11.1 Environmental variable support macros13

The following macros are provided to support the pmix_envar_t structure.14

Initialize the envar structure15
Initialize the pmix_envar_t fields.16

PMIx v3.0 C
PMIX_ENVAR_CONSTRUCT(m)17

C

IN m18
Pointer to the structure to be initialized (pointer to pmix_envar_t)19

Destruct the envar structure20
Clear the pmix_envar_t fields.21

PMIx v3.0 C
PMIX_ENVAR_DESTRUCT(m)22

C

IN m23
Pointer to the structure to be destructed (pointer to pmix_envar_t)24

CHAPTER 3. DATA STRUCTURES AND TYPES 41

Create an envar array1
Allocate and initialize an array of pmix_envar_t structures.2

C
PMIX_ENVAR_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_envar_t structures shall be stored (handle)5

IN n6
Number of structures to be allocated (size_t)7

Free an envar array8
Release an array of pmix_envar_t structures.9

PMIx v3.0 C
PMIX_ENVAR_FREE(m, n)10

C

IN m11
Pointer to the array of pmix_envar_t structures (handle)12

IN n13
Number of structures in the array (size_t)14

Load an envar structure15
Load values into a pmix_envar_t.16

PMIx v2.0 C
PMIX_ENVAR_LOAD(m, e, v, s)17

C

IN m18
Pointer to the structure to be loaded (pointer to pmix_envar_t)19

IN e20
Environmental variable name (char*)21

IN v22
Value of variable (char*)23

IN v24
Separator character (char)25

42 PMIx Standard – Version 4.1 – October 2021

3.2.12 Byte Object Type1

The pmix_byte_object_t structure describes a raw byte sequence.2
C

typedef struct pmix_byte_object {3
char *bytes;4
size_t size;5

} pmix_byte_object_t;6

C

3.2.12.1 Byte object support macros7

The following macros support the pmix_byte_object_t structure.8

Initialize the byte object structure9
Initialize the pmix_byte_object_t fields.10

PMIx v2.0 C
PMIX_BYTE_OBJECT_CONSTRUCT(m)11

C

IN m12
Pointer to the structure to be initialized (pointer to pmix_byte_object_t)13

Destruct the byte object structure14
Clear the pmix_byte_object_t fields.15

PMIx v2.0 C
PMIX_BYTE_OBJECT_DESTRUCT(m)16

C

IN m17
Pointer to the structure to be destructed (pointer to pmix_byte_object_t)18

Create a byte object structure19
Allocate and intitialize an array of pmix_byte_object_t structures.20

PMIx v2.0 C
PMIX_BYTE_OBJECT_CREATE(m, n)21

C

INOUT m22
Address where the pointer to the array of pmix_byte_object_t structures shall be stored23
(handle)24

IN n25
Number of structures to be allocated (size_t)26

CHAPTER 3. DATA STRUCTURES AND TYPES 43

Free a byte object array1
Release an array of pmix_byte_object_t structures.2

C
PMIX_BYTE_OBJECT_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_byte_object_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

Load a byte object structure8
Load values into a pmix_byte_object_t.9

PMIx v2.0 C
PMIX_BYTE_OBJECT_LOAD(b, d, s)10

C

IN b11
Pointer to the structure to be loaded (pointer to pmix_byte_object_t)12

IN d13
Pointer to the data to be loaded (char*)14

IN s15
Number of bytes in the data array (size_t)16

3.2.13 Data Array Structure17

The pmix_data_array_t structure defines an array data structure.18
PMIx v2.0 C

typedef struct pmix_data_array {19
pmix_data_type_t type;20
size_t size;21
void *array;22

} pmix_data_array_t;23

C

3.2.13.1 Data array support macros24

The following macros support the pmix_data_array_t structure.25

44 PMIx Standard – Version 4.1 – October 2021

Initialize a data array structure1
Initialize the pmix_data_array_t fields, allocating memory for the array of the indicated type.2

C
PMIX_DATA_ARRAY_CONSTRUCT(m, n, t)3

C
IN m4

Pointer to the structure to be initialized (pointer to pmix_data_array_t)5
IN n6

Number of elements in the array (size_t)7
IN t8

PMIx data type of the array elements (pmix_data_type_t)9

Destruct a data array structure10
Destruct the pmix_data_array_t, releasing the memory in the array.11

PMIx v2.2 C
PMIX_DATA_ARRAY_CONSTRUCT(m)12

C
IN m13

Pointer to the structure to be destructed (pointer to pmix_data_array_t)14

Create a data array structure15
Allocate memory for the pmix_data_array_t object itself, and then allocate memory for the16
array of the indicated type.17

PMIx v2.2 C
PMIX_DATA_ARRAY_CREATE(m, n, t)18

C
INOUT m19

Variable to be set to the address of the structure (pointer to pmix_data_array_t)20
IN n21

Number of elements in the array (size_t)22
IN t23

PMIx data type of the array elements (pmix_data_type_t)24

Free a data array structure25
Release the memory in the array, and then release the pmix_data_array_t object itself.26

PMIx v2.2 C
PMIX_DATA_ARRAY_FREE(m)27

C
IN m28

Pointer to the structure to be released (pointer to pmix_data_array_t)29

CHAPTER 3. DATA STRUCTURES AND TYPES 45

3.2.14 Argument Array Macros1

The following macros support the construction and release of NULL-terminated argv arrays of2
strings.3

Argument array extension4
Append a string to a NULL-terminated, argv-style array of strings.5

C
PMIX_ARGV_APPEND(r, a, b);6

C

OUT r7
Status code indicating success or failure of the operation (pmix_status_t)8

INOUT a9
Argument list (pointer to NULL-terminated array of strings)10

IN b11
Argument to append to the list (string)12

This function helps the caller build the argv portion of pmix_app_t structure, arrays of keys for13
querying, or other places where argv-style string arrays are required.14

Advice to users

The provided argument is copied into the destination array - thus, the source string can be free’d15
without affecting the array once the macro has completed.16

Argument array prepend17
Prepend a string to a NULL-terminated, argv-style array of strings.18

C
PMIX_ARGV_PREPEND(r, a, b);19

C

OUT r20
Status code indicating success or failure of the operation (pmix_status_t)21

INOUT a22
Argument list (pointer to NULL-terminated array of strings)23

IN b24
Argument to append to the list (string)25

This function helps the caller build the argv portion of pmix_app_t structure, arrays of keys for26
querying, or other places where argv-style string arrays are required.27

46 PMIx Standard – Version 4.1 – October 2021

Advice to users

The provided argument is copied into the destination array - thus, the source string can be free’d1
without affecting the array once the macro has completed.2

Argument array extension - unique3
Append a string to a NULL-terminated, argv-style array of strings, but only if the provided4
argument doesn’t already exist somewhere in the array.5

C
PMIX_ARGV_APPEND_UNIQUE(r, a, b);6

C

OUT r7
Status code indicating success or failure of the operation (pmix_status_t)8

INOUT a9
Argument list (pointer to NULL-terminated array of strings)10

IN b11
Argument to append to the list (string)12

This function helps the caller build the argv portion of pmix_app_t structure, arrays of keys for13
querying, or other places where argv-style string arrays are required.14

Advice to users

The provided argument is copied into the destination array - thus, the source string can be free’d15
without affecting the array once the macro has completed.16

Argument array release17
Free an argv-style array and all of the strings that it contains.18

C
PMIX_ARGV_FREE(a);19

C

IN a20
Argument list (pointer to NULL-terminated array of strings)21

This function releases the array and all of the strings it contains.22

CHAPTER 3. DATA STRUCTURES AND TYPES 47

Argument array split1
Split a string into a NULL-terminated argv array.2

C
PMIX_ARGV_SPLIT(a, b, c);3

C

OUT a4
Resulting argv-style array (char**)5

IN b6
String to be split (char*)7

IN c8
Delimiter character (char)9

Split an input string into a NULL-terminated argv array. Do not include empty strings in the10
resulting array.11

Advice to users

All strings are inserted into the argv array by value; the newly-allocated array makes no references12
to the src_string argument (i.e., it can be freed after calling this function without invalidating the13
output argv array)14

Argument array join15
Join all the elements of an argv array into a single newly-allocated string.16

C
PMIX_ARGV_JOIN(a, b, c);17

C

OUT a18
Resulting string (char*)19

IN b20
Argv-style array to be joined (char**)21

IN c22
Delimiter character (char)23

Join all the elements of an argv array into a single newly-allocated string.24

48 PMIx Standard – Version 4.1 – October 2021

Argument array count1
Return the length of a NULL-terminated argv array.2

C
PMIX_ARGV_COUNT(r, a);3

C

OUT r4
Number of strings in the array (integer)5

IN a6
Argv-style array (char**)7

Count the number of elements in an argv array8

Argument array copy9
Copy an argv array, including copying all of its strings.10

C
PMIX_ARGV_COPY(a, b);11

C

OUT a12
New argv-style array (char**)13

IN b14
Argv-style array (char**)15

Copy an argv array, including copying all of its strings.16

3.2.15 Set Environment Variable17

Summary18
Set an environment variable in a NULL-terminated, env-style array.19

C
PMIX_SETENV(r, name, value, env);20

C

OUT r21
Status code indicating success or failure of the operation (pmix_status_t)22

IN name23
Argument name (string)24

IN value25
Argument value (string)26

INOUT env27
Environment array to update (pointer to array of strings)28

CHAPTER 3. DATA STRUCTURES AND TYPES 49

Description1
Similar to setenv from the C API, this allows the caller to set an environment variable in the2
specified env array, which could then be passed to the pmix_app_t structure or any other3
destination.4

Advice to users

The provided name and value are copied into the destination environment array - thus, the source5
strings can be free’d without affecting the array once the macro has completed.6

3.3 Generalized Data Types Used for Packing/Unpacking7

The pmix_data_type_t structure is a uint16_t type for identifying the data type for8
packing/unpacking purposes. New data type values introduced in this version of the Standard are9
shown in magenta.10

Advice to PMIx library implementers

The following constants can be used to set a variable of the type pmix_data_type_t. Data11
types in the PMIx Standard are defined in terms of the C-programming language. Implementers12
wishing to support other languages should provide the equivalent definitions in a13
language-appropriate manner. Additionally, a PMIx implementation may choose to add additional14
types.15

PMIX_UNDEF Undefined.16
PMIX_BOOL Boolean (converted to/from native true/false) (bool).17
PMIX_BYTE A byte of data (uint8_t).18
PMIX_STRING NULL terminated string (char*).19
PMIX_SIZE Size size_t.20
PMIX_PID Operating Process IDentifier (PID) (pid_t).21
PMIX_INT Integer (int).22
PMIX_INT8 8-byte integer (int8_t).23
PMIX_INT16 16-byte integer (int16_t).24
PMIX_INT32 32-byte integer (int32_t).25
PMIX_INT64 64-byte integer (int64_t).26
PMIX_UINT Unsigned integer (unsigned int).27
PMIX_UINT8 Unsigned 8-byte integer (uint8_t).28
PMIX_UINT16 Unsigned 16-byte integer (uint16_t).29
PMIX_UINT32 Unsigned 32-byte integer (uint32_t).30
PMIX_UINT64 Unsigned 64-byte integer (uint64_t).31
PMIX_FLOAT Float (float).32
PMIX_DOUBLE Double (double).33

50 PMIx Standard – Version 4.1 – October 2021

PMIX_TIMEVAL Time value (struct timeval).1
PMIX_TIME Time (time_t).2
PMIX_STATUS Status code pmix_status_t.3
PMIX_VALUE Value (pmix_value_t).4
PMIX_PROC Process (pmix_proc_t).5
PMIX_APP Application context.6
PMIX_INFO Info object.7
PMIX_PDATA Pointer to data.8
PMIX_BUFFER Buffer.9
PMIX_BYTE_OBJECT Byte object (pmix_byte_object_t).10
PMIX_KVAL Key/value pair.11
PMIX_PERSIST Persistance (pmix_persistence_t).12
PMIX_POINTER Pointer to an object (void*).13
PMIX_SCOPE Scope (pmix_scope_t).14
PMIX_DATA_RANGE Range for data (pmix_data_range_t).15
PMIX_COMMAND PMIx command code (used internally).16
PMIX_INFO_DIRECTIVES Directives flag for pmix_info_t17

(pmix_info_directives_t).18
PMIX_DATA_TYPE Data type code (pmix_data_type_t).19
PMIX_PROC_STATE Process state (pmix_proc_state_t).20
PMIX_PROC_INFO Process information (pmix_proc_info_t).21
PMIX_DATA_ARRAY Data array (pmix_data_array_t).22
PMIX_PROC_RANK Process rank (pmix_rank_t).23
PMIX_PROC_NSPACE Process namespace (pmix_nspace_t). %24
PMIX_QUERY Query structure (pmix_query_t).25
PMIX_COMPRESSED_STRING String compressed with zlib (char*).26
PMIX_COMPRESSED_BYTE_OBJECT Byte object whose bytes have been compressed with27

zlib (pmix_byte_object_t).28
PMIX_ALLOC_DIRECTIVE Allocation directive (pmix_alloc_directive_t).29
PMIX_IOF_CHANNEL Input/output forwarding channel (pmix_iof_channel_t).30
PMIX_ENVAR Environmental variable structure (pmix_envar_t).31
PMIX_COORD Structure containing fabric coordinates (pmix_coord_t).32
PMIX_REGATTR Structure supporting attribute registrations (pmix_regattr_t).33
PMIX_REGEX Regular expressions - can be a valid NULL-terminated string or an arbitrary34

array of bytes.35
PMIX_JOB_STATE Job state (pmix_job_state_t).36
PMIX_LINK_STATE Link state (pmix_link_state_t).37
PMIX_PROC_CPUSET Structure containing the binding bitmap of a process38

(pmix_cpuset_t).39
PMIX_GEOMETRY Geometry structure containing the fabric coordinates of a specified40

device.(pmix_geometry_t).41
PMIX_DEVICE_DIST Structure containing the minimum and maximum relative distance42

from the caller to a given fabric device. (pmix_device_distance_t).43

CHAPTER 3. DATA STRUCTURES AND TYPES 51

PMIX_ENDPOINT Structure containing an assigned endpoint for a given fabric device.1
(pmix_endpoint_t).2

PMIX_TOPO Structure containing the topology for a given node. (pmix_topology_t).3
PMIX_DEVTYPE Bitmask containing the types of devices being referenced.4

(pmix_device_type_t).5
PMIX_LOCTYPE Bitmask describing the relative location of another process.6

(pmix_locality_t).7
PMIX_DATA_TYPE_MAX A starting point for implementer-specific data types. Values above8

this are guaranteed not to conflict with PMIx values. Definitions should always be based on9
the PMIX_DATA_TYPE_MAX constant and not a specific value as the value of the constant10
may change.11

3.4 General Callback Functions12

PMIx provides blocking and nonblocking versions of most APIs. In the nonblocking versions, a13
callback is activated upon completion of the the operation. This section describes many of those14
callbacks.15

3.4.1 Release Callback Function16

Summary17
The pmix_release_cbfunc_t is used by the pmix_modex_cbfunc_t and18
pmix_info_cbfunc_t operations to indicate that the callback data may be reclaimed/freed by19
the caller.20

Format21 PMIx v1.0 C
typedef void (*pmix_release_cbfunc_t)22

(void *cbdata);23

C

INOUT cbdata24
Callback data passed to original API call (memory reference)25

Description26
Since the data is “owned” by the host server, provide a callback function to notify the host server27
that we are done with the data so it can be released.28

52 PMIx Standard – Version 4.1 – October 2021

3.4.2 Op Callback Function1

Summary2
The pmix_op_cbfunc_t is used by operations that simply return a status.3

C
typedef void (*pmix_op_cbfunc_t)4

(pmix_status_t status, void *cbdata);5

C

IN status6
Status associated with the operation (handle)7

IN cbdata8
Callback data passed to original API call (memory reference)9

Description10
Used by a wide range of PMIx API’s including PMIx_Fence_nb,11
pmix_server_client_connected2_fn_t, PMIx_server_register_nspace. This12
callback function is used to return a status to an often nonblocking operation.13

3.4.3 Value Callback Function14

Summary15
The pmix_value_cbfunc_t is used by PMIx_Get_nb to return data.16

PMIx v1.0 C
typedef void (*pmix_value_cbfunc_t)17

(pmix_status_t status,18
pmix_value_t *kv, void *cbdata);19

C

IN status20
Status associated with the operation (handle)21

IN kv22
Key/value pair representing the data (pmix_value_t)23

IN cbdata24
Callback data passed to original API call (memory reference)25

Description26
A callback function for calls to PMIx_Get_nb. The status indicates if the requested data was27
found or not. A pointer to the pmix_value_t structure containing the found data is returned.28
The pointer will be NULL if the requested data was not found.29

CHAPTER 3. DATA STRUCTURES AND TYPES 53

3.4.4 Info Callback Function1

Summary2
The pmix_info_cbfunc_t is a general information callback used by various APIs.3

C
typedef void (*pmix_info_cbfunc_t)4

(pmix_status_t status,5
pmix_info_t info[], size_t ninfo,6
void *cbdata,7
pmix_release_cbfunc_t release_fn,8
void *release_cbdata);9

C

IN status10
Status associated with the operation (pmix_status_t)11

IN info12
Array of pmix_info_t returned by the operation (pointer)13

IN ninfo14
Number of elements in the info array (size_t)15

IN cbdata16
Callback data passed to original API call (memory reference)17

IN release_fn18
Function to be called when done with the info data (function pointer)19

IN release_cbdata20
Callback data to be passed to release_fn (memory reference)21

Description22
The status indicates if requested data was found or not. An array of pmix_info_t will contain23
the key/value pairs.24

3.4.5 Handler registration callback function25

Summary26
Callback function for calls to register handlers, e.g., event notification and IOF requests.27

Format28 PMIx v3.0 C
typedef void (*pmix_hdlr_reg_cbfunc_t)29

(pmix_status_t status,30
size_t refid,31
void *cbdata);32

54 PMIx Standard – Version 4.1 – October 2021

C

IN status1
PMIX_SUCCESS or an appropriate error constant (pmix_status_t)2

IN refid3
reference identifier assigned to the handler by PMIx, used to deregister the handler (size_t)4

IN cbdata5
object provided to the registration call (pointer)6

Description7
Callback function for calls to register handlers, e.g., event notification and IOF requests.8

3.5 PMIx Datatype Value String Representations9

Provide a string representation for several types of values. Note that the provided string is statically10
defined and must NOT be free’d.11

Summary12
String representation of a pmix_status_t.13

PMIx v1.0 C
const char*14
PMIx_Error_string(pmix_status_t status);15

C

Summary16
String representation of a pmix_proc_state_t.17

PMIx v2.0 C
const char*18
PMIx_Proc_state_string(pmix_proc_state_t state);19

C

Summary20
String representation of a pmix_scope_t.21

PMIx v2.0 C
const char*22
PMIx_Scope_string(pmix_scope_t scope);23

C

CHAPTER 3. DATA STRUCTURES AND TYPES 55

Summary1
String representation of a pmix_persistence_t.2

C
const char*3
PMIx_Persistence_string(pmix_persistence_t persist);4

C

Summary5
String representation of a pmix_data_range_t.6

PMIx v2.0 C
const char*7
PMIx_Data_range_string(pmix_data_range_t range);8

C

Summary9
String representation of a pmix_info_directives_t.10

PMIx v2.0 C
const char*11
PMIx_Info_directives_string(pmix_info_directives_t directives);12

C

Summary13
String representation of a pmix_data_type_t.14

PMIx v2.0 C
const char*15
PMIx_Data_type_string(pmix_data_type_t type);16

C

Summary17
String representation of a pmix_alloc_directive_t.18

PMIx v2.0 C
const char*19
PMIx_Alloc_directive_string(pmix_alloc_directive_t directive);20

C

56 PMIx Standard – Version 4.1 – October 2021

Summary1
String representation of a pmix_iof_channel_t.2

C
const char*3
PMIx_IOF_channel_string(pmix_iof_channel_t channel);4

C

Summary5
String representation of a pmix_job_state_t.6

PMIx v4.0 C
const char*7
PMIx_Job_state_string(pmix_job_state_t state);8

C

Summary9
String representation of a PMIx attribute.10

PMIx v4.0 C
const char*11
PMIx_Get_attribute_string(char *attributename);12

C

Summary13
Return the PMIx attribute name corresponding to the given attribute string.14

PMIx v4.0 C
const char*15
PMIx_Get_attribute_name(char *attributestring);16

C

Summary17
String representation of a pmix_link_state_t.18

PMIx v4.0 C
const char*19
PMIx_Link_state_string(pmix_link_state_t state);20

C

CHAPTER 3. DATA STRUCTURES AND TYPES 57

Summary1
String representation of a pmix_device_type_t.2

C
const char*3
PMIx_Device_type_string(pmix_device_type_t type);4

C

58 PMIx Standard – Version 4.1 – October 2021

CHAPTER 4

Client Initialization and Finalization

The PMIx library is required to be initialized and finalized around the usage of most PMIx1
functions or macros. The APIs that may be used outside of the initialized and finalized region are2
noted. All other APIs must be used inside this region.3

There are three sets of initialization and finalization functions depending upon the role of the4
process in the PMIx Standard - those associated with the PMIx client are defined in this chapter.5
Similar functions corresponding to the roles of server and tool are defined in Chapters 16 and 17,6
respectively.7

Note that a process can only call one of the initialization/finalization functional pairs from the set of8
three - e.g., a process that calls the client initialization function cannot also call the tool or server9
initialization functions, and must call the corresponding client finalization function. Regardless of10
the role assumed by the process, all processes have access to the client APIs. Thus, the server and11
tool roles can be considered supersets of the PMIx client.12

4.1 PMIx_Initialized13

Summary14
Determine if the PMIx library has been initialized. This function may be used outside of the15
initialized and finalized region, and is usable by servers and tools in addition to clients.16

Format17 PMIx v1.0 C
int PMIx_Initialized(void)18

C

A value of 1 (true) will be returned if the PMIx library has been initialized, and 0 (false) otherwise.19

Rationale

The return value is an integer for historical reasons as that was the signature of prior PMI libraries.20

Description21
Check to see if the PMIx library has been initialized using any of the init functions: PMIx_Init,22
PMIx_server_init, or PMIx_tool_init.23

59

4.2 PMIx_Get_version1

Summary2
Get the PMIx version information. This function may be used outside of the initialized and3
finalized region, and is usable by servers and tools in addition to clients.4

Format5 PMIx v1.0 C
const char* PMIx_Get_version(void)6

C

Description7
Get the PMIx version string. Note that the provided string is statically defined and must not be8
free’d.9

4.3 PMIx_Init10

Summary11
Initialize the PMIx client library12

Format13 PMIx v1.2 C
pmix_status_t14
PMIx_Init(pmix_proc_t *proc,15

pmix_info_t info[], size_t ninfo)16

C

INOUT proc17
proc structure (handle)18

IN info19
Array of pmix_info_t structures (array of handles)20

IN ninfo21
Number of elements in the info array (size_t)22

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.23

60 PMIx Standard – Version 4.1 – October 2021

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:1

PMIX_USOCK_DISABLE "pmix.usock.disable" (bool)2
Disable legacy UNIX socket (usock) support. If the library supports Unix socket3
connections, this attribute may be supported for disabling it.4

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)5
POSIX mode_t (9 bits valid). If the library supports socket connections, this attribute may6
be supported for setting the socket mode.7

PMIX_SINGLE_LISTENER "pmix.sing.listnr" (bool)8
Use only one rendezvous socket, letting priorities and/or environment parameters select the9
active transport. If the library supports multiple methods for clients to connect to servers,10
this attribute may be supported for disabling all but one of them.11

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)12
If provided, directs that the TCP Uniform Resource Identifier (URI) be reported and indicates13
the desired method of reporting: ’-’ for stdout, ’+’ for stderr, or filename. If the library14
supports TCP socket connections, this attribute may be supported for reporting the URI.15

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)16
Comma-delimited list of devices and/or Classless Inter-Domain Routing (CIDR) notation to17
include when establishing the TCP connection. If the library supports TCP socket18
connections, this attribute may be supported for specifying the interfaces to be used.19

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)20
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the21
TCP connection. If the library supports TCP socket connections, this attribute may be22
supported for specifying the interfaces that are not to be used.23

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)24
The IPv4 port to be used.. If the library supports IPV4 connections, this attribute may be25
supported for specifying the port to be used.26

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)27
The IPv6 port to be used. If the library supports IPV6 connections, this attribute may be28
supported for specifying the port to be used.29

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)30
Set to true to disable IPv4 family of addresses. If the library supports IPV4 connections,31
this attribute may be supported for disabling it.32

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)33
Set to true to disable IPv6 family of addresses. If the library supports IPV6 connections,34
this attribute may be supported for disabling it.35

PMIX_EXTERNAL_PROGRESS "pmix.evext" (bool)36

CHAPTER 4. CLIENT INITIALIZATION AND FINALIZATION 61

The host shall progress the PMIx library via calls to PMIx_Progress1

PMIX_EVENT_BASE "pmix.evbase" (void*)2
Pointer to an event_base to use in place of the internal progress thread. All PMIx library3
events are to be assigned to the provided event base. The event base must be compatible with4
the event library used by the PMIx implementation - e.g., either both the host and PMIx5
library must use libevent, or both must use libev. Cross-matches are unlikely to work and6
should be avoided - it is the responsibility of the host to ensure that the PMIx7
implementation supports (and was built with) the appropriate event library.8

If provided, the following attributes are used by the event notification system for inter-library9
coordination:10

PMIX_PROGRAMMING_MODEL "pmix.pgm.model" (char*)11
Programming model being initialized (e.g., “MPI” or “OpenMP”).12

PMIX_MODEL_LIBRARY_NAME "pmix.mdl.name" (char*)13
Programming model implementation ID (e.g., “OpenMPI” or “MPICH”).14

PMIX_MODEL_LIBRARY_VERSION "pmix.mld.vrs" (char*)15
Programming model version string (e.g., “2.1.1”).16

PMIX_THREADING_MODEL "pmix.threads" (char*)17
Threading model used (e.g., “pthreads”).18

PMIX_MODEL_NUM_THREADS "pmix.mdl.nthrds" (uint64_t)19
Number of active threads being used by the model.20

PMIX_MODEL_NUM_CPUS "pmix.mdl.ncpu" (uint64_t)21
Number of cpus being used by the model.22

PMIX_MODEL_CPU_TYPE "pmix.mdl.cputype" (char*)23
Granularity - “hwthread”, “core”, etc.24

PMIX_MODEL_AFFINITY_POLICY "pmix.mdl.tap" (char*)25
Thread affinity policy - e.g.: "master" (thread co-located with master thread), "close" (thread26
located on cpu close to master thread), "spread" (threads load-balanced across available27
cpus).28

62 PMIx Standard – Version 4.1 – October 2021

Description1
Initialize the PMIx client, returning the process identifier assigned to this client’s application in the2
provided pmix_proc_t struct. Passing a value of NULL for this parameter is allowed if the user3
wishes solely to initialize the PMIx system and does not require return of the identifier at that time.4

When called, the PMIx client shall check for the required connection information of the local PMIx5
server and establish the connection. If the information is not found, or the server connection fails,6
then an appropriate error constant shall be returned.7

If successful, the function shall return PMIX_SUCCESS and fill the proc structure (if provided)8
with the server-assigned namespace and rank of the process within the application. In addition, all9
startup information provided by the resource manager shall be made available to the client process10
via subsequent calls to PMIx_Get.11

The PMIx client library shall be reference counted, and so multiple calls to PMIx_Init are12
allowed by the standard. Thus, one way for an application process to obtain its namespace and rank13
is to simply call PMIx_Init with a non-NULL proc parameter. Note that each call to14
PMIx_Init must be balanced with a call to PMIx_Finalize to maintain the reference count.15

Each call to PMIx_Init may contain an array of pmix_info_t structures passing directives to16
the PMIx client library as per the above attributes.17

Multiple calls to PMIx_Init shall not include conflicting directives. The PMIx_Init function18
will return an error when directives that conflict with prior directives are encountered.19

4.3.1 Initialization events20

The following events are typically associated with calls to PMIx_Init:21

PMIX_MODEL_DECLARED Model declared.22
PMIX_MODEL_RESOURCES Resource usage by a programming model has changed.23
PMIX_OPENMP_PARALLEL_ENTERED An OpenMP parallel code region has been entered.24
PMIX_OPENMP_PARALLEL_EXITED An OpenMP parallel code region has completed.25

4.3.2 Initialization attributes26

The following attributes influence the behavior of PMIx_Init.27

4.3.2.1 Connection attributes28

These attributes are used to describe a TCP socket for rendezvous with the local RM by passing29
them into the relevant initialization API - thus, they are not typically accessed via the PMIx_Get30
API.31

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)32
If provided, directs that the TCP URI be reported and indicates the desired method of33
reporting: ’-’ for stdout, ’+’ for stderr, or filename.34

CHAPTER 4. CLIENT INITIALIZATION AND FINALIZATION 63

PMIX_TCP_URI "pmix.tcp.uri" (char*)1
The URI of the PMIx server to connect to, or a file name containing it in the form of2
file:<name of file containing it>.3

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)4
Comma-delimited list of devices and/or CIDR notation to include when establishing the5
TCP connection.6

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)7
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the8
TCP connection.9

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)10
The IPv4 port to be used..11

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)12
The IPv6 port to be used.13

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)14
Set to true to disable IPv4 family of addresses.15

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)16
Set to true to disable IPv6 family of addresses.17

4.3.2.2 Programming model attributes18

These attributes are associated with programming models.19

PMIX_PROGRAMMING_MODEL "pmix.pgm.model" (char*)20
Programming model being initialized (e.g., “MPI” or “OpenMP”).21

PMIX_MODEL_LIBRARY_NAME "pmix.mdl.name" (char*)22
Programming model implementation ID (e.g., “OpenMPI” or “MPICH”).23

PMIX_MODEL_LIBRARY_VERSION "pmix.mld.vrs" (char*)24
Programming model version string (e.g., “2.1.1”).25

PMIX_THREADING_MODEL "pmix.threads" (char*)26
Threading model used (e.g., “pthreads”).27

PMIX_MODEL_NUM_THREADS "pmix.mdl.nthrds" (uint64_t)28
Number of active threads being used by the model.29

PMIX_MODEL_NUM_CPUS "pmix.mdl.ncpu" (uint64_t)30
Number of cpus being used by the model.31

PMIX_MODEL_CPU_TYPE "pmix.mdl.cputype" (char*)32
Granularity - “hwthread”, “core”, etc.33

PMIX_MODEL_PHASE_NAME "pmix.mdl.phase" (char*)34
User-assigned name for a phase in the application execution (e.g., “cfd reduction”).35

PMIX_MODEL_PHASE_TYPE "pmix.mdl.ptype" (char*)36
Type of phase being executed (e.g., “matrix multiply”).37

PMIX_MODEL_AFFINITY_POLICY "pmix.mdl.tap" (char*)38
Thread affinity policy - e.g.: "master" (thread co-located with master thread), "close" (thread39
located on cpu close to master thread), "spread" (threads load-balanced across available40
cpus).41

64 PMIx Standard – Version 4.1 – October 2021

4.4 PMIx_Finalize1

Summary2
Finalize the PMIx client library.3

Format4 PMIx v1.0 C
pmix_status_t5
PMIx_Finalize(const pmix_info_t info[], size_t ninfo)6

C

IN info7
Array of pmix_info_t structures (array of handles)8

IN ninfo9
Number of elements in the info array (size_t)10

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.11

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:12

PMIX_EMBED_BARRIER "pmix.embed.barrier" (bool)13
Execute a blocking fence operation before executing the specified operation.14
PMIx_Finalize does not include an internal barrier operation by default. This attribute15
directs PMIx_Finalize to execute a barrier as part of the finalize operation.16

Description17
Decrement the PMIx client library reference count. When the reference count reaches zero, the18
library will finalize the PMIx client, closing the connection with the local PMIx server and19
releasing all internally allocated memory.20

4.4.1 Finalize attributes21

The following attribute influences the behavior of PMIx_Finalize.22

PMIX_EMBED_BARRIER "pmix.embed.barrier" (bool)23
Execute a blocking fence operation before executing the specified operation.24
PMIx_Finalize does not include an internal barrier operation by default. This attribute25
directs PMIx_Finalize to execute a barrier as part of the finalize operation.26

4.5 PMIx_Progress27

Summary28
Progress the PMIx library.29

CHAPTER 4. CLIENT INITIALIZATION AND FINALIZATION 65

Format1 C
void2
PMIx_Progress(void)3

C

Description4
Progress the PMIx library. Note that special care must be taken to avoid deadlocking in PMIx5
callback functions and acpAPI.6

66 PMIx Standard – Version 4.1 – October 2021

CHAPTER 5

Synchronization and Data Access
Operations

Applications may need to synchronize their operations at various points in their execution.1
Depending on a variety of factors (e.g., the programming model and where the synchronization2
point lies), the application may choose to execute the operation using PMIx. This is particularly3
useful in situations where communication by other means is not yet available since PMIx relies on4
the host environment’s infrastructure for such operations.5

Synchronization operations also offer an opportunity for processes to exchange data at a known6
point in their execution. Where required, this can include information on communication endpoints7
for subsequent wireup of various messaging protocols.8

This chapter covers both the synchronization and data retrieval functions provided under the PMIx9
Standard.10

5.1 PMIx_Fence11

Summary12
Execute a blocking barrier across the processes identified in the specified array, collecting13
information posted via PMIx_Put as directed.14

Format15 PMIx v1.0 C
pmix_status_t16
PMIx_Fence(const pmix_proc_t procs[], size_t nprocs,17

const pmix_info_t info[], size_t ninfo);18

C
IN procs19

Array of pmix_proc_t structures (array of handles)20
IN nprocs21

Number of elements in the procs array (integer)22
IN info23

Array of info structures (array of handles)24
IN ninfo25

Number of elements in the info array (integer)26

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.27

67

Required Attributes

The following attributes are required to be supported by all PMIx libraries:1

PMIX_COLLECT_DATA "pmix.collect" (bool)2
Collect all data posted by the participants using PMIx_Put that has been committed via3
PMIx_Commit, making the collection locally available to each participant at the end of the4
operation. By default, this will include all job-level information that was locally generated5
by PMIx servers unless excluded using the PMIX_COLLECT_GENERATED_JOB_INFO6
attribute.7

PMIX_COLLECT_GENERATED_JOB_INFO "pmix.collect.gen" (bool)8
Collect all job-level information (i.e., reserved keys) that was locally generated by PMIx9
servers. Some job-level information (e.g., distance between processes and fabric devices) is10
best determined on a distributed basis as it primarily pertains to local processes. Should11
remote processes need to access the information, it can either be obtained collectively using12
the PMIx_Fence operation with this directive, or can be retrieved one peer at a time using13
PMIx_Get without first having performed the job-wide collection.14

Optional Attributes

The following attributes are optional for PMIx implementations:15

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)16
All clones of the calling process must participate in the collective operation.17

The following attributes are optional for host environments:18

PMIX_TIMEOUT "pmix.timeout" (int)19
Time in seconds before the specified operation should time out (zero indicating infinite) and20
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions21
caused by multiple layers (client, server, and host) simultaneously timing the operation.22

68 PMIx Standard – Version 4.1 – October 2021

Description1
Passing a NULL pointer as the procs parameter indicates that the fence is to span all processes in2
the client’s namespace. Each provided pmix_proc_t struct can pass PMIX_RANK_WILDCARD3
to indicate that all processes in the given namespace are participating.4

The info array is used to pass user directives regarding the behavior of the fence operation. Note5
that for scalability reasons, the default behavior for PMIx_Fence is to not collect data posted by6
the operation’s participants.7

Advice to PMIx library implementers

PMIx_Fence and its non-blocking form are both collective operations. Accordingly, the PMIx8
server library is required to aggregate participation by local clients, passing the request to the host9
environment once all local participants have executed the API.10

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to11
identify the nodes containing participating processes, execute the collective across all participating12
nodes, and notify the local PMIx server library upon completion of the global collective.13

5.2 PMIx_Fence_nb14

Summary15
Execute a nonblocking PMIx_Fence across the processes identified in the specified array of16
processes, collecting information posted via PMIx_Put as directed.17

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 69

Format1 C
pmix_status_t2
PMIx_Fence_nb(const pmix_proc_t procs[], size_t nprocs,3

const pmix_info_t info[], size_t ninfo,4
pmix_op_cbfunc_t cbfunc, void *cbdata);5

C

IN procs6
Array of pmix_proc_t structures (array of handles)7

IN nprocs8
Number of elements in the procs array (integer)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of elements in the info array (integer)13

IN cbfunc14
Callback function (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the library must not invoke the callback20
function prior to returning from the API.21

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and22
returned success - the cbfunc will not be called. This can occur if the collective involved only23
processes on the local node.24

• a PMIx error constant indicating either an error in the input or that the request was immediately25
processed and failed - the cbfunc will not be called.26

Required Attributes

The following attributes are required to be supported by all PMIx libraries:27

PMIX_COLLECT_DATA "pmix.collect" (bool)28
Collect all data posted by the participants using PMIx_Put that has been committed via29
PMIx_Commit, making the collection locally available to each participant at the end of the30
operation. By default, this will include all job-level information that was locally generated31
by PMIx servers unless excluded using the PMIX_COLLECT_GENERATED_JOB_INFO32
attribute.33

PMIX_COLLECT_GENERATED_JOB_INFO "pmix.collect.gen" (bool)34

70 PMIx Standard – Version 4.1 – October 2021

Collect all job-level information (i.e., reserved keys) that was locally generated by PMIx1
servers. Some job-level information (e.g., distance between processes and fabric devices) is2
best determined on a distributed basis as it primarily pertains to local processes. Should3
remote processes need to access the information, it can either be obtained collectively using4
the PMIx_Fence operation with this directive, or can be retrieved one peer at a time using5
PMIx_Get without first having performed the job-wide collection.6

Optional Attributes

The following attributes are optional for PMIx implementations:7

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)8
All clones of the calling process must participate in the collective operation.9

The following attributes are optional for host environments that support this operation:10

PMIX_TIMEOUT "pmix.timeout" (int)11
Time in seconds before the specified operation should time out (zero indicating infinite) and12
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions13
caused by multiple layers (client, server, and host) simultaneously timing the operation.14

Description15
Nonblocking version of the PMIx_Fence routine. See the PMIx_Fence description for further16
details.17

5.2.1 Fence-related attributes18

The following attributes are defined specifically to support the fence operation:19

PMIX_COLLECT_DATA "pmix.collect" (bool)20
Collect all data posted by the participants using PMIx_Put that has been committed via21
PMIx_Commit, making the collection locally available to each participant at the end of the22
operation. By default, this will include all job-level information that was locally generated23
by PMIx servers unless excluded using the PMIX_COLLECT_GENERATED_JOB_INFO24
attribute.25

PMIX_COLLECT_GENERATED_JOB_INFO "pmix.collect.gen" (bool)26
Collect all job-level information (i.e., reserved keys) that was locally generated by PMIx27
servers. Some job-level information (e.g., distance between processes and fabric devices) is28
best determined on a distributed basis as it primarily pertains to local processes. Should29
remote processes need to access the information, it can either be obtained collectively using30
the PMIx_Fence operation with this directive, or can be retrieved one peer at a time using31
PMIx_Get without first having performed the job-wide collection.32

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)33
All clones of the calling process must participate in the collective operation.34

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 71

5.3 PMIx_Get1

Summary2
Retrieve a key/value pair from the client’s namespace.3

Format4 PMIx v1.0 C
pmix_status_t5
PMIx_Get(const pmix_proc_t *proc, const pmix_key_t key,6

const pmix_info_t info[], size_t ninfo,7
pmix_value_t **val);8

C

IN proc9
Process identifier - a NULL value may be used in place of the caller’s ID (handle)10

IN key11
Key to retrieve (pmix_key_t)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

OUT val17
value (handle)18

Returns one of the following:19

• PMIX_SUCCESS The requested data has been returned in the manner requested (i.e., in a20
provided static memory location)21

• PMIX_ERR_BAD_PARAM A bad parameter was passed to the function call - e.g., the request22
included the PMIX_GET_STATIC_VALUES directive, but the provided storage location was23
NULL24

• PMIX_ERR_EXISTS_OUTSIDE_SCOPE The requested key exists, but was posted in a scope25
(see Section 7.1.1.1) that does not include the requester.26

• PMIX_ERR_NOT_FOUND The requested data was not available.27

• a non-zero PMIx error constant indicating a reason for the request’s failure.28

Required Attributes

The following attributes are required to be supported by all PMIx libraries:29

PMIX_OPTIONAL "pmix.optional" (bool)30
Look only in the client’s local data store for the requested value - do not request data from31
the PMIx server if not found.32

PMIX_IMMEDIATE "pmix.immediate" (bool)33

72 PMIx Standard – Version 4.1 – October 2021

Specified operation should immediately return an error from the PMIx server if the requested1
data cannot be found - do not request it from the host RM.2

PMIX_DATA_SCOPE "pmix.scope" (pmix_scope_t)3
Scope of the data to be searched in a PMIx_Get call.4

PMIX_SESSION_INFO "pmix.ssn.info" (bool)5
Return information regarding the session realm of the target process.6

PMIX_JOB_INFO "pmix.job.info" (bool)7
Return information regarding the job realm corresponding to the namespace in the target8
process’ identifier.9

PMIX_APP_INFO "pmix.app.info" (bool)10
Return information regarding the application realm to which the target process belongs - the11
namespace of the target process serves to identify the job containing the target application. If12
information about an application other than the one containing the target process is desired,13
then the attribute array must contain a PMIX_APPNUM attribute identifying the desired14
target application. This is useful in cases where there are multiple applications and the15
mapping of processes to applications is unclear.16

PMIX_NODE_INFO "pmix.node.info" (bool)17
Return information from the node realm regarding the node upon which the specified18
process is executing. If information about a node other than the one containing the specified19
process is desired, then the attribute array must also contain either the PMIX_NODEID or20
PMIX_HOSTNAME attribute identifying the desired target. This is useful for requesting21
information about a specific node even if the identity of processes running on that node are22
not known..23

PMIX_GET_STATIC_VALUES "pmix.get.static" (bool)24
Request that the data be returned in the provided storage location. The caller is responsible25
for destructing the pmix_value_t using the PMIX_VALUE_DESTRUCT macro when26
done.27

PMIX_GET_POINTER_VALUES "pmix.get.pntrs" (bool)28
Request that any pointers in the returned value point directly to values in the key-value store.29
The user must not release any returned data pointers.30

PMIX_GET_REFRESH_CACHE "pmix.get.refresh" (bool)31
When retrieving data for a remote process, refresh the existing local data cache for the32
process in case new values have been put and committed by the process since the last refresh.33
Local process information is assumed to be automatically updated upon posting by the34
process. A NULL key will cause all values associated with the process to be refreshed -35
otherwise, only the indicated key will be updated. A process rank of36
PMIX_RANK_WILDCARD can be used to update job-related information in dynamic37
environments. The user is responsible for subsequently updating refreshed values they may38
have cached in their own local memory.39

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 73

Optional Attributes

The following attributes are optional for host environments:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Retrieve information for the specified key associated with the process identified in the given7
pmix_proc_t. See Chapters 6 and 7 for details on rules governing retrieval of information.8
Information will be returned according to provided directives:9

• In the absence of any directive, the returned pmix_value_t shall be an allocated memory10
object. The caller is responsible for releasing the object when done.11

• If PMIX_GET_POINTER_VALUES is given, then the function shall return a pointer to a12
pmix_value_t in the PMIx library’s memory that contains the requested information.13

• If PMIX_GET_STATIC_VALUES is given, then the function shall return the information in the14
provided pmix_value_t pointer. In this case, the caller must provide storage for the structure15
and pass the pointer to that storage in the val parameter. If the implementation cannot return a16
static value, then the call to PMIx_Get must return the PMIX_ERR_NOT_SUPPORTED status.17

This is a blocking operation - the caller will block until the retrieval rules of Chapters 6 or 7 are met.18

The info array is used to pass user directives regarding the get operation.19

5.3.1 PMIx_Get_nb20

Summary21
Nonblocking PMIx_Get operation.22

74 PMIx Standard – Version 4.1 – October 2021

Format1 C
pmix_status_t2
PMIx_Get_nb(const pmix_proc_t *proc, const char key[],3

const pmix_info_t info[], size_t ninfo,4
pmix_value_cbfunc_t cbfunc, void *cbdata);5

C

IN proc6
Process identifier - a NULL value may be used in place of the caller’s ID (handle)7

IN key8
Key to retrieve (string)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of elements in the info array (integer)13

IN cbfunc14
Callback function (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the library must not invoke the callback20
function prior to returning from the API.21

• a PMIx error constant indicating either an error in the input or that the request was immediately22
processed and failed - the cbfunc will not be called.23

If executed, the status returned in the provided callback function will be one of the following24
constants:25

• PMIX_SUCCESS The requested data has been returned.26

• PMIX_ERR_EXISTS_OUTSIDE_SCOPE The requested key exists, but was posted in a scope27
(see Section 7.1.1.1) that does not include the requester.28

• PMIX_ERR_NOT_FOUND The requested data was not available.29

• a non-zero PMIx error constant indicating a reason for the request’s failure.30

Required Attributes

The following attributes are required to be supported by all PMIx libraries:31

PMIX_OPTIONAL "pmix.optional" (bool)32
Look only in the client’s local data store for the requested value - do not request data from33
the PMIx server if not found.34

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 75

PMIX_IMMEDIATE "pmix.immediate" (bool)1
Specified operation should immediately return an error from the PMIx server if the requested2
data cannot be found - do not request it from the host RM.3

PMIX_DATA_SCOPE "pmix.scope" (pmix_scope_t)4
Scope of the data to be searched in a PMIx_Get call.5

PMIX_SESSION_INFO "pmix.ssn.info" (bool)6
Return information regarding the session realm of the target process.7

PMIX_JOB_INFO "pmix.job.info" (bool)8
Return information regarding the job realm corresponding to the namespace in the target9
process’ identifier.10

PMIX_APP_INFO "pmix.app.info" (bool)11
Return information regarding the application realm to which the target process belongs - the12
namespace of the target process serves to identify the job containing the target application. If13
information about an application other than the one containing the target process is desired,14
then the attribute array must contain a PMIX_APPNUM attribute identifying the desired15
target application. This is useful in cases where there are multiple applications and the16
mapping of processes to applications is unclear.17

PMIX_NODE_INFO "pmix.node.info" (bool)18
Return information from the node realm regarding the node upon which the specified19
process is executing. If information about a node other than the one containing the specified20
process is desired, then the attribute array must also contain either the PMIX_NODEID or21
PMIX_HOSTNAME attribute identifying the desired target. This is useful for requesting22
information about a specific node even if the identity of processes running on that node are23
not known..24

PMIX_GET_POINTER_VALUES "pmix.get.pntrs" (bool)25
Request that any pointers in the returned value point directly to values in the key-value store.26
The user must not release any returned data pointers.27

PMIX_GET_REFRESH_CACHE "pmix.get.refresh" (bool)28
When retrieving data for a remote process, refresh the existing local data cache for the29
process in case new values have been put and committed by the process since the last refresh.30
Local process information is assumed to be automatically updated upon posting by the31
process. A NULL key will cause all values associated with the process to be refreshed -32
otherwise, only the indicated key will be updated. A process rank of33
PMIX_RANK_WILDCARD can be used to update job-related information in dynamic34
environments. The user is responsible for subsequently updating refreshed values they may35
have cached in their own local memory.36

37

The following attributes are required for host environments that support this operation:38

76 PMIx Standard – Version 4.1 – October 2021

PMIX_WAIT "pmix.wait" (int)1
Caller requests that the PMIx server wait until at least the specified number of values are2
found (a value of zero indicates all and is the default).3

Optional Attributes

The following attributes are optional for host environments that support this operation:4

PMIX_TIMEOUT "pmix.timeout" (int)5
Time in seconds before the specified operation should time out (zero indicating infinite) and6
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions7
caused by multiple layers (client, server, and host) simultaneously timing the operation.8

Description9
The callback function will be executed once the retrieval rules of Chapters 6 or 7 are met. See10
PMIx_Get for a full description. Note that the non-blocking form of this function cannot support11
the PMIX_GET_STATIC_VALUES attribute as the user cannot pass in the required pointer to12
storage for the result.13

5.3.2 Retrieval attributes14

The following attributes are defined for use by retrieval APIs:15

PMIX_OPTIONAL "pmix.optional" (bool)16
Look only in the client’s local data store for the requested value - do not request data from17
the PMIx server if not found.18

PMIX_IMMEDIATE "pmix.immediate" (bool)19
Specified operation should immediately return an error from the PMIx server if the requested20
data cannot be found - do not request it from the host RM.21

PMIX_GET_POINTER_VALUES "pmix.get.pntrs" (bool)22
Request that any pointers in the returned value point directly to values in the key-value store.23
The user must not release any returned data pointers.24

PMIX_GET_STATIC_VALUES "pmix.get.static" (bool)25
Request that the data be returned in the provided storage location. The caller is responsible26
for destructing the pmix_value_t using the PMIX_VALUE_DESTRUCT macro when27
done.28

PMIX_GET_REFRESH_CACHE "pmix.get.refresh" (bool)29

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 77

When retrieving data for a remote process, refresh the existing local data cache for the1
process in case new values have been put and committed by the process since the last refresh.2
Local process information is assumed to be automatically updated upon posting by the3
process. A NULL key will cause all values associated with the process to be refreshed -4
otherwise, only the indicated key will be updated. A process rank of5
PMIX_RANK_WILDCARD can be used to update job-related information in dynamic6
environments. The user is responsible for subsequently updating refreshed values they may7
have cached in their own local memory.8

PMIX_DATA_SCOPE "pmix.scope" (pmix_scope_t)9
Scope of the data to be searched in a PMIx_Get call.10

PMIX_TIMEOUT "pmix.timeout" (int)11
Time in seconds before the specified operation should time out (zero indicating infinite) and12
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions13
caused by multiple layers (client, server, and host) simultaneously timing the operation.14

PMIX_WAIT "pmix.wait" (int)15
Caller requests that the PMIx server wait until at least the specified number of values are16
found (a value of zero indicates all and is the default).17

5.4 Query18

As the level of interaction between applications and the host SMS grows, so too does the need for19
the application to query the SMS regarding its capabilities and state information. PMIx provides a20
generalized query interface for this purpose, along with a set of standardized attribute keys to21
support a range of requests. This includes requests to determine the status of scheduling queues and22
active allocations, the scope of API and attribute support offered by the SMS, namespaces of active23
jobs, location and information about a job’s processes, and information regarding available24
resources.25

An example use-case for the PMIx_Query_info_nb API is to ensure clean job completion.26
Time-shared systems frequently impose maximum run times when assigning jobs to resource27
allocations. To shut down gracefully (e.g., to write a checkpoint before termination) it is necessary28
for an application to periodically query the resource manager for the time remaining in its29
allocation. This is especially true on systems for which allocation times may be shortened or30
lengthened from the original time limit. Many resource managers provide APIs to dynamically31
obtain this information, but each API is specific to the resource manager.32

PMIx supports this use-case by defining an attribute key (PMIX_TIME_REMAINING) that can be33
used with the PMIx_Query_info_nb interface to obtain the number of seconds remaining in34
the current job allocation. Note that one could alternatively use the35
PMIx_Register_event_handler API to register for an event indicating incipient job36
termination, and then use the PMIx_Job_control_nb API to request that the host SMS37
generate an event a specified amount of time prior to reaching the maximum run time. PMIx38
provides such alternate methods as a means of maximizing the probability of a host system39
supporting at least one method by which the application can obtain the desired service.40

78 PMIx Standard – Version 4.1 – October 2021

The following APIs support query of various session and environment values.1

5.4.1 PMIx_Resolve_peers2

Summary3
Obtain the array of processes within the specified namespace that are executing on a given node.4

Format5 PMIx v1.0 C
pmix_status_t6
PMIx_Resolve_peers(const char *nodename,7

const pmix_nspace_t nspace,8
pmix_proc_t **procs, size_t *nprocs);9

C

IN nodename10
Name of the node to query - NULL can be used to denote the current local node (string)11

IN nspace12
namespace (string)13

OUT procs14
Array of process structures (array of handles)15

OUT nprocs16
Number of elements in the procs array (integer)17

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.18

Description19
Given a nodename, return the array of processes within the specified nspace that are executing on20
that node. If the nspace is NULL, then all processes on the node will be returned. If the specified21
node does not currently host any processes, then the returned array will be NULL, and nprocs will22
be zero. The caller is responsible for releasing the procs array when done with it. The23
PMIX_PROC_FREE macro is provided for this purpose.24

5.4.2 PMIx_Resolve_nodes25

Summary26
Return a list of nodes hosting processes within the given namespace.27

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 79

Format1 C
pmix_status_t2
PMIx_Resolve_nodes(const char *nspace, char **nodelist);3

C

IN nspace4
Namespace (string)5

OUT nodelist6
Comma-delimited list of nodenames (string)7

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.8

Description9
Given a nspace, return the list of nodes hosting processes within that namespace. The returned10
string will contain a comma-delimited list of nodenames. The caller is responsible for releasing the11
string when done with it.12

5.4.3 PMIx_Query_info13

Summary14
Query information about the system in general.15

Format16 PMIx v4.0 C
pmix_status_t17
PMIx_Query_info(pmix_query_t queries[], size_t nqueries,18

pmix_info_t *info[], size_t *ninfo);19

C

IN queries20
Array of query structures (array of handles)21

IN nqueries22
Number of elements in the queries array (integer)23

INOUT info24
Address where a pointer to an array of pmix_info_t containing the results of the query can25
be returned (memory reference)26

INOUT ninfo27
Address where the number of elements in info can be returned (handle)28

Returns one of the following:29

• PMIX_SUCCESS All data was found and has been returned.30

• PMIX_ERR_NOT_FOUND None of the requested data was available. The info array will be31
NULL and ninfo zero.32

80 PMIx Standard – Version 4.1 – October 2021

• PMIX_ERR_PARTIAL_SUCCESS Some of the requested data was found. The info array shall1
contain an element for each query key that returned a value.2

• PMIX_ERR_NOT_SUPPORTED The host RM does not support this function. The info array will3
be NULL and ninfo zero.4

• a non-zero PMIx error constant indicating a reason for the request’s failure. The info array will5
be NULL and ninfo zero.6

Required Attributes

PMIx libraries and host environments that support this API are required to support the following7
attributes:8

PMIX_QUERY_REFRESH_CACHE "pmix.qry.rfsh" (bool)9
Retrieve updated information from server. NO QUALIFIERS.10

PMIX_SESSION_INFO "pmix.ssn.info" (bool)11
Return information regarding the session realm of the target process.12

PMIX_JOB_INFO "pmix.job.info" (bool)13
Return information regarding the job realm corresponding to the namespace in the target14
process’ identifier.15

PMIX_APP_INFO "pmix.app.info" (bool)16
Return information regarding the application realm to which the target process belongs - the17
namespace of the target process serves to identify the job containing the target application. If18
information about an application other than the one containing the target process is desired,19
then the attribute array must contain a PMIX_APPNUM attribute identifying the desired20
target application. This is useful in cases where there are multiple applications and the21
mapping of processes to applications is unclear.22

PMIX_NODE_INFO "pmix.node.info" (bool)23
Return information from the node realm regarding the node upon which the specified24
process is executing. If information about a node other than the one containing the specified25
process is desired, then the attribute array must also contain either the PMIX_NODEID or26
PMIX_HOSTNAME attribute identifying the desired target. This is useful for requesting27
information about a specific node even if the identity of processes running on that node are28
not known..29

PMIX_PROC_INFO "pmix.proc.info" (bool)30
Return information regarding the target process. This attribute is technically not required as31
the PMIx_Get API specifically identifies the target process in its parameters. However, it is32
included here for completeness.33

PMIX_PROCID "pmix.procid" (pmix_proc_t)34

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 81

Process identifier. Used as a key in PMIx_Get to retrieve the caller’s own process identifier1
in a portion of the program that doesn’t have access to the memory location in which it was2
originally stored (e.g., due to a call to PMIx_Init). The process identifier in the3
PMIx_Get call is ignored in this instance. In this context, specifies the process ID whose4
information is being requested - e.g., a query asking for the pmix_proc_info_t of a5
specified process. Only required when the request is for information on a specific process.6

PMIX_NSPACE "pmix.nspace" (char*)7
Namespace of the job - may be a numerical value expressed as a string, but is often an8
alphanumeric string carrying information solely of use to the system. Required to be unique9
within the scope of the host environment. Specifies the namespace of the process whose10
information is being requested. Must be accompanied by the PMIX_RANK attribute. Only11
required when the request is for information on a specific process.12

PMIX_RANK "pmix.rank" (pmix_rank_t)13
Process rank within the job, starting from zero. Specifies the rank of the process whose14
information is being requested. Must be accompanied by the PMIX_NSPACE attribute.15
Only required when the request is for information on a specific process.16

PMIX_QUERY_ATTRIBUTE_SUPPORT "pmix.qry.attrs" (bool)17
Query list of supported attributes for specified APIs. REQUIRED QUALIFIERS: one or18
more of PMIX_CLIENT_FUNCTIONS, PMIX_SERVER_FUNCTIONS,19
PMIX_TOOL_FUNCTIONS, and PMIX_HOST_FUNCTIONS.20

PMIX_CLIENT_ATTRIBUTES "pmix.client.attrs" (bool)21
Request attributes supported by the PMIx client library.22

PMIX_SERVER_ATTRIBUTES "pmix.srvr.attrs" (bool)23
Request attributes supported by the PMIx server library.24

PMIX_HOST_ATTRIBUTES "pmix.host.attrs" (bool)25
Request attributes supported by the host environment.26

PMIX_TOOL_ATTRIBUTES "pmix.setup.env" (bool)27
Request attributes supported by the PMIx tool library functions.28

Note that inclusion of both the PMIX_PROCID directive and either the PMIX_NSPACE or the29
PMIX_RANK attribute will return a PMIX_ERR_BAD_PARAM result, and that the inclusion of a30
process identifier must apply to all keys in that pmix_query_t. Queries for information on31
multiple specific processes therefore requires submitting multiple pmix_query_t structures,32
each referencing one process.33

PMIx libraries are not required to directly support any other attributes for this function. However,34
all provided attributes must be passed to the host SMS daemon for processing. The PMIx library is35
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making36
the request.37

82 PMIx Standard – Version 4.1 – October 2021

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)2
Request a comma-delimited list of active namespaces. NO QUALIFIERS.3

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)4
Status of a specified, currently executing job. REQUIRED QUALIFIER: PMIX_NSPACE5
indicating the namespace whose status is being queried.6

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)7
Request a comma-delimited list of scheduler queues. NO QUALIFIERS.8

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (char*)9
Returns status of a specified scheduler queue, expressed as a string. OPTIONAL10
QUALIFIERS: PMIX_ALLOC_QUEUE naming specific queue whose status is being11
requested.12

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)13
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each14
process in the specified namespace, ordered by process job rank. REQUIRED QUALIFIER:15
PMIX_NSPACE indicating the namespace whose process table is being queried.16

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)17
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each18
process in the specified namespace executing on the same node as the requester, ordered by19
process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the namespace20
whose local process table is being queried. OPTIONAL QUALIFIER: PMIX_HOSTNAME21
indicating the host whose local process table is being queried. By default, the query assumes22
that the host upon which the request was made is to be used.23

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)24
Return a comma-delimited list of supported spawn attributes. NO QUALIFIERS.25

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)26
Return a comma-delimited list of supported debug attributes. NO QUALIFIERS.27

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)28
Return information on memory usage for the processes indicated in the qualifiers.29
OPTIONAL QUALIFIERS: PMIX_NSPACE and PMIX_RANK, or PMIX_PROCID of30
specific process(es) whose memory usage is being requested.31

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)32
Report only average values for sampled information. NO QUALIFIERS.33

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)34
Report minimum and maximum values. NO QUALIFIERS.35

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)36

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 83

String identifier of the allocation whose status is being requested. NO QUALIFIERS.1

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)2
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.3
OPTIONAL QUALIFIERS: PMIX_NSPACE of the namespace whose info is being4
requested (defaults to allocation containing the caller).5

PMIX_SERVER_URI "pmix.srvr.uri" (char*)6
URI of the PMIx server to be contacted. Requests the URI of the specified PMIx server’s7
PMIx connection. Defaults to requesting the information for the local PMIx server.8

PMIX_CLIENT_AVG_MEMORY "pmix.cl.mem.avg" (float)9
Average Megabytes of memory used by client processes on node. OPTIONAL10
QUALIFERS: PMIX_HOSTNAME or PMIX_NODEID (defaults to caller’s node).11

PMIX_DAEMON_MEMORY "pmix.dmn.mem" (float)12
Megabytes of memory currently used by the RM daemon on the node. OPTIONAL13
QUALIFERS: PMIX_HOSTNAME or PMIX_NODEID (defaults to caller’s node).14

PMIX_QUERY_AUTHORIZATIONS "pmix.qry.auths" (bool)15
Return operations the PMIx tool is authorized to perform. NO QUALIFIERS.16

PMIX_PROC_PID "pmix.ppid" (pid_t)17
Operating system PID of specified process.18

PMIX_PROC_STATE_STATUS "pmix.proc.state" (pmix_proc_state_t)19
State of the specified process as of the last report - may not be the actual current state based20
on update rate.21

Description22
Query information about the system in general. This can include a list of active namespaces, fabric23
topology, etc. Also can be used to query node-specific info such as the list of peers executing on a24
given node. The host environment is responsible for exercising appropriate access control on the25
information.26

The returned status indicates if requested data was found or not. The returned info array will27
contain a PMIX_QUERY_RESULTS element for each query of the queries array. If qualifiers were28
included in the query, then the first element of each results array shall contain the29
PMIX_QUERY_QUALIFIERS key with a pmix_data_array_t containing the qualifiers. The30
remaining pmix_info_t shall contain the results of the query, one entry for each key that was31
found. Note that duplicate keys in the queries array shall result in duplicate responses within the32
constraints of the accompanying qualifiers. The caller is responsible for releasing the returned array.33

84 PMIx Standard – Version 4.1 – October 2021

Advice to PMIx library implementers

Information returned from PMIx_Query_info shall be locally cached so that retrieval by1
subsequent calls to PMIx_Get, PMIx_Query_info, or PMIx_Query_info_nb can succeed2
with minimal overhead. The local cache shall be checked prior to querying the PMIx server and/or3
the host environment. Queries that include the PMIX_QUERY_REFRESH_CACHE attribute shall4
bypass the local cache and retrieve a new value for the query, refreshing the values in the cache5
upon return.6

5.4.4 PMIx_Query_info_nb7

Summary8
Query information about the system in general.9

Format10 PMIx v2.0 C
pmix_status_t11
PMIx_Query_info_nb(pmix_query_t queries[], size_t nqueries,12

pmix_info_cbfunc_t cbfunc, void *cbdata);13

C

IN queries14
Array of query structures (array of handles)15

IN nqueries16
Number of elements in the queries array (integer)17

IN cbfunc18
Callback function pmix_info_cbfunc_t (function reference)19

IN cbdata20
Data to be passed to the callback function (memory reference)21

Returns one of the following:22

• PMIX_SUCCESS indicating that the request has been accepted for processing and the provided23
callback function will be executed upon completion of the operation. Note that the library must24
not invoke the callback function prior to returning from the API.25

• a non-zero PMIx error constant indicating a reason for the request to have been rejected. In this26
case, the provided callback function will not be executed.27

If executed, the status returned in the provided callback function will be one of the following28
constants:29

• PMIX_SUCCESS All data was found and has been returned.30

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 85

• PMIX_ERR_NOT_FOUND None of the requested data was available. The info array will be1
NULL and ninfo zero.2

• PMIX_ERR_PARTIAL_SUCCESS Some of the requested data was found. The info array shall3
contain an element for each query key that returned a value.4

• PMIX_ERR_NOT_SUPPORTED The host RM does not support this function. The info array will5
be NULL and ninfo zero.6

• a non-zero PMIx error constant indicating a reason for the request’s failure. The info array will7
be NULL and ninfo zero.8

Required Attributes

PMIx libraries and host environments that support this API are required to support the following9
attributes:10

PMIX_QUERY_REFRESH_CACHE "pmix.qry.rfsh" (bool)11
Retrieve updated information from server. NO QUALIFIERS.12

PMIX_SESSION_INFO "pmix.ssn.info" (bool)13
Return information regarding the session realm of the target process.14

PMIX_JOB_INFO "pmix.job.info" (bool)15
Return information regarding the job realm corresponding to the namespace in the target16
process’ identifier.17

PMIX_APP_INFO "pmix.app.info" (bool)18
Return information regarding the application realm to which the target process belongs - the19
namespace of the target process serves to identify the job containing the target application. If20
information about an application other than the one containing the target process is desired,21
then the attribute array must contain a PMIX_APPNUM attribute identifying the desired22
target application. This is useful in cases where there are multiple applications and the23
mapping of processes to applications is unclear.24

PMIX_NODE_INFO "pmix.node.info" (bool)25
Return information from the node realm regarding the node upon which the specified26
process is executing. If information about a node other than the one containing the specified27
process is desired, then the attribute array must also contain either the PMIX_NODEID or28
PMIX_HOSTNAME attribute identifying the desired target. This is useful for requesting29
information about a specific node even if the identity of processes running on that node are30
not known..31

PMIX_PROC_INFO "pmix.proc.info" (bool)32
Return information regarding the target process. This attribute is technically not required as33
the PMIx_Get API specifically identifies the target process in its parameters. However, it is34
included here for completeness.35

PMIX_PROCID "pmix.procid" (pmix_proc_t)36

86 PMIx Standard – Version 4.1 – October 2021

Process identifier. Used as a key in PMIx_Get to retrieve the caller’s own process identifier1
in a portion of the program that doesn’t have access to the memory location in which it was2
originally stored (e.g., due to a call to PMIx_Init). The process identifier in the3
PMIx_Get call is ignored in this instance. In this context, specifies the process ID whose4
information is being requested - e.g., a query asking for the pmix_proc_info_t of a5
specified process. Only required when the request is for information on a specific process.6

PMIX_NSPACE "pmix.nspace" (char*)7
Namespace of the job - may be a numerical value expressed as a string, but is often an8
alphanumeric string carrying information solely of use to the system. Required to be unique9
within the scope of the host environment. Specifies the namespace of the process whose10
information is being requested. Must be accompanied by the PMIX_RANK attribute. Only11
required when the request is for information on a specific process.12

PMIX_RANK "pmix.rank" (pmix_rank_t)13
Process rank within the job, starting from zero. Specifies the rank of the process whose14
information is being requested. Must be accompanied by the PMIX_NSPACE attribute.15
Only required when the request is for information on a specific process.16

PMIX_QUERY_ATTRIBUTE_SUPPORT "pmix.qry.attrs" (bool)17
Query list of supported attributes for specified APIs. REQUIRED QUALIFIERS: one or18
more of PMIX_CLIENT_FUNCTIONS, PMIX_SERVER_FUNCTIONS,19
PMIX_TOOL_FUNCTIONS, and PMIX_HOST_FUNCTIONS.20

PMIX_CLIENT_ATTRIBUTES "pmix.client.attrs" (bool)21
Request attributes supported by the PMIx client library.22

PMIX_SERVER_ATTRIBUTES "pmix.srvr.attrs" (bool)23
Request attributes supported by the PMIx server library.24

PMIX_HOST_ATTRIBUTES "pmix.host.attrs" (bool)25
Request attributes supported by the host environment.26

PMIX_TOOL_ATTRIBUTES "pmix.setup.env" (bool)27
Request attributes supported by the PMIx tool library functions.28

Note that inclusion of both the PMIX_PROCID directive and either the PMIX_NSPACE or the29
PMIX_RANK attribute will return a PMIX_ERR_BAD_PARAM result, and that the inclusion of a30
process identifier must apply to all keys in that pmix_query_t. Queries for information on31
multiple specific processes therefore requires submitting multiple pmix_query_t structures,32
each referencing one process.33

PMIx libraries are not required to directly support any other attributes for this function. However,34
all provided attributes must be passed to the host SMS daemon for processing. The PMIx library is35
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making36
the request.37

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 87

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)2
Request a comma-delimited list of active namespaces. NO QUALIFIERS.3

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)4
Status of a specified, currently executing job. REQUIRED QUALIFIER: PMIX_NSPACE5
indicating the namespace whose status is being queried.6

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)7
Request a comma-delimited list of scheduler queues. NO QUALIFIERS.8

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (char*)9
Returns status of a specified scheduler queue, expressed as a string. OPTIONAL10
QUALIFIERS: PMIX_ALLOC_QUEUE naming specific queue whose status is being11
requested.12

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)13
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each14
process in the specified namespace, ordered by process job rank. REQUIRED QUALIFIER:15
PMIX_NSPACE indicating the namespace whose process table is being queried.16

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)17
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each18
process in the specified namespace executing on the same node as the requester, ordered by19
process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the namespace20
whose local process table is being queried. OPTIONAL QUALIFIER: PMIX_HOSTNAME21
indicating the host whose local process table is being queried. By default, the query assumes22
that the host upon which the request was made is to be used.23

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)24
Return a comma-delimited list of supported spawn attributes. NO QUALIFIERS.25

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)26
Return a comma-delimited list of supported debug attributes. NO QUALIFIERS.27

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)28
Return information on memory usage for the processes indicated in the qualifiers.29
OPTIONAL QUALIFIERS: PMIX_NSPACE and PMIX_RANK, or PMIX_PROCID of30
specific process(es) whose memory usage is being requested.31

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)32
Report only average values for sampled information. NO QUALIFIERS.33

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)34
Report minimum and maximum values. NO QUALIFIERS.35

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)36

88 PMIx Standard – Version 4.1 – October 2021

String identifier of the allocation whose status is being requested. NO QUALIFIERS.1

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)2
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.3
OPTIONAL QUALIFIERS: PMIX_NSPACE of the namespace whose info is being4
requested (defaults to allocation containing the caller).5

PMIX_SERVER_URI "pmix.srvr.uri" (char*)6
URI of the PMIx server to be contacted. Requests the URI of the specified PMIx server’s7
PMIx connection. Defaults to requesting the information for the local PMIx server.8

PMIX_CLIENT_AVG_MEMORY "pmix.cl.mem.avg" (float)9
Average Megabytes of memory used by client processes on node. OPTIONAL10
QUALIFERS: PMIX_HOSTNAME or PMIX_NODEID (defaults to caller’s node).11

PMIX_DAEMON_MEMORY "pmix.dmn.mem" (float)12
Megabytes of memory currently used by the RM daemon on the node. OPTIONAL13
QUALIFERS: PMIX_HOSTNAME or PMIX_NODEID (defaults to caller’s node).14

PMIX_QUERY_AUTHORIZATIONS "pmix.qry.auths" (bool)15
Return operations the PMIx tool is authorized to perform. NO QUALIFIERS.16

PMIX_PROC_PID "pmix.ppid" (pid_t)17
Operating system PID of specified process.18

PMIX_PROC_STATE_STATUS "pmix.proc.state" (pmix_proc_state_t)19
State of the specified process as of the last report - may not be the actual current state based20
on update rate.21

Description22
Non-blocking form of the PMIx_Query_info API.23

5.4.5 Query-specific constants24

PMIX_QUERY_PARTIAL_SUCCESS Some, but not all, of the requested information was25
returned.26

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 89

5.4.6 Query attributes1

Attributes used to direct behavior of the PMIx_Query_info APIs.2

PMIX_QUERY_RESULTS "pmix.qry.res" (pmix_data_array_t)3
Contains an array of query results for a given pmix_query_t passed to the4
PMIx_Query_info APIs. If qualifiers were included in the query, then the first element5
of the array shall be the PMIX_QUERY_QUALIFIERS attribute containing those qualifiers.6
Each of the remaining elements of the array is a pmix_info_t containing the query key7
and the corresponding value returned by the query. This attribute is solely for reporting8
purposes and cannot be used in PMIx_Get or other query operations.9

PMIX_QUERY_QUALIFIERS "pmix.qry.quals" (pmix_data_array_t)10
Contains an array of qualifiers that were included in the query that produced the provided11
results. This attribute is solely for reporting purposes and cannot be used in PMIx_Get or12
other query operations.13

PMIX_QUERY_SUPPORTED_KEYS "pmix.qry.keys" (char*)14
Returns comma-delimited list of keys supported by the query function. NO QUALIFIERS.15

PMIX_QUERY_SUPPORTED_QUALIFIERS "pmix.qry.quals" (char*)16
Return comma-delimited list of qualifiers supported by a query on the provided key, instead17
of actually performing the query on the key. NO QUALIFIERS.18

PMIX_QUERY_REFRESH_CACHE "pmix.qry.rfsh" (bool)19
Retrieve updated information from server. NO QUALIFIERS.20

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)21
Request a comma-delimited list of active namespaces. NO QUALIFIERS.22

PMIX_QUERY_NAMESPACE_INFO "pmix.qry.nsinfo" (pmix_data_array_t*)23
Return an array of active namespace information - each element will itself contain an array24
including the namespace plus the command line of the application executing within it.25
OPTIONAL QUALIFIERS: PMIX_NSPACE of specific namespace whose info is being26
requested.27

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)28
Status of a specified, currently executing job. REQUIRED QUALIFIER: PMIX_NSPACE29
indicating the namespace whose status is being queried.30

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)31
Request a comma-delimited list of scheduler queues. NO QUALIFIERS.32

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (char*)33
Returns status of a specified scheduler queue, expressed as a string. OPTIONAL34
QUALIFIERS: PMIX_ALLOC_QUEUE naming specific queue whose status is being35
requested.36

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)37
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each38
process in the specified namespace, ordered by process job rank. REQUIRED QUALIFIER:39
PMIX_NSPACE indicating the namespace whose process table is being queried.40

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)41

90 PMIx Standard – Version 4.1 – October 2021

Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each1
process in the specified namespace executing on the same node as the requester, ordered by2
process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the namespace3
whose local process table is being queried. OPTIONAL QUALIFIER: PMIX_HOSTNAME4
indicating the host whose local process table is being queried. By default, the query assumes5
that the host upon which the request was made is to be used.6

PMIX_QUERY_AUTHORIZATIONS "pmix.qry.auths" (bool)7
Return operations the PMIx tool is authorized to perform. NO QUALIFIERS.8

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)9
Return a comma-delimited list of supported spawn attributes. NO QUALIFIERS.10

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)11
Return a comma-delimited list of supported debug attributes. NO QUALIFIERS.12

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)13
Return information on memory usage for the processes indicated in the qualifiers.14
OPTIONAL QUALIFIERS: PMIX_NSPACE and PMIX_RANK, or PMIX_PROCID of15
specific process(es) whose memory usage is being requested.16

PMIX_QUERY_LOCAL_ONLY "pmix.qry.local" (bool)17
Constrain the query to local information only. NO QUALIFIERS.18

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)19
Report only average values for sampled information. NO QUALIFIERS.20

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)21
Report minimum and maximum values. NO QUALIFIERS.22

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)23
String identifier of the allocation whose status is being requested. NO QUALIFIERS.24

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)25
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.26
OPTIONAL QUALIFIERS: PMIX_NSPACE of the namespace whose info is being27
requested (defaults to allocation containing the caller).28

PMIX_QUERY_ATTRIBUTE_SUPPORT "pmix.qry.attrs" (bool)29
Query list of supported attributes for specified APIs. REQUIRED QUALIFIERS: one or30
more of PMIX_CLIENT_FUNCTIONS, PMIX_SERVER_FUNCTIONS,31
PMIX_TOOL_FUNCTIONS, and PMIX_HOST_FUNCTIONS.32

PMIX_QUERY_NUM_PSETS "pmix.qry.psetnum" (size_t)33
Return the number of process sets defined in the specified range (defaults to34
PMIX_RANGE_SESSION).35

PMIX_QUERY_PSET_NAMES "pmix.qry.psets" (pmix_data_array_t*)36
Return a pmix_data_array_t containing an array of strings of the process set names37
defined in the specified range (defaults to PMIX_RANGE_SESSION).38

PMIX_QUERY_PSET_MEMBERSHIP "pmix.qry.pmems" (pmix_data_array_t*)39
Return an array of pmix_proc_t containing the members of the specified process set.40

PMIX_QUERY_AVAIL_SERVERS "pmix.qry.asrvrs" (pmix_data_array_t*)41

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 91

Return an array of pmix_info_t, each element itself containing a1
PMIX_SERVER_INFO_ARRAY entry holding all available data for a server on this node to2
which the caller might be able to connect.3

PMIX_SERVER_INFO_ARRAY "pmix.srv.arr" (pmix_data_array_t)4
Array of pmix_info_t about a given server, starting with its PMIX_NSPACE and5
including at least one of the rendezvous-required pieces of information.6

These attributes are used to query memory available and used in the system.7

PMIX_AVAIL_PHYS_MEMORY "pmix.pmem" (uint64_t)8
Total available physical memory on a node. OPTIONAL QUALIFERS: PMIX_HOSTNAME9
or PMIX_NODEID (defaults to caller’s node).10

PMIX_DAEMON_MEMORY "pmix.dmn.mem" (float)11
Megabytes of memory currently used by the RM daemon on the node. OPTIONAL12
QUALIFERS: PMIX_HOSTNAME or PMIX_NODEID (defaults to caller’s node).13

PMIX_CLIENT_AVG_MEMORY "pmix.cl.mem.avg" (float)14
Average Megabytes of memory used by client processes on node. OPTIONAL15
QUALIFERS: PMIX_HOSTNAME or PMIX_NODEID (defaults to caller’s node).16

The following attributes are used as qualifiers in queries regarding attribute support within the17
PMIx implementation and/or the host environment:18

PMIX_CLIENT_FUNCTIONS "pmix.client.fns" (bool)19
Request a list of functions supported by the PMIx client library.20

PMIX_CLIENT_ATTRIBUTES "pmix.client.attrs" (bool)21
Request attributes supported by the PMIx client library.22

PMIX_SERVER_FUNCTIONS "pmix.srvr.fns" (bool)23
Request a list of functions supported by the PMIx server library.24

PMIX_SERVER_ATTRIBUTES "pmix.srvr.attrs" (bool)25
Request attributes supported by the PMIx server library.26

PMIX_HOST_FUNCTIONS "pmix.srvr.fns" (bool)27
Request a list of functions supported by the host environment.28

PMIX_HOST_ATTRIBUTES "pmix.host.attrs" (bool)29
Request attributes supported by the host environment.30

PMIX_TOOL_FUNCTIONS "pmix.tool.fns" (bool)31
Request a list of functions supported by the PMIx tool library.32

PMIX_TOOL_ATTRIBUTES "pmix.setup.env" (bool)33
Request attributes supported by the PMIx tool library functions.34

5.4.7 Query Structure35

The pmix_query_t structure is used by the PMIx_Query_info APIs to describe a single36
query operation.37

PMIx v2.0

92 PMIx Standard – Version 4.1 – October 2021

C
typedef struct pmix_query {1

char **keys;2
pmix_info_t *qualifiers;3
size_t nqual;4

} pmix_query_t;5

C

where:6

• keys is a NULL-terminated argv-style array of strings7

• qualifiers is an array of pmix_info_t describing constraints on the query8

• nqual is the number of elements in the qualifiers array9

5.4.7.1 Query structure support macros10

The following macros are provided to support the pmix_query_t structure.11

Initialize the query structure12
Initialize the pmix_query_t fields13

PMIx v2.0 C
PMIX_QUERY_CONSTRUCT(m)14

C

IN m15
Pointer to the structure to be initialized (pointer to pmix_query_t)16

Destruct the query structure17
Destruct the pmix_query_t fields18

PMIx v2.0 C
PMIX_QUERY_DESTRUCT(m)19

C

IN m20
Pointer to the structure to be destructed (pointer to pmix_query_t)21

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 93

Create a query array1
Allocate and initialize an array of pmix_query_t structures2

C
PMIX_QUERY_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_query_t structures shall be stored (handle)5

IN n6
Number of structures to be allocated (size_t)7

Free a query structure8
Release a pmix_query_t structure9

PMIx v4.0 C
PMIX_QUERY_RELEASE(m)10

C

IN m11
Pointer to a pmix_query_t structure (handle)12

Free a query array13
Release an array of pmix_query_t structures14

PMIx v2.0 C
PMIX_QUERY_FREE(m, n)15

C

IN m16
Pointer to the array of pmix_query_t structures (handle)17

IN n18
Number of structures in the array (size_t)19

Create the info array of query qualifiers20
Create an array of pmix_info_t structures for passing query qualifiers, updating the nqual field21
of the pmix_query_t structure.22

PMIx v2.2 C
PMIX_QUERY_QUALIFIERS_CREATE(m, n)23

C

IN m24
Pointer to the pmix_query_t structure (handle)25

IN n26
Number of qualifiers to be allocated (size_t)27

94 PMIx Standard – Version 4.1 – October 2021

5.5 Using Get vs Query1

Both PMIx_Get and PMIx_Query_info can be used to retrieve information about the system.2
In general, the get operation should be used to retrieve:3

• information provided by the host environment at time of job start. This includes information on4
the number of processes in the job, their location, and possibly their communication endpoints.5

• information posted by processes via the PMIx_Put function.6

This information is largely considered to be static, although this will not necessarily be true for7
environments supporting dynamic programming models or fault tolerance. Note that the8
PMIx_Get function only accesses information about execution environments - i.e., its scope is9
limited to values pertaining to a specific session, job, application, process, or node. It cannot be10
used to obtain information about areas such as the status of queues in the WLM.11

In contrast, the query option should be used to access:12

• system-level information (such as the available WLM queues) that would generally not be13
included in job-level information provided at job start.14

• dynamic information such as application and queue status, and resource utilization statistics.15
Note that the PMIX_QUERY_REFRESH_CACHE attribute must be provided on each query to16
ensure current data is returned.17

• information created post job start, such as process tables.18

• information requiring more complex search criteria than supported by the simpler PMIx_Get19
API.20

• queries focused on retrieving multi-attribute blocks of data with a single request, thus bypassing21
the single-key limitation of the PMIx_Get API.22

In theory, all information can be accessed via PMIx_Query_info as the local cache is typically23
the same datastore searched by PMIx_Get. However, in practice, the overhead associated with the24
query operation may (depending upon implementation) be higher than the simpler get operation25
due to the need to construct and process the more complex pmix_query_t structure. Thus,26
requests for a single key value are likely to be accomplished faster with PMIx_Get versus the27
query operation.28

5.6 Accessing attribute support information29

Information as to which attributes are supported by either the PMIx implementation or its host30
environment can be obtained via the PMIx_Query_info APIs. The31
PMIX_QUERY_ATTRIBUTE_SUPPORT attribute must be listed as the first entry in the keys field32
of the pmix_query_t structure, followed by the name of the function whose attribute support is33
being requested - support for multiple functions can be requested simultaneously by simply adding34

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 95

the function names to the array of keys. Function names must be given as user-level API names -1
e.g., “PMIx_Get”, “PMIx_server_setup_application”, or “PMIx_tool_attach_to_server”.2

The desired levels of attribute support are provided as qualifiers. Multiple levels can be requested3
simultaneously by simply adding elements to the qualifiers array. Each qualifier should contain the4
desired level attribute with the boolean value set to indicate whether or not that level is to be5
included in the returned information. Failure to provide any levels is equivalent to a request for all6
levels. Supported levels include:7

• PMIX_CLIENT_FUNCTIONS "pmix.client.fns" (bool)8
Request a list of functions supported by the PMIx client library.9

• PMIX_CLIENT_ATTRIBUTES "pmix.client.attrs" (bool)10
Request attributes supported by the PMIx client library.11

• PMIX_SERVER_FUNCTIONS "pmix.srvr.fns" (bool)12
Request a list of functions supported by the PMIx server library.13

• PMIX_SERVER_ATTRIBUTES "pmix.srvr.attrs" (bool)14
Request attributes supported by the PMIx server library.15

• PMIX_HOST_FUNCTIONS "pmix.srvr.fns" (bool)16
Request a list of functions supported by the host environment.17

• PMIX_HOST_ATTRIBUTES "pmix.host.attrs" (bool)18
Request attributes supported by the host environment.19

• PMIX_TOOL_FUNCTIONS "pmix.tool.fns" (bool)20
Request a list of functions supported by the PMIx tool library.21

• PMIX_TOOL_ATTRIBUTES "pmix.setup.env" (bool)22
Request attributes supported by the PMIx tool library functions.23

Unlike other queries, queries for attribute support can result in the number of returned24
pmix_info_t structures being different from the number of queries. Each element in the25
returned array will correspond to a pair of specified attribute level and function in the query, where26
the key is the function and the value contains a pmix_data_array_t of pmix_info_t. Each27
element of the array is marked by a key indicating the requested attribute level with a value28
composed of a pmix_data_array_t of pmix_regattr_t, each describing a supported29
attribute for that function, as illustrated in Fig. 5.1 below where the requestor asked for supported30
attributes of PMIx_Get at the client and server levels, plus attributes of31
PMIx_Allocation_request at all levels.32

The array of returned structures, and their child arrays, are subject to the return rules for the33
PMIx_Query_info_nb API. For example, a request for supported attributes of the PMIx_Get34
function that includes the host level will return values for the client and server levels, plus an array35
element with a key of PMIX_HOST_ATTRIBUTES and a value type of PMIX_UNDEF indicating36
that no attributes are supported at that level.37

96 PMIx Standard – Version 4.1 – October 2021

Figure 5.1.: Returned information hierarchy for attribute support request

CHAPTER 5. SYNCHRONIZATION AND DATA ACCESS OPERATIONS 97

CHAPTER 6

Reserved Keys

Reserved keys are keys whose string representation begin with a prefix of "pmix". By definition,1
reserved keys are provided by the host environment and the PMIx server, and are required to be2
available at client start of execution. PMIx clients and tools are therefore prohibited from posting3
reserved keys using the PMIx_Put API.4

PMIx implementations may choose to define their own custom-prefixed keys which may adhere to5
either the reserved or the non-reserved retrieval rules at the discretion of the implementation.6
Implementations may choose to provide such custom keys at client start of execution, but this is not7
required.8

Host environments may also opt to define their own custom keys. However, PMIx implementations9
are unlikely to recognize such host-defined keys and will therefore treat them according to the10
non-reserved rules described in Chapter 7. Users are advised to check both the local PMIx11
implementation and host environment documentation for a list of any custom prefixes they must12
avoid, and to learn of any non-standard keys that may require special handling.13

6.1 Data realms14

PMIx information spans a wide range of sources. In some cases, there are multiple overlapping15
sources for the same type of data - e.g., the session, job, and application can each provide16
information on the number of nodes involved in their respective area. In order to resolve the17
ambiguity, a data realm is used to identify the scope to which the referenced data applies. Thus, a18
reference to an attribute that isn’t specific to a realm (e.g., the PMIX_NUM_NODES attribute) must19
be accompanied by a corresponding attribute identifying the realm to which the request pertains if20
it differs from the default.21

PMIx defines five data realms to resolve the ambiguities, as captured in the following attributes22
used in PMIx_Get for retrieving information from each of the realms:23

PMIX_SESSION_INFO "pmix.ssn.info" (bool)24
Return information regarding the session realm of the target process.25

PMIX_JOB_INFO "pmix.job.info" (bool)26
Return information regarding the job realm corresponding to the namespace in the target27
process’ identifier.28

PMIX_APP_INFO "pmix.app.info" (bool)29

98

Return information regarding the application realm to which the target process belongs - the1
namespace of the target process serves to identify the job containing the target application. If2
information about an application other than the one containing the target process is desired,3
then the attribute array must contain a PMIX_APPNUM attribute identifying the desired4
target application. This is useful in cases where there are multiple applications and the5
mapping of processes to applications is unclear.6

PMIX_PROC_INFO "pmix.proc.info" (bool)7
Return information regarding the target process. This attribute is technically not required as8
the PMIx_Get API specifically identifies the target process in its parameters. However, it is9
included here for completeness.10

PMIX_NODE_INFO "pmix.node.info" (bool)11
Return information from the node realm regarding the node upon which the specified12
process is executing. If information about a node other than the one containing the specified13
process is desired, then the attribute array must also contain either the PMIX_NODEID or14
PMIX_HOSTNAME attribute identifying the desired target. This is useful for requesting15
information about a specific node even if the identity of processes running on that node are16
not known..17

Advice to users

If information about a session other than the one containing the requesting process is desired, then18
the attribute array must contain a PMIX_SESSION_ID attribute identifying the desired target19
session. This is required as many environments only guarantee unique namespaces within a20
session, and not across sessions.21

The PMIx server has corresponding attributes the host can use to specify the realm of information22
that it provides during namespace registration (see Section 16.2.3.2).23

6.1.1 Session realm attributes24

If information about a session other than the one containing the requesting process is desired, then25
the info array passed to PMIx_Get must contain a PMIX_SESSION_ID attribute identifying the26
desired target session. This is required as many environments only guarantee unique namespaces27
within a session, and not across sessions.28

Note that the proc argument of PMIx_Get is ignored when referencing session-related29
information.30

Session-level information includes the following attributes:31

PMIX_SESSION_ID "pmix.session.id" (uint32_t)32
Session identifier assigned by the scheduler.33

PMIX_CLUSTER_ID "pmix.clid" (char*)34
A string name for the cluster this allocation is on.35

PMIX_UNIV_SIZE "pmix.univ.size" (uint32_t)36

CHAPTER 6. RESERVED KEYS 99

Maximum number of process that can be simultaneously executing in a session. Note that1
this attribute is equivalent to the PMIX_MAX_PROCS attribute for the session realm - it is2
included in the PMIx Standard for historical reasons.3

PMIX_TMPDIR "pmix.tmpdir" (char*)4
Full path to the top-level temporary directory assigned to the session.5

PMIX_TDIR_RMCLEAN "pmix.tdir.rmclean" (bool)6
Resource Manager will cleanup assigned temporary directory trees.7

PMIX_HOSTNAME_KEEP_FQDN "pmix.fqdn" (bool)8
Fully Qualified Domain Names (FQDNs) are being retained by the PMIx library.9

The following attributes are used to describe the RM - these are values assigned by the host10
environment to the session:11

PMIX_RM_NAME "pmix.rm.name" (char*)12
String name of the RM.13

PMIX_RM_VERSION "pmix.rm.version" (char*)14
RM version string.15

The remaining session-related information can only be retrieved by including the16
PMIX_SESSION_INFO attribute in the info array passed to PMIx_Get:17

PMIX_ALLOCATED_NODELIST "pmix.alist" (char*)18
Comma-delimited list or regular expression of all nodes in the specified realm regardless of19
whether or not they currently host processes. Defaults to the job realm.20

PMIX_NUM_ALLOCATED_NODES "pmix.num.anodes" (uint32_t)21
Number of nodes in the specified realm regardless of whether or not they currently host22
processes. Defaults to the job realm.23

PMIX_MAX_PROCS "pmix.max.size" (uint32_t)24
Maximum number of processes that can be executed in the specified realm. Typically, this is25
a constraint imposed by a scheduler or by user settings in a hostfile or other resource26
description. Defaults to the job realm.27

PMIX_NODE_LIST "pmix.nlist" (char*)28
Comma-delimited list of nodes currently hosting processes in the specified realm. Defaults29
to the job realm.30

PMIX_NUM_SLOTS "pmix.num.slots" (uint32_t)31
Maximum number of processes that can simultaneously be executing in the specified realm.32
Note that this attribute is the equivalent to PMIX_MAX_PROCS - it is included in the PMIx33
Standard for historical reasons. Defaults to the job realm.34

PMIX_NUM_NODES "pmix.num.nodes" (uint32_t)35
Number of nodes currently hosting processes in the specified realm. Defaults to the job36
realm.37

PMIX_NODE_MAP "pmix.nmap" (char*)38
Regular expression of nodes currently hosting processes in the specified realm - see 16.2.3.239
for an explanation of its generation. Defaults to the job realm.40

100 PMIx Standard – Version 4.1 – October 2021

PMIX_NODE_MAP_RAW "pmix.nmap.raw" (char*)1
Comma-delimited list of nodes containing procs within the specified realm. Defaults to the2
job realm.3

PMIX_PROC_MAP "pmix.pmap" (char*)4
Regular expression describing processes on each node in the specified realm - see 16.2.3.25
for an explanation of its generation. Defaults to the job realm.6

PMIX_PROC_MAP_RAW "pmix.pmap.raw" (char*)7
Semi-colon delimited list of strings, each string containing a comma-delimited list of ranks8
on the corresponding node within the specified realm. Defaults to the job realm.9

PMIX_ANL_MAP "pmix.anlmap" (char*)10
Process map equivalent to PMIX_PROC_MAP expressed in Argonne National Laboratory’s11
PMI-1/PMI-2 notation. Defaults to the job realm.12

6.1.2 Job realm attributes13

Job-related information is retrieved by including the namespace of the target job and a rank of14
PMIX_RANK_WILDCARD in the proc argument passed to PMIx_Get. If desired for code clarity,15
the caller can also include the PMIX_JOB_INFO attribute in the info array, though this is not16
required. If information is requested about a namespace in a session other than the one containing17
the requesting process, then the info array must contain a PMIX_SESSION_ID attribute18
identifying the desired target session. This is required as many environments only guarantee unique19
namespaces within a session, and not across sessions.20

Job-level information includes the following attributes:21

PMIX_NSPACE "pmix.nspace" (char*)22
Namespace of the job - may be a numerical value expressed as a string, but is often an23
alphanumeric string carrying information solely of use to the system. Required to be unique24
within the scope of the host environment.25

PMIX_JOBID "pmix.jobid" (char*)26
Job identifier assigned by the scheduler to the specified job - may be identical to the27
namespace, but is often a numerical value expressed as a string (e.g., "12345.3").28

PMIX_NPROC_OFFSET "pmix.offset" (pmix_rank_t)29
Starting global rank of the specified job.30

PMIX_MAX_PROCS "pmix.max.size" (uint32_t)31
Maximum number of processes that can be executed in the specified realm. Typically, this is32
a constraint imposed by a scheduler or by user settings in a hostfile or other resource33
description. Defaults to the job realm. In this context, this is the maximum number of34
processes that can be simultaneously executed in the specified job, which may be a subset of35
the number allocated to the overall session.36

PMIX_NUM_SLOTS "pmix.num.slots" (uint32_t)37
Maximum number of processes that can simultaneously be executing in the specified realm.38
Note that this attribute is the equivalent to PMIX_MAX_PROCS - it is included in the PMIx39
Standard for historical reasons. Defaults to the job realm. In this context, this is the40

CHAPTER 6. RESERVED KEYS 101

maximum number of process that can be simultaneously executing within the specified job,1
which may be a subset of the number allocated to the overall session. Jobs may reserve a2
subset of their assigned maximum processes for dynamic operations such as PMIx_Spawn.3

PMIX_NUM_NODES "pmix.num.nodes" (uint32_t)4
Number of nodes currently hosting processes in the specified realm. Defaults to the job5
realm. In this context, this is the number of nodes currently hosting processes in the6
specified job, which may be a subset of the nodes allocated to the overall session. Jobs may7
reserve a subset of their assigned nodes for dynamic operations such as PMIx_Spawn - i.e.,8
not all nodes may have executing processes from this job at a given point in time.9

PMIX_NODE_MAP "pmix.nmap" (char*)10
Regular expression of nodes currently hosting processes in the specified realm - see 16.2.3.211
for an explanation of its generation. Defaults to the job realm. In this context, this is the12
regular expression of nodes currently hosting processes in the specified job.13

PMIX_NODE_LIST "pmix.nlist" (char*)14
Comma-delimited list of nodes currently hosting processes in the specified realm. Defaults15
to the job realm. In this context, this is the comma-delimited list of nodes currently hosting16
processes in the specified job.17

PMIX_PROC_MAP "pmix.pmap" (char*)18
Regular expression describing processes on each node in the specified realm - see 16.2.3.219
for an explanation of its generation. Defaults to the job realm. In this context, this is the20
regular expression describing processes on each node in the specified job.21

PMIX_ANL_MAP "pmix.anlmap" (char*)22
Process map equivalent to PMIX_PROC_MAP expressed in Argonne National Laboratory’s23
PMI-1/PMI-2 notation. Defaults to the job realm. In this context, this is the process24
mapping in Argonne National Laboratory’s PMI-1/PMI-2 notation of the processes in the25
specified job.26

PMIX_CMD_LINE "pmix.cmd.line" (char*)27
Command line used to execute the specified job (e.g., "mpirun -n 2 –map-by foo ./myapp : -n28
4 ./myapp2").29

PMIX_NSDIR "pmix.nsdir" (char*)30
Full path to the temporary directory assigned to the specified job, under PMIX_TMPDIR.31

PMIX_JOB_SIZE "pmix.job.size" (uint32_t)32
Total number of processes in the specified job across all contained applications. Note that33
this value can be different from PMIX_MAX_PROCS. For example, users may choose to34
subdivide an allocation (running several jobs in parallel within it), and dynamic35
programming models may support adding and removing processes from a running job36
on-the-fly. In the latter case, PMIx events may be used to notify processes within the job that37
the job size has changed.38

PMIX_JOB_NUM_APPS "pmix.job.napps" (uint32_t)39
Number of applications in the specified job.40

102 PMIx Standard – Version 4.1 – October 2021

6.1.3 Application realm attributes1

Application-related information can only be retrieved by including the PMIX_APP_INFO attribute2
in the info array passed to PMIx_Get. If the PMIX_APPNUM qualifier is given, then the query3
shall return the corresponding value for the given application within the namespace specified in the4
proc argument of the query (a NULL value for the proc argument equates to the namespace of the5
caller). If the PMIX_APPNUM qualifier is not included, then the retrieval shall default to the6
application containing the specified process. If the rank of the specified process is7
PMIX_RANK_WILDCARD, then the application number shall default to that of the calling process8
if the namespace is its own job, or a value of zero if the namespace is that of a different job.9

Application-level information includes the following attributes:10

PMIX_APPNUM "pmix.appnum" (uint32_t)11
The application number within the job in which the specified process is a member.12

PMIX_NUM_NODES "pmix.num.nodes" (uint32_t)13
Number of nodes currently hosting processes in the specified realm. Defaults to the job14
realm. In this context, this is the number of nodes currently hosting processes in the15
specified application, which may be a subset of the nodes allocated to the overall session.16

PMIX_APPLDR "pmix.aldr" (pmix_rank_t)17
Lowest rank in the specified application.18

PMIX_APP_SIZE "pmix.app.size" (uint32_t)19
Number of processes in the specified application, regardless of their execution state - i.e.,20
this number may include processes that either failed to start or have already terminated.21

PMIX_APP_ARGV "pmix.app.argv" (char*)22
Consolidated argv passed to the spawn command for the given application (e.g., "./myapp23
arg1 arg2 arg3").24

PMIX_MAX_PROCS "pmix.max.size" (uint32_t)25
Maximum number of processes that can be executed in the specified realm. Typically, this is26
a constraint imposed by a scheduler or by user settings in a hostfile or other resource27
description. Defaults to the job realm. In this context, this is the maximum number of28
processes that can be executed in the specified application, which may be a subset of the29
number allocated to the overall session and job.30

PMIX_NUM_SLOTS "pmix.num.slots" (uint32_t)31
Maximum number of processes that can simultaneously be executing in the specified realm.32
Note that this attribute is the equivalent to PMIX_MAX_PROCS - it is included in the PMIx33
Standard for historical reasons. Defaults to the job realm. In this context, this is the number34
of slots assigned to the specified application, which may be a subset of the slots allocated to35
the overall session and job.36

PMIX_NODE_MAP "pmix.nmap" (char*)37
Regular expression of nodes currently hosting processes in the specified realm - see 16.2.3.238
for an explanation of its generation. Defaults to the job realm. In this context, this is the39
regular expression of nodes currently hosting processes in the specified application.40

CHAPTER 6. RESERVED KEYS 103

PMIX_NODE_LIST "pmix.nlist" (char*)1
Comma-delimited list of nodes currently hosting processes in the specified realm. Defaults2
to the job realm. In this context, this is the comma-delimited list of nodes currently hosting3
processes in the specified application.4

PMIX_PROC_MAP "pmix.pmap" (char*)5
Regular expression describing processes on each node in the specified realm - see 16.2.3.26
for an explanation of its generation. Defaults to the job realm. In this context, this is the7
regular expression describing processes on each node in the specified application.8

PMIX_APP_MAP_TYPE "pmix.apmap.type" (char*)9
Type of mapping used to layout the application (e.g., cyclic).10

PMIX_APP_MAP_REGEX "pmix.apmap.regex" (char*)11
Regular expression describing the result of the process mapping.12

6.1.4 Process realm attributes13

Process-related information is retrieved by referencing the namespace and rank of the target process14
in the call to PMIx_Get. If information is requested about a process in a session other than the one15
containing the requesting process, then an attribute identifying the target session must be provided.16
This is required as many environments only guarantee unique namespaces within a session, and not17
across sessions.18

Process-level information includes the following attributes:19

PMIX_APPNUM "pmix.appnum" (uint32_t)20
The application number within the job in which the specified process is a member.21

PMIX_RANK "pmix.rank" (pmix_rank_t)22
Process rank within the job, starting from zero.23

PMIX_GLOBAL_RANK "pmix.grank" (pmix_rank_t)24
Rank of the specified process spanning across all jobs in this session, starting with zero.25
Note that no ordering of the jobs is implied when computing this value. As jobs can start and26
end at random times, this is defined as a continually growing number - i.e., it is not27
dynamically adjusted as individual jobs and processes are started or terminated.28

PMIX_APP_RANK "pmix.apprank" (pmix_rank_t)29
Rank of the specified process within its application.30

PMIX_PARENT_ID "pmix.parent" (pmix_proc_t)31
Process identifier of the parent process of the specified process - typically used to identify32
the application process that caused the job containing the specified process to be spawned33
(e.g., the process that called PMIx_Spawn).34

PMIX_EXIT_CODE "pmix.exit.code" (int)35
Exit code returned when the specified process terminated.36

PMIX_PROCID "pmix.procid" (pmix_proc_t)37
Process identifier. Used as a key in PMIx_Get to retrieve the caller’s own process identifier38
in a portion of the program that doesn’t have access to the memory location in which it was39
originally stored (e.g., due to a call to PMIx_Init). The process identifier in the40
PMIx_Get call is ignored in this instance.41

104 PMIx Standard – Version 4.1 – October 2021

PMIX_LOCAL_RANK "pmix.lrank" (uint16_t)1
Rank of the specified process on its node - refers to the numerical location (starting from2
zero) of the process on its node when counting only those processes from the same job that3
share the node, ordered by their overall rank within that job.4

PMIX_NODE_RANK "pmix.nrank" (uint16_t)5
Rank of the specified process on its node spanning all jobs- refers to the numerical location6
(starting from zero) of the process on its node when counting all processes (regardless of7
job) that share the node, ordered by their overall rank within the job. The value represents a8
snapshot in time when the specified process was started on its node and is not dynamically9
adjusted as processes from other jobs are started or terminated on the node.10

PMIX_PACKAGE_RANK "pmix.pkgrank" (uint16_t)11
Rank of the specified process on the package where this process resides - refers to the12
numerical location (starting from zero) of the process on its package when counting only13
those processes from the same job that share the package, ordered by their overall rank14
within that job. Note that processes that are not bound to Processing Units (PUs) within a15
single specific package cannot have a package rank.16

PMIX_PROC_PID "pmix.ppid" (pid_t)17
Operating system PID of specified process.18

PMIX_PROCDIR "pmix.pdir" (char*)19
Full path to the subdirectory under PMIX_NSDIR assigned to the specified process.20

PMIX_CPUSET "pmix.cpuset" (char*)21
A string representation of the PU binding bitmap applied to the process upon launch. The22
string shall begin with the name of the library that generated it (e.g., "hwloc") followed by a23
colon and the bitmap string itself.24

PMIX_CPUSET_BITMAP "pmix.bitmap" (pmix_cpuset_t*)25
Bitmap applied to the process upon launch.26

PMIX_CREDENTIAL "pmix.cred" (char*)27
Security credential assigned to the process.28

PMIX_SPAWNED "pmix.spawned" (bool)29
true if this process resulted from a call to PMIx_Spawn. Lack of inclusion (i.e., a return30
status of PMIX_ERR_NOT_FOUND) corresponds to a value of false for this attribute.31

PMIX_REINCARNATION "pmix.reinc" (uint32_t)32
Number of times this process has been re-instantiated - i.e, a value of zero indicates that the33
process has never been restarted. 534

In addition, process-level information includes functional attributes directly associated with a35
process - for example, the process-related fabric attributes included in Section 14.3 or the distance36
attributes of Section 11.4.11.37

6.1.5 Node realm keys38

Information regarding the local node can be retrieved by directly requesting the node realm key in39
the call to PMIx_Get - the keys for node-related information are not shared across other realms.40

CHAPTER 6. RESERVED KEYS 105

The target process identifier will be ignored for keys that are not dependent upon it. Information1
about a node other than the local node can be retrieved by specifying the PMIX_NODE_INFO2
attribute in the info array along with either the PMIX_HOSTNAME or PMIX_NODEID qualifiers for3
the node of interest.4

Node-level information includes the following keys:5

PMIX_HOSTNAME "pmix.hname" (char*)6
Name of the host, as returned by the gethostname utility or its equivalent.7

PMIX_HOSTNAME_ALIASES "pmix.alias" (char*)8
Comma-delimited list of names by which the target node is known.9

PMIX_NODEID "pmix.nodeid" (uint32_t)10
Node identifier expressed as the node’s index (beginning at zero) in an array of nodes within11
the active session. The value must be unique and directly correlate to the PMIX_HOSTNAME12
of the node - i.e., users can interchangeably reference the same location using either the13
PMIX_HOSTNAME or corresponding PMIX_NODEID.14

PMIX_NODE_SIZE "pmix.node.size" (uint32_t)15
Number of processes across all jobs that are executing upon the node.16

PMIX_AVAIL_PHYS_MEMORY "pmix.pmem" (uint64_t)17
Total available physical memory on a node.18

The following attributes only return information regarding the caller’s node - any node-related19
qualifiers shall be ignored. In addition, these attributes require specification of the namespace in the20
target process identifier except where noted - the value of the rank is ignored in all cases.21

PMIX_LOCAL_PEERS "pmix.lpeers" (char*)22
Comma-delimited list of ranks that are executing on the local node within the specified23
namespace – shortcut for PMIx_Resolve_peers for the local node.24

PMIX_LOCAL_PROCS "pmix.lprocs" (pmix_proc_t array)25
Array of pmix_proc_t of all processes executing on the local node – shortcut for26
PMIx_Resolve_peers for the local node and a NULL namespace argument. The process27
identifier is ignored for this attribute.28

PMIX_LOCALLDR "pmix.lldr" (pmix_rank_t)29
Lowest rank within the specified job on the node (defaults to current node in absence of30
PMIX_HOSTNAME or PMIX_NODEID qualifier).31

PMIX_LOCAL_CPUSETS "pmix.lcpus" (pmix_data_array_t)32
A pmix_data_array_t array of string representations of the PU binding bitmaps33
applied to each local peer on the caller’s node upon launch. Each string shall begin with the34
name of the library that generated it (e.g., "hwloc") followed by a colon and the bitmap string35
itself. The array shall be in the same order as the processes returned by36
PMIX_LOCAL_PEERS for that namespace.37

PMIX_LOCAL_SIZE "pmix.local.size" (uint32_t)38
Number of processes in the specified job or application realm on the caller’s node. Defaults39
to job realm unless the PMIX_APP_INFO and the PMIX_APPNUM qualifiers are given.40

106 PMIx Standard – Version 4.1 – October 2021

In addition, node-level information includes functional attributes directly associated with a node -1
for example, the node-related fabric attributes included in Section 14.3.2

6.2 Retrieval rules for reserved keys3

The retrieval rules for reserved keys are relatively simple as the keys are required, by definition, to4
be available when the client begins execution. Accordingly, PMIx_Get for a reserved key first5
checks the local PMIx Client cache (per the data realm rules of the prior section) for the target key.6
If the information is not found, then the PMIX_ERR_NOT_FOUND error constant is returned unless7
the target process belongs to a different namespace from that of the requester.8

In the case where the target and requester’s namespaces differ, then the request is forwarded to the9
local PMIx server. Upon receiving the request, the server shall check its data storage for the10
specified namespace. If it already knows about this namespace, then it shall attempt to lookup the11
specified key, returning the value if it is found or the PMIX_ERR_NOT_FOUND error constant.12

If the server does not have a copy of the information for the specified namespace, then the server13
shall take one of the following actions:14

1. If the request included the PMIX_IMMEDIATE attribute, then the server will respond to the15
client with the PMIX_ERR_NOT_FOUND status.16

2. If the host has provided the Direct Business Card Exchange (DBCX) module function interface17
(pmix_server_dmodex_req_fn_t), then the server shall pass the request to its host for18
servicing. The host is responsible for identifying a source of information on the specified19
namespace and retrieving it. The host is required to retrieve all of the information regarding the20
target namespace and return it to the requesting server in anticipation of follow-on requests. If21
the host cannot retrieve the namespace information, then it must respond with the22
PMIX_ERR_NOT_FOUND error constant unless the PMIX_TIMEOUT is given and reached (in23
which case, the host must respond with the PMIX_ERR_TIMEOUT constant).24

Once the the PMIx server receives the namespace information, the server shall search it (again25
adhering to the prior data realm rules) for the requested key, returning the value if it is found or26
the PMIX_ERR_NOT_FOUND error constant.27

3. If the host does not support the DBCX interface, then the server will respond to the client with28
the PMIX_ERR_NOT_FOUND status29

6.2.1 Accessing information: examples30

This section provides examples illustrating methods for accessing information from the various31
realms. The intent of the examples is not to provide comprehensive coding guidance, but rather to32
further illustrate the use of PMIx_Get for obtaining information on a session, job, application,33
process, and node.34

CHAPTER 6. RESERVED KEYS 107

6.2.1.1 Session-level information1

The PMIx_Get API does not include an argument for specifying the session associated with the2
information being requested. Thus, requests for keys that are not specifically for session-level3
information must be accompanied by the PMIX_SESSION_INFO qualifier.4

Example requests are shown below:5

C
pmix_info_t info;6
pmix_value_t *value;7
pmix_status_t rc;8
pmix_proc_t myproc, wildcard;9

10
/* initialize the client library */11
PMIx_Init(&myproc, NULL, 0);12

13
/* get the #slots in our session */14
PMIX_PROC_LOAD(&wildcard, myproc.nspace, PMIX_RANK_WILDCARD);15
rc = PMIx_Get(&wildcard, PMIX_UNIV_SIZE, NULL, 0, &value);16

17
/* get the #nodes in our session */18
PMIX_INFO_LOAD(&info, PMIX_SESSION_INFO, NULL, PMIX_BOOL);19
rc = PMIx_Get(&wildcard, PMIX_NUM_NODES, &info, 1, &value);20

C

Information regarding a different session can be requested by adding the PMIX_SESSION_ID21
attribute identifying the target session. In this case, the proc argument to PMIx_Get will be22
ignored:23

C
pmix_info_t info[2];24
pmix_value_t *value;25
pmix_status_t rc;26
pmix_proc_t myproc;27
uint32_t sid;28

29
/* initialize the client library */30
PMIx_Init(&myproc, NULL, 0);31

32
/* get the #nodes in a different session */33
sid = 12345;34
PMIX_INFO_LOAD(&info[0], PMIX_SESSION_INFO, NULL, PMIX_BOOL);35
PMIX_INFO_LOAD(&info[1], PMIX_SESSION_ID, &sid, PMIX_UINT32);36
rc = PMIx_Get(NULL, PMIX_NUM_NODES, info, 2, &value);37

108 PMIx Standard – Version 4.1 – October 2021

C

6.2.1.2 Job-level information1

Information regarding a job can be obtained by the methods detailed in Section 6.1.2. Example2
requests are shown below:3

C
pmix_info_t info;4
pmix_value_t *value;5
pmix_status_t rc;6
pmix_proc_t myproc, wildcard;7

8
/* initialize the client library */9
PMIx_Init(&myproc, NULL, 0);10

11
/* get the #apps in our job */12
PMIX_PROC_LOAD(&wildcard, myproc.nspace, PMIX_RANK_WILDCARD);13
rc = PMIx_Get(&wildcard, PMIX_JOB_NUM_APPS, NULL, 0, &value);14

15
/* get the #nodes in our job */16
PMIX_INFO_LOAD(&info, PMIX_JOB_INFO, NULL, PMIX_BOOL);17
rc = PMIx_Get(&wildcard, PMIX_NUM_NODES, &info, 1, &value);18

C

6.2.1.3 Application-level information19

Information regarding an application can be obtained by the methods described in Section 6.1.3.20
Example requests are shown below:21

C
pmix_info_t info;22
pmix_value_t *value;23
pmix_status_t rc;24
pmix_proc_t myproc, otherproc;25
uint32_t appsize, appnum;26

27
/* initialize the client library */28
PMIx_Init(&myproc, NULL, 0);29

30
/* get the #processes in our application */31
rc = PMIx_Get(&myproc, PMIX_APP_SIZE, NULL, 0, &value);32
appsize = value->data.uint32;33

34
/* get the #nodes in an application containing "otherproc".35

CHAPTER 6. RESERVED KEYS 109

* For this use-case, assume that we are in the first application1
* and we want the #nodes in the second application - use the2
* rank of the first process in that application, remembering3
* that ranks start at zero */4
PMIX_PROC_LOAD(&otherproc, myproc.nspace, appsize);5

6
/* Since "otherproc" refers to a process in the second application,7
* we can simply mark that we want the info for this key from the8
* application realm */9
PMIX_INFO_LOAD(&info, PMIX_APP_INFO, NULL, PMIX_BOOL);10
rc = PMIx_Get(&otherproc, PMIX_NUM_NODES, &info, 1, &value);11

12
/* alternatively, we can directly ask for the #nodes in13
* the second application in our job, again remembering that14
* application numbers start with zero. Since we are asking15
* for application realm information about a specific appnum16
* within our own namespace, the process identifier can be NULL */17
appnum = 1;18
PMIX_INFO_LOAD(&appinfo[0], PMIX_APP_INFO, NULL, PMIX_BOOL);19
PMIX_INFO_LOAD(&appinfo[1], PMIX_APPNUM, &appnum, PMIX_UINT32);20
rc = PMIx_Get(NULL, PMIX_NUM_NODES, appinfo, 2, &value);21

C

6.2.1.4 Process-level information22

Process-level information is accessed by providing the namespace and rank of the target process. In23
the absence of any directive as to the level of information being requested, the PMIx library will24
always return the process-level value. See Section 6.1.4 for details.25

6.2.1.5 Node-level information26

Information regarding a node within the system can be obtained by the methods described in27
Section 6.1.5. Example requests are shown below:28

C
pmix_info_t info[2];29
pmix_value_t *value;30
pmix_status_t rc;31
pmix_proc_t myproc, otherproc;32
uint32_t nodeid;33

34
/* initialize the client library */35
PMIx_Init(&myproc, NULL, 0);36

37
/* get the #procs on our node */38

110 PMIx Standard – Version 4.1 – October 2021

rc = PMIx_Get(&myproc, PMIX_NODE_SIZE, NULL, 0, &value);1
2

/* get the #slots on another node */3
PMIX_INFO_LOAD(&info[0], PMIX_NODE_INFO, NULL, PMIX_BOOL);4
PMIX_INFO_LOAD(&info[1], PMIX_HOSTNAME, "remotehost", PMIX_STRING);5
rc = PMIx_Get(NULL, PMIX_MAX_PROCS, info, 2, &value);6

7
/* get the total #procs on the remote node - note that we don’t8
* actually need to include the "PMIX_NODE_INFO" attribute here,9
* but (a) it does no harm and (b) it allowed us to simply reuse10
* the prior info array11
rc = PMIx_Get(NULL, PMIX_NODE_SIZE, info, 2, &value);12

C

CHAPTER 6. RESERVED KEYS 111

CHAPTER 7

Process-Related Non-Reserved
Keys

Non-reserved keys are keys whose string representation begin with a prefix other than "pmix".1
Such keys are typically defined by an application when information needs to be exchanged between2
processes (e.g., where connection information is required and the host environment does not3
support the instant on option) or where the host environment does not provide a required piece of4
data. Beyond the restriction on name prefix, non-reserved keys are required to be unique across5
conflicting scopes as defined in Section 7.1.1.1 - e,g., a non-reserved key cannot be posted by the6
same process in both the PMIX_LOCAL and PMIX_REMOTE scopes (note that posting the key in7
the PMIX_GLOBAL scope would have met the desired objective).8

PMIx provides support for two methods of exchanging non-reserved keys:9

• Global, collective exchange of the information prior to retrieval. This is accomplished by10
executing a barrier operation that includes collection and exchange of the data provided by each11
process such that each process has access to the full set of data from all participants once the12
operation has completed. PMIx provides the PMIx_Fence function (or its non-blocking13
equivalent) for this purpose, accompanied by the PMIX_COLLECT_DATA qualifier.14

• Direct, on-demand retrieval of the information. No barrier or global exchange is conducted in15
this case. Instead, information is retrieved from the host where that process is executing upon16
request - i.e., a call to PMIx_Get results in a data exchange with the PMIx server on the remote17
host. Various caching strategies may be employed by the host environment and/or PMIx18
implementation to reduce the number of retrievals. Note that this method requires that the host19
environment both know the location of the posting process and support direct information20
retrieval.21

Both of the above methods are based on retrieval from a specific process - i.e., the proc argument to22
PMIx_Get must include both the namespace and the rank of the process that posted the23
information. However, in some cases, non-reserved keys are provided on a globally unique basis24
and the retrieving process has no knowledge of the identity of the process posting the key. This is25
typically found in legacy applications (where the originating process identifier is often embedded in26
the key itself) and in unstructured applications that lack rank-related behavior. In these cases, the27
key remains associated with the namespace of the process that posted it, but is retrieved by use of28
the PMIX_RANK_UNDEF rank. In addition, the keys must be globally exchanged prior to retrieval29
as there is no way for the host to otherwise locate the source for the information.30

Note that the retrieval rules for non-reserved keys (detailed in Section 7.2) differ significantly from31
those used for reserved keys.32

112

7.1 Posting Key/Value Pairs1

PMIx clients can post non-reserved key-value pairs associated with themselves by using2
PMIx_Put. Alternatively, PMIx clients can cache arbitrary key-value pairs accessible only by the3
caller via the PMIx_Store_internal API.4

7.1.1 PMIx_Put5

Summary6
Post a key/value pair for distribution.7

Format8 PMIx v1.0 C
pmix_status_t9
PMIx_Put(pmix_scope_t scope,10

const pmix_key_t key,11
pmix_value_t *val);12

C

IN scope13
Distribution scope of the provided value (handle)14

IN key15
key (pmix_key_t)16

IN value17
Reference to a pmix_value_t structure (handle)18

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant. If a reserved19
key is provided in the key argument then PMIx_Put will return PMIX_ERR_BAD_PARAM.20

Description21
Post a key-value pair for distribution. Depending upon the PMIx implementation, the posted value22
may be locally cached in the client’s PMIx library until PMIx_Commit is called.23

The provided scope determines the ability of other processes to access the posted data, as defined in24
Section 7.1.1.1 on page 114. Specific implementations may support different scope values, but all25
implementations must support at least PMIX_GLOBAL.26

The pmix_value_t structure supports both string and binary values. PMIx implementations are27
required to support heterogeneous environments by properly converting binary values between host28
architectures, and will copy the provided value into internal memory prior to returning from29
PMIx_Put.30

Advice to users

Note that keys starting with a string of “pmix” must not be used in calls to PMIx_Put. Thus,31
applications should never use a defined “PMIX” attribute as the key in a call to PMIx_Put.32

CHAPTER 7. PROCESS-RELATED NON-RESERVED KEYS 113

7.1.1.1 Scope of Put Data1

The pmix_scope_t structure is a uint8_t type that defines the availability of data passed to2
PMIx_Put. The following constants can be used to set a variable of the type pmix_scope_t.3
All definitions were introduced in version 1 of the standard unless otherwise marked.4

Specific implementations may support different scope values, but all implementations must support5
at least PMIX_GLOBAL. If a specified scope value is not supported, then the PMIx_Put call must6
return PMIX_ERR_NOT_SUPPORTED.7

PMIX_SCOPE_UNDEF Undefined scope.8
PMIX_LOCAL The data is intended only for other application processes on the same node.9

Data marked in this way will not be included in data packages sent to remote requesters - i.e.,10
it is only available to processes on the local node.11

PMIX_REMOTE The data is intended solely for applications processes on remote nodes. Data12
marked in this way will not be shared with other processes on the same node - i.e., it is only13
available to processes on remote nodes.14

PMIX_GLOBAL The data is to be shared with all other requesting processes, regardless of15
location.PMIx v2.016

PMIX_INTERNAL The data is intended solely for this process and is not shared with other17
processes.18

7.1.2 PMIx_Store_internal19

Summary20
Store some data locally for retrieval by other areas of the process.21

Format22 PMIx v1.0 C
pmix_status_t23
PMIx_Store_internal(const pmix_proc_t *proc,24

const pmix_key_t key,25
pmix_value_t *val);26

C

IN proc27
process reference (handle)28

IN key29
key to retrieve (string)30

IN val31
Value to store (handle)32

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant. If a reserved33
key is provided in the key argument then PMIx_Store_internal will return34
PMIX_ERR_BAD_PARAM.35

114 PMIx Standard – Version 4.1 – October 2021

Description1
Store some data locally for retrieval by other areas of the process. This is data that has only internal2
scope - it will never be posted externally. Typically used to cache data obtained by means outside of3
PMIx so that it can be accessed by various areas of the process.4

7.1.3 PMIx_Commit5

Summary6
Post all previously PMIx_Put values for distribution.7

Format8 PMIx v1.0 C
pmix_status_t PMIx_Commit(void);9

C

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.10

Description11
PMIx implementations may choose to locally cache non-reserved keys prior to submitting them for12
distribution. Accordingly, PMIx provides a second API specifically to stage all previously posted13
data for distribution - e.g., by transmitting the entire collection of data posted by the process to a14
server in one operation. This is an asynchronous operation that will immediately return to the caller15
while the data is staged in the background.16

Advice to users

Users are advised to always include the call to PMIx_Commit in case the local implementation17
requires it. Note that posted data will not be circulated during PMIx_Commit. Availability of the18
data by other processes upon completion of PMIx_Commit therefore still relies upon the exchange19
mechanisms described at the beginning of this chapter.20

CHAPTER 7. PROCESS-RELATED NON-RESERVED KEYS 115

7.2 Retrieval rules for non-reserved keys1

Since non-reserved keys cannot, by definition, have been provided by the host environment, their2
retrieval follows significantly different rules than those defined for reserved keys (as detailed in3
Section 6.2). PMIx_Get for a non-reserved key will obey the following precedence search:4

1. If the PMIX_GET_REFRESH_CACHE attribute is given, then the request is first forwarded to5
the local PMIx server which will then update the client’s cache. Note that this may not,6
depending upon implementation details, result in any action.7

2. Check the local PMIx client cache for the requested key - if not found and either the8
PMIX_OPTIONAL or PMIX_GET_REFRESH_CACHE attribute was given, the search will stop9
at this point and return the PMIX_ERR_NOT_FOUND status.10

3. Request the information from the local PMIx server. The server will check its cache for the11
specified key within the appropriate scope as defined by the process that originally posted the12
key. If the value exists in a scope that contains the requesting process, then the value shall be13
returned. If the value exists, but in a scope that excludes the requesting process, then the server14
shall immediately return the PMIX_ERR_EXISTS_OUTSIDE_SCOPE.15

If the value still isn’t found and the PMIX_IMMEDIATE attribute was given, then the library16
shall return the PMIX_ERR_NOT_FOUND error constant to the requester. Otherwise, the PMIx17
server library will take one of the following actions:18

• If the target process has a rank of PMIX_RANK_UNDEF, then this indicates that the key being19
requested is globally unique and not associated with a specific process. In this case, the server20
shall hold the request until either the data appears at the server or, if given, the21
PMIX_TIMEOUT is reached. In the latter case, the server will return the22
PMIX_ERR_TIMEOUT status. Note that the server may, depending on PMIx implementation,23
never respond if the caller failed to specify a PMIX_TIMEOUT and the requested key fails to24
arrive at the server.25

• If the target process is local (i.e., attached to the same PMIx server), then the server will hold26
the request until either the target process provides the data or, if given, the PMIX_TIMEOUT27
is reached. In the latter case, the server will return the PMIX_ERR_TIMEOUT status. Note28
that data which is posted via PMIx_Put but not staged with PMIx_Commit may, depending29
upon implementation, never appear at the server.30

• If the target process is remote (i.e., not attached to the same PMIx server), the server will31
either:32

– If the host has provided the pmix_server_dmodex_req_fn_t module function33
interface, then the server shall pass the request to its host for servicing. The host is34
responsible for determining the location of the target process and passing the request to the35
PMIx server at that location.36

When the remote data request is received, the target PMIx server will check its cache for37
the specified key. If the key is not present, the request shall be held until either the target38
process provides the data or, if given, the PMIX_TIMEOUT is reached. In the latter case,39

116 PMIx Standard – Version 4.1 – October 2021

the server will return the PMIX_ERR_TIMEOUT status. The host shall convey the result1
back to the originating PMIx server, which will reply to the requesting client with the result2
of the request when the host provides it.3

Note that the target server may, depending on PMIx implementation, never respond if the4
caller failed to specify a PMIX_TIMEOUT and the target process fails to post the requested5
key.6

– if the host does not support the pmix_server_dmodex_req_fn_t interface, then the7
server will immediately respond to the client with the PMIX_ERR_NOT_FOUND status8

Advice to PMIx library implementers

While there is no requirement that all PMIx implementations follow the client-server paradigm9
used in the above description, implementers are required to provide behaviors consistent with the10
described search pattern.11

Advice to users

Users are advised to always specify the PMIX_TIMEOUT value when retrieving non-reserved keys12
to avoid potential deadlocks should the specified key not become available.13

CHAPTER 7. PROCESS-RELATED NON-RESERVED KEYS 117

CHAPTER 8

Publish/Lookup Operations

Chapter 6 and Chapter 7 discussed how reserved and non-reserved keys dealt with information that1
either was associated with a specific process (i.e., the retrieving process knew the identifier of the2
process that posted it) or required a synchronization operation prior to retrieval (e.g., the case of3
globally unique non-reserved keys). However, another requirement exists for an asynchronous4
exchange of data where neither the posting nor the retrieving process is known in advance. For5
example, two separate namespaces may need to rendezvous with each other without knowing in6
advance the identity of the other namespace or when that namespace might become active.7

The APIs defined in this section focus on resolving that specific situation by allowing processes to8
publish data that can subsequently be retrieved solely by referral to its key. Mechanisms for9
constraining availability of the information are also provided as a means for better targeting of the10
eventual recipient(s).11

Note that no presumption is made regarding how the published information is to be stored, nor as to12
the entity (host environment or PMIx implementation) that shall act as the datastore. The13
descriptions in the remainder of this chapter shall simply refer to that entity as the datastore.14

8.1 PMIx_Publish15

Summary16
Publish data for later access via PMIx_Lookup.17

Format18 PMIx v1.0 C
pmix_status_t19
PMIx_Publish(const pmix_info_t info[], size_t ninfo);20

C

IN info21
Array of info structures containing both data to be published and directives (array of handles)22

IN ninfo23
Number of elements in the info array (integer)24

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.25

118

Required Attributes

There are no required attributes for this API. PMIx implementations that do not directly support the1
operation but are hosted by environments that do support it must pass any attributes that are2
provided by the client to the host environment for processing. In addition, the PMIx library is3
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that4
published the information to the info array passed to the host environment.5

Optional Attributes

The following attributes are optional for host environments that support this operation:6

PMIX_TIMEOUT "pmix.timeout" (int)7
Time in seconds before the specified operation should time out (zero indicating infinite) and8
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions9
caused by multiple layers (client, server, and host) simultaneously timing the operation.10

PMIX_RANGE "pmix.range" (pmix_data_range_t)11
Define constraints on the processes that can access the provided data. Only processes that12
meet the constraints are allowed to access it.13

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)14
Declare how long the datastore shall retain the provided data. The datastore is to delete the15
data upon reaching the persistence criterion.16

PMIX_ACCESS_PERMISSIONS "pmix.aperms" (pmix_data_array_t)17
Define access permissions for the published data. The value shall contain an array of18
pmix_info_t structs containing the specified permissions.19

Description20
Publish the data in the info array for subsequent lookup. By default, the data will be published into21
the PMIX_RANGE_SESSION range and with PMIX_PERSIST_APP persistence. Changes to22
those values, and any additional directives, can be included in the pmix_info_t array. Attempts23
to access the data by processes outside of the provided data range shall be rejected. The24
PMIX_PERSISTENCE attribute instructs the datastore holding the published information as to25
how long that information is to be retained.26

The blocking form of this call will block until it has obtained confirmation from the datastore that27
the data is available for lookup. The info array can be released upon return from the blocking28
function call.29

Publishing duplicate keys is permitted provided they are published to different ranges. Duplicate30
keys being published on the same data range shall return the PMIX_ERR_DUPLICATE_KEY error.31

CHAPTER 8. PUBLISH/LOOKUP OPERATIONS 119

8.2 PMIx_Publish_nb1

Summary2
Nonblocking PMIx_Publish routine.3

Format4 PMIx v1.0 C
pmix_status_t5
PMIx_Publish_nb(const pmix_info_t info[], size_t ninfo,6

pmix_op_cbfunc_t cbfunc, void *cbdata);7

C

IN info8
Array of info structures containing both data to be published and directives (array of handles)9

IN ninfo10
Number of elements in the info array (integer)11

IN cbfunc12
Callback function pmix_op_cbfunc_t (function reference)13

IN cbdata14
Data to be passed to the callback function (memory reference)15

Returns one of the following:16

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result17
will be returned in the provided cbfunc. Note that the library must not invoke the callback18
function prior to returning from the API.19

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and20
returned success - the cbfunc will not be called.21

• a PMIx error constant indicating either an error in the input or that the request was immediately22
processed and failed - the cbfunc will not be called.23

Required Attributes

There are no required attributes for this API. PMIx implementations that do not directly support the24
operation but are hosted by environments that do support it must pass any attributes that are25
provided by the client to the host environment for processing. In addition, the PMIx library is26
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that27
published the information to the info array passed to the host environment.28

120 PMIx Standard – Version 4.1 – October 2021

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

PMIX_RANGE "pmix.range" (pmix_data_range_t)6
Define constraints on the processes that can access the provided data. Only processes that7
meet the constraints are allowed to access it.8

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)9
Declare how long the datastore shall retain the provided data. The datastore is to delete the10
data upon reaching the persistence criterion.11

PMIX_ACCESS_PERMISSIONS "pmix.aperms" (pmix_data_array_t)12
Define access permissions for the published data. The value shall contain an array of13
pmix_info_t structs containing the specified permissions.14

Description15
Nonblocking PMIx_Publish routine.16

8.3 Publish-specific constants17

The following constants are defined for use with the PMIx_Publish APIs:18

PMIX_ERR_DUPLICATE_KEY The provided key has already been published on the same19
data range.20

8.4 Publish-specific attributes21

The following attributes are defined for use with the PMIx_Publish APIs:22

PMIX_RANGE "pmix.range" (pmix_data_range_t)23
Define constraints on the processes that can access the provided data. Only processes that24
meet the constraints are allowed to access it.25

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)26
Declare how long the datastore shall retain the provided data. The datastore is to delete the27
data upon reaching the persistence criterion.28

PMIX_ACCESS_PERMISSIONS "pmix.aperms" (pmix_data_array_t)29
Define access permissions for the published data. The value shall contain an array of30
pmix_info_t structs containing the specified permissions.31

CHAPTER 8. PUBLISH/LOOKUP OPERATIONS 121

PMIX_ACCESS_USERIDS "pmix.auids" (pmix_data_array_t)1
Array of effective User IDs (UIDs) that are allowed to access the published data.2

PMIX_ACCESS_GRPIDS "pmix.agids" (pmix_data_array_t)3
Array of effective Group IDs (GIDs) that are allowed to access the published data.4

8.5 Publish-Lookup Datatypes5

The following data types are defined for use with the PMIx_Publish APIs.6

8.5.1 Range of Published Data7

PMIx v1.0 The pmix_data_range_t structure is a uint8_t type that defines a range for both data8
published via the PMIx_Publish API and generated events. The following constants can be used9
to set a variable of the type pmix_data_range_t.10

PMIX_RANGE_UNDEF Undefined range.11
PMIX_RANGE_RM Data is intended for the host environment, or lookup is restricted to data12

published by the host environment.13
PMIX_RANGE_LOCAL Data is only available to processes on the local node, or lookup is14

restricted to data published by processes on the local node of the requester.15
PMIX_RANGE_NAMESPACE Data is only available to processes in the same namespace, or16

lookup is restricted to data published by processes in the same namespace as the requester.17
PMIX_RANGE_SESSION Data is only available to all processes in the session, or lookup is18

restricted to data published by other processes in the same session as the requester.19
PMIX_RANGE_GLOBAL Data is available to all processes, or lookup is open to data published20

by anyone.21
PMIX_RANGE_CUSTOM Data is available only to processes as specified in the22

pmix_info_t associated with this call, or lookup is restricted to data published by23
processes as specified in the pmix_info_t.24

PMIX_RANGE_PROC_LOCAL Data is only available to this process, or lookup is restricted to25
data published by this process.26

PMIX_RANGE_INVALID Invalid value - typically used to indicate that a range has not yet27
been set.28

8.5.2 Data Persistence Structure29

PMIx v1.0 The pmix_persistence_t structure is a uint8_t type that defines the policy for data30
published by clients via the PMIx_Publish API. The following constants can be used to set a31
variable of the type pmix_persistence_t.32

PMIX_PERSIST_INDEF Retain data until specifically deleted.33
PMIX_PERSIST_FIRST_READ Retain data until the first access, then the data is deleted.34
PMIX_PERSIST_PROC Retain data until the publishing process terminates.35
PMIX_PERSIST_APP Retain data until the application terminates.36
PMIX_PERSIST_SESSION Retain data until the session/allocation terminates.37
PMIX_PERSIST_INVALID Invalid value - typically used to indicate that a persistence has38

not yet been set.39

122 PMIx Standard – Version 4.1 – October 2021

8.6 PMIx_Lookup1

Summary2
Lookup information published by this or another process with PMIx_Publish or3
PMIx_Publish_nb.4

Format5 PMIx v1.0 C
pmix_status_t6
PMIx_Lookup(pmix_pdata_t data[], size_t ndata,7

const pmix_info_t info[], size_t ninfo);8

C

INOUT data9
Array of publishable data structures (array of pmix_pdata_t)10

IN ndata11
Number of elements in the data array (integer)12

IN info13
Array of info structures (array of pmix_info_t)14

IN ninfo15
Number of elements in the info array (integer)16

Returns one of the following:17

• PMIX_SUCCESS All data was found and has been returned.18

• PMIX_ERR_NOT_FOUND None of the requested data could be found within the requester’s19
range.20

• PMIX_ERR_PARTIAL_SUCCESS Some of the requested data was found. Any key that cannot21
be found will return with a data type of PMIX_UNDEF in the associated value struct. Note that22
the specific reason for a particular piece of missing information (e.g., lack of permissions) cannot23
be communicated back to the requester in this situation.24

• PMIX_ERR_NOT_SUPPORTED There is no available datastore (either at the host environment25
or PMIx implementation level) on this system that supports this function.26

• PMIX_ERR_NO_PERMISSIONS All of the requested data was found and range restrictions27
were met for each specified key, but none of the matching data could be returned due to lack of28
access permissions.29

• a non-zero PMIx error constant indicating a reason for the request’s failure.30

CHAPTER 8. PUBLISH/LOOKUP OPERATIONS 123

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any1
provided attributes must be passed to the host environment for processing, and the PMIx library is2
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is3
requesting the info.4

Optional Attributes

The following attributes are optional for host environments that support this operation:5

PMIX_TIMEOUT "pmix.timeout" (int)6
Time in seconds before the specified operation should time out (zero indicating infinite) and7
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions8
caused by multiple layers (client, server, and host) simultaneously timing the operation.9

PMIX_RANGE "pmix.range" (pmix_data_range_t)10
Define constraints on the processes that can access the provided data. Only processes that11
meet the constraints are allowed to access it.12

PMIX_WAIT "pmix.wait" (int)13
Caller requests that the PMIx server wait until at least the specified number of values are14
found (a value of zero indicates all and is the default).15

Description16
Lookup information published by this or another process. By default, the search will be constrained17
to publishers that fall within the PMIX_RANGE_SESSION range in case duplicate keys exist on18
different ranges. Changes to the range (e.g., expanding the search to all potential publishers via the19
PMIX_RANGE_GLOBAL constant), and any additional directives, can be provided in the20
pmix_info_t array. Data is returned per the retrieval rules of Section 8.8.21

The data parameter consists of an array of pmix_pdata_t structures with the keys specifying the22
requested information. Data will be returned for each key field in the associated value field of23
this structure as per the above description of return values. The proc field in each24
pmix_pdata_t structure will contain the namespace/rank of the process that published the data.25

Advice to users

Although this is a blocking function, it will not wait by default for the requested data to be26
published. Instead, it will block for the time required by the datastore to lookup its current data and27
return any found items. Thus, the caller is responsible for either ensuring that data is published28
prior to executing a lookup, using PMIX_WAIT to instruct the datastore to wait for the data to be29
published, or retrying until the requested data is found.30

124 PMIx Standard – Version 4.1 – October 2021

8.7 PMIx_Lookup_nb1

Summary2
Nonblocking version of PMIx_Lookup.3

Format4 PMIx v1.0 C
pmix_status_t5
PMIx_Lookup_nb(char **keys,6

const pmix_info_t info[], size_t ninfo,7
pmix_lookup_cbfunc_t cbfunc, void *cbdata);8

C

IN keys9
NULL-terminated array of keys (array of strings)10

IN info11
Array of info structures (array of handles)12

IN ninfo13
Number of elements in the info array (integer)14

IN cbfunc15
Callback function (handle)16

IN cbdata17
Callback data to be provided to the callback function (pointer)18

Returns one of the following:19

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result20
will be returned in the provided cbfunc. Note that the library must not invoke the callback21
function prior to returning from the API.22

• a PMIx error constant indicating an error in the input - the cbfunc will not be called.23

If executed, the status returned in the provided callback function will be one of the following24
constants:25

• PMIX_SUCCESS All data was found and has been returned.26

• PMIX_ERR_NOT_FOUND None of the requested data was available within the requester’s range.27
The pdata array in the callback function shall be NULL and the npdata parameter set to zero.28

• PMIX_ERR_PARTIAL_SUCCESS Some of the requested data was found. Only found data will29
be included in the returned pdata array. Note that the specific reason for a particular piece of30
missing information (e.g., lack of permissions) cannot be communicated back to the requester in31
this situation.32

• PMIX_ERR_NOT_SUPPORTED There is no available datastore (either at the host environment33
or PMIx implementation level) on this system that supports this function.34

CHAPTER 8. PUBLISH/LOOKUP OPERATIONS 125

• PMIX_ERR_NO_PERMISSIONS All of the requested data was found and range restrictions1
were met for each specified key, but none of the matching data could be returned due to lack of2
access permissions.3

• a non-zero PMIx error constant indicating a reason for the request’s failure.4

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any5
provided attributes must be passed to the host environment for processing, and the PMIx library is6
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is7
requesting the info.8

Optional Attributes

The following attributes are optional for host environments that support this operation:9

PMIX_TIMEOUT "pmix.timeout" (int)10
Time in seconds before the specified operation should time out (zero indicating infinite) and11
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions12
caused by multiple layers (client, server, and host) simultaneously timing the operation.13

PMIX_RANGE "pmix.range" (pmix_data_range_t)14
Define constraints on the processes that can access the provided data. Only processes that15
meet the constraints are allowed to access it.16

PMIX_WAIT "pmix.wait" (int)17
Caller requests that the PMIx server wait until at least the specified number of values are18
found (a value of zero indicates all and is the default).19

Description20
Non-blocking form of the PMIx_Lookup function.21

126 PMIx Standard – Version 4.1 – October 2021

8.7.1 Lookup Returned Data Structure1

The pmix_pdata_t structure is used by PMIx_Lookup to describe the data being accessed.2
C

typedef struct pmix_pdata {3
pmix_proc_t proc;4
pmix_key_t key;5
pmix_value_t value;6

} pmix_pdata_t;7

C

where:8

• proc is the process identifier of the data publisher.9

• key is the string key of the published data.10

• value is the value associated with the key.11

8.7.1.1 Lookup data structure support macros12

The following macros are provided to support the pmix_pdata_t structure.13

Initialize the pdata structure14
Initialize the pmix_pdata_t fields15

PMIx v1.0 C
PMIX_PDATA_CONSTRUCT(m)16

C

IN m17
Pointer to the structure to be initialized (pointer to pmix_pdata_t)18

Destruct the pdata structure19
Destruct the pmix_pdata_t fields20

PMIx v1.0 C
PMIX_PDATA_DESTRUCT(m)21

C

IN m22
Pointer to the structure to be destructed (pointer to pmix_pdata_t)23

CHAPTER 8. PUBLISH/LOOKUP OPERATIONS 127

Create a pdata array1
Allocate and initialize an array of pmix_pdata_t structures2

C
PMIX_PDATA_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_pdata_t structures shall be stored (handle)5

IN n6
Number of structures to be allocated (size_t)7

Free a pdata structure8
Release a pmix_pdata_t structure9

PMIx v4.0 C
PMIX_PDATA_RELEASE(m)10

C

IN m11
Pointer to a pmix_pdata_t structure (handle)12

Free a pdata array13
Release an array of pmix_pdata_t structures14

PMIx v1.0 C
PMIX_PDATA_FREE(m, n)15

C

IN m16
Pointer to the array of pmix_pdata_t structures (handle)17

IN n18
Number of structures in the array (size_t)19

Load a lookup data structure20
This macro simplifies the loading of key, process identifier, and data into a pmix_pdata_t by21
correctly assigning values to the structure’s fields.22

PMIx v1.0

128 PMIx Standard – Version 4.1 – October 2021

C
PMIX_PDATA_LOAD(m, p, k, d, t);1

C

IN m2
Pointer to the pmix_pdata_t structure into which the key and data are to be loaded3
(pointer to pmix_pdata_t)4

IN p5
Pointer to the pmix_proc_t structure containing the identifier of the process being6
referenced (pointer to pmix_proc_t)7

IN k8
String key to be loaded - must be less than or equal to PMIX_MAX_KEYLEN in length9
(handle)10

IN d11
Pointer to the data value to be loaded (handle)12

IN t13
Type of the provided data value (pmix_data_type_t)14

Advice to users

Key, process identifier, and data will all be copied into the pmix_pdata_t - thus, the source15
information can be modified or free’d without affecting the copied data once the macro has16
completed.17

Transfer a lookup data structure18
This macro simplifies the transfer of key, process identifier, and data value between19
twopmix_pdata_t structures.20

PMIx v2.0 C
PMIX_PDATA_XFER(d, s);21

C

IN d22
Pointer to the destination pmix_pdata_t (pointer to pmix_pdata_t)23

IN s24
Pointer to the source pmix_pdata_t (pointer to pmix_pdata_t)25

Advice to users

Key, process identifier, and data will all be copied into the destination pmix_pdata_t - thus, the26
source pmix_pdata_t may free’d without affecting the copied data once the macro has27
completed.28

CHAPTER 8. PUBLISH/LOOKUP OPERATIONS 129

8.7.2 Lookup Callback Function1

Summary2
The pmix_lookup_cbfunc_t is used by PMIx_Lookup_nb to return data.3

PMIx v1.0 C
typedef void (*pmix_lookup_cbfunc_t)4

(pmix_status_t status,5
pmix_pdata_t data[], size_t ndata,6
void *cbdata);7

C

IN status8
Status associated with the operation (handle)9

IN data10
Array of data returned (pmix_pdata_t)11

IN ndata12
Number of elements in the data array (size_t)13

IN cbdata14
Callback data passed to original API call (memory reference)15

Description16
A callback function for calls to PMIx_Lookup_nb. The function will be called upon completion17
of the PMIx_Lookup_nb API with the status indicating the success or failure of the request. Any18
retrieved data will be returned in an array of pmix_pdata_t structs. The namespace and rank of19
the process that provided each data element is also returned.20

Note that the pmix_pdata_t structures will be released upon return from the callback function,21
so the receiver must copy/protect the data prior to returning if it needs to be retained.22

8.8 Retrieval rules for published data23

The retrieval rules for published data primarily revolve around enforcing data access permissions24
and range constraints. The datastore shall search its stored information for each specified key25
according to the following precedence logic:26

1. If the requester specified the range, then the search shall be constrained to data where the27
publishing process falls within the specified range.28

2. If the key of the stored information does not match the specified key, then the search will29
continue.30

3. If the requester’s identifier does not fall within the range specified by the publisher, then the31
search will continue.32

130 PMIx Standard – Version 4.1 – October 2021

4. If the publisher specified access permissions, the effective UID and GID of the requester shall be1
checked against those permissions, with the datastore rejecting the match if the requester fails to2
meet the requirements.3

5. If all of the above checks pass, then the value is added to the information that is to be returned.4

The status returned by the datastore shall be set to:5

• PMIX_SUCCESS All data was found and is included in the returned information.6

• PMIX_ERR_NOT_FOUND None of the requested data could be found within a requester’s range.7

• PMIX_ERR_PARTIAL_SUCCESS Some of the requested data was found. Only found data will8
be included in the returned information. Note that the specific reason for a particular piece of9
missing information (e.g., lack of permissions) cannot be communicated back to the requester in10
this situation.11

• a non-zero PMIx error constant indicating a reason for the request’s failure.12

In the case where data was found and range restrictions were met for each specified key, but none of13
the matching data could be returned due to lack of access permissions, the datastore must return the14
PMIX_ERR_NO_PERMISSIONS error.15

Advice to users

Note that duplicate keys are allowed to exist on different ranges, and that ranges do overlap each16
other. Thus, if duplicate keys are published on overlapping ranges, it is possible for the datastore to17
successfully find multiple responses for a given key should publisher and requester specify18
sufficiently broad ranges. In this situation, the choice of resolving the duplication is left to the19
datastore implementation - e.g., it may return the first value found in its search, or the value20
corresponding to the most limited range of the found values, or it may choose to simply return an21
error.22

Users are advised to avoid this ambiguity by careful selection of key values and ranges - e.g., by23
creating range-specific keys where necessary.24

8.9 PMIx_Unpublish25

Summary26
Unpublish data posted by this process using the given keys.27

CHAPTER 8. PUBLISH/LOOKUP OPERATIONS 131

Format1 C
pmix_status_t2
PMIx_Unpublish(char **keys,3

const pmix_info_t info[], size_t ninfo);4

C

IN keys5
NULL-terminated array of keys (array of strings)6

IN info7
Array of info structures (array of handles)8

IN ninfo9
Number of elements in the info array (integer)10

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.11

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any12
provided attributes must be passed to the host environment for processing, and the PMIx library is13
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is14
requesting the operation.15

Optional Attributes

The following attributes are optional for host environments that support this operation:16

PMIX_TIMEOUT "pmix.timeout" (int)17
Time in seconds before the specified operation should time out (zero indicating infinite) and18
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions19
caused by multiple layers (client, server, and host) simultaneously timing the operation.20

PMIX_RANGE "pmix.range" (pmix_data_range_t)21
Define constraints on the processes that can access the provided data. Only processes that22
meet the constraints are allowed to access it.23

Description24
Unpublish data posted by this process using the given keys. The function will block until the data25
has been removed by the server (i.e., it is safe to publish that key again within the specified range).26
A value of NULL for the keys parameter instructs the server to remove all data published by this27
process.28

By default, the range is assumed to be PMIX_RANGE_SESSION. Changes to the range, and any29
additional directives, can be provided in the info array.30

132 PMIx Standard – Version 4.1 – October 2021

8.10 PMIx_Unpublish_nb1

Summary2
Nonblocking version of PMIx_Unpublish.3

Format4 PMIx v1.0 C
pmix_status_t5
PMIx_Unpublish_nb(char **keys,6

const pmix_info_t info[], size_t ninfo,7
pmix_op_cbfunc_t cbfunc, void *cbdata);8

C

IN keys9
NULL-terminated array of keys (array of strings)10

IN info11
Array of info structures (array of handles)12

IN ninfo13
Number of elements in the info array (integer)14

IN cbfunc15
Callback function pmix_op_cbfunc_t (function reference)16

IN cbdata17
Data to be passed to the callback function (memory reference)18

Returns one of the following:19

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result20
will be returned in the provided cbfunc. Note that the library must not invoke the callback21
function prior to returning from the API.22

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and23
returned success - the cbfunc will not be called.24

• a PMIx error constant indicating either an error in the input or that the request was immediately25
processed and failed - the cbfunc will not be called.26

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any27
provided attributes must be passed to the host environment for processing, and the PMIx library is28
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is29
requesting the operation.30

CHAPTER 8. PUBLISH/LOOKUP OPERATIONS 133

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

PMIX_RANGE "pmix.range" (pmix_data_range_t)6
Define constraints on the processes that can access the provided data. Only processes that7
meet the constraints are allowed to access it.8

Description9
Non-blocking form of the PMIx_Unpublish function. The callback function will be executed10
once the server confirms removal of the specified data. The info array must be maintained until the11
callback is provided.12

134 PMIx Standard – Version 4.1 – October 2021

CHAPTER 9

Event Notification

This chapter defines the PMIx event notification system. These interfaces are designed to support1
the reporting of events to/from clients and servers, and between library layers within a single2
process.3

9.1 Notification and Management4

PMIx event notification provides an asynchronous out-of-band mechanism for communicating5
events between application processes and/or elements of the SMS. Its uses span a wide range6
including fault notification, coordination between multiple programming libraries within a single7
process, and workflow orchestration for non-synchronous programming models. Events can be8
divided into two distinct classes:9

• Job-specific events directly relate to a job executing within the session, such as a debugger10
attachment, process failure within a related job, or events generated by an application process.11
Events in this category are to be immediately delivered to the PMIx server library for relay to the12
related local processes.13

• Environment events indirectly relate to a job but do not specifically target the job itself. This14
category includes SMS-generated events such as Error Check and Correction (ECC) errors,15
temperature excursions, and other non-job conditions that might directly affect a session’s16
resources, but would never include an event generated by an application process. Note that17
although these do potentially impact the session’s jobs, they are not directly tied to those jobs.18
Thus, events in this category are to be delivered to the PMIx server library only upon request.19

Both SMS elements and applications can register for events of either type.20

Advice to PMIx library implementers

Race conditions can cause the registration to come after events of possible interest (e.g., a memory21
ECC event that occurs after start of execution but prior to registration, or an application process22
generating an event prior to another process registering to receive it). SMS vendors are requested to23
cache environment events for some time to mitigate this situation, but are not required to do so.24
However, PMIx implementers are required to cache all events received by the PMIx server library25
and to deliver them to registering clients in the same order in which they were received26

135

Advice to users

Applications must be aware that they may not receive environment events that occur prior to1
registration, depending upon the capabilities of the host SMS.2

The generator of an event can specify the target range for delivery of that event. Thus, the generator3
can choose to limit notification to processes on the local node, processes within the same job as the4
generator, processes within the same allocation, other threads within the same process, only the5
SMS (i.e., not to any application processes), all application processes, or to a custom range based6
on specific process identifiers. Only processes within the given range that register for the provided7
event code will be notified. In addition, the generator can use attributes to direct that the event not8
be delivered to any default event handlers, or to any multi-code handler (as defined below).9

Event notifications provide the process identifier of the source of the event plus the event code and10
any additional information provided by the generator. When an event notification is received by a11
process, the registered handlers are scanned for their event code(s), with matching handlers12
assembled into an event chain for servicing. Note that users can also specify a source range when13
registering an event (using the same range designators described above) to further limit when they14
are to be invoked. When assembled, PMIx event chains are ordered based on both the specificity of15
the event handler and user directives at time of handler registration. By default, handlers are16
grouped into three categories based on the number of event codes that can trigger the callback:17

• single-code handlers are serviced first as they are the most specific. These are handlers that are18
registered against one specific event code.19

• multi-code handlers are serviced once all single-code handlers have completed. The handler will20
be included in the chain upon receipt of an event matching any of the provided codes.21

• default handlers are serviced once all multi-code handlers have completed. These handlers are22
always included in the chain unless the generator specifically excludes them.23

Users can specify the callback order of a handler within its category at the time of registration.24
Ordering can be specified by providing the relevant event handler names, if the user specified an25
event handler name when registering the corresponding event. Thus, users can specify that a given26
handler be executed before or after another handler should both handlers appear in an event chain27
(the ordering is ignored if the other handler isn’t included). Note that ordering does not imply28
immediate relationships. For example, multiple handlers registered to be serviced after event29
handler A will all be executed after A, but are not guaranteed to be executed in any particular order30
amongst themselves.31

In addition, one event handler can be declared as the first handler to be executed in the chain. This32
handler will always be called prior to any other handler, regardless of category, provided the33
incoming event matches both the specified range and event code. Only one handler can be so34
designated — attempts to designate additional handlers as first will return an error. Deregistration35
of the declared first handler will re-open the position for subsequent assignment.36

136 PMIx Standard – Version 4.1 – October 2021

Similarly, one event handler can be declared as the last handler to be executed in the chain. This1
handler will always be called after all other handlers have executed, regardless of category,2
provided the incoming event matches both the specified range and event code. Note that this3
handler will not be called if the chain is terminated by an earlier handler. Only one handler can be4
designated as last — attempts to designate additional handlers as last will return an error.5
Deregistration of the declared last handler will re-open the position for subsequent assignment.6

Advice to users

Note that the last handler is called after all registered default handlers that match the specified7
range of the incoming event unless a handler prior to it terminates the chain. Thus, if the application8
intends to define a last handler, it should ensure that no default handler aborts the process before it.9

Upon completing its work and prior to returning, each handler must call the event handler10
completion function provided when it was invoked (including a status code plus any information to11
be passed to later handlers) so that the chain can continue being progressed. PMIx automatically12
aggregates the status and any results of each handler (as provided in the completion callback) with13
status from all prior handlers so that each step in the chain has full knowledge of what preceded it.14
An event handler can terminate all further progress along the chain by passing the15
PMIX_EVENT_ACTION_COMPLETE status to the completion callback function.16

9.1.1 Events versus status constants17

Return status constants (see Section 3.1.1) represent values that can be returned from or passed into18
PMIx APIs. These are distinct from PMIx events in that they are not values that can be registered19
against event handlers. In general, the two types of constants are distinguished by inclusion of an20
"ERR" in the name of error constants versus an "EVENT" in events, though there are exceptions21
(e.g, the PMIX_SUCCESS constant).22

9.1.2 PMIx_Register_event_handler23

Summary24
Register an event handler.25

CHAPTER 9. EVENT NOTIFICATION 137

Format1 C
pmix_status_t2
PMIx_Register_event_handler(pmix_status_t codes[], size_t ncodes,3

pmix_info_t info[], size_t ninfo,4
pmix_notification_fn_t evhdlr,5
pmix_hdlr_reg_cbfunc_t cbfunc,6
void *cbdata);7

C

IN codes8
Array of status codes (array of pmix_status_t)9

IN ncodes10
Number of elements in the codes array (size_t)11

IN info12
Array of info structures (array of handles)13

IN ninfo14
Number of elements in the info array (size_t)15

IN evhdlr16
Event handler to be called pmix_notification_fn_t (function reference)17

IN cbfunc18
Callback function pmix_hdlr_reg_cbfunc_t (function reference)19

IN cbdata20
Data to be passed to the cbfunc callback function (memory reference)21

If cbfunc is NULL, the function call will be treated as a blocking call. In this case, the returned22
status will be either (a) the event handler reference identifier if the value is greater than or equal to23
zero, or (b) a negative error code indicative of the reason for the failure.24

If the cbfunc is non-NULL, the function call will be treated as a non-blocking call and will return25
the following:26

• PMIX_SUCCESS indicating that the request has been accepted for processing and the provided27
callback function will be executed upon completion of the operation. Note that the library must28
not invoke the callback function prior to returning from the API. The result of the registration29
operation shall be returned in the provided callback function along with the assigned event30
handler identifier.31

• PMIX_ERR_EVENT_REGISTRATION indicating that the registration has failed for an32
undetermined reason.33

• a non-zero PMIx error constant indicating a reason for the request to have been rejected. In this34
case, the provided callback function will not be executed.35

The callback function must not be executed prior to returning from the API, and no events36
corresponding to this registration may be delivered prior to the completion of the registration37
callback function (cbfunc).38

138 PMIx Standard – Version 4.1 – October 2021

Required Attributes

The following attributes are required to be supported by all PMIx libraries:1

PMIX_EVENT_HDLR_NAME "pmix.evname" (char*)2
String name identifying this handler.3

PMIX_EVENT_HDLR_FIRST "pmix.evfirst" (bool)4
Invoke this event handler before any other handlers.5

PMIX_EVENT_HDLR_LAST "pmix.evlast" (bool)6
Invoke this event handler after all other handlers have been called.7

PMIX_EVENT_HDLR_FIRST_IN_CATEGORY "pmix.evfirstcat" (bool)8
Invoke this event handler before any other handlers in this category.9

PMIX_EVENT_HDLR_LAST_IN_CATEGORY "pmix.evlastcat" (bool)10
Invoke this event handler after all other handlers in this category have been called.11

PMIX_EVENT_HDLR_BEFORE "pmix.evbefore" (char*)12
Put this event handler immediately before the one specified in the (char*) value.13

PMIX_EVENT_HDLR_AFTER "pmix.evafter" (char*)14
Put this event handler immediately after the one specified in the (char*) value.15

PMIX_EVENT_HDLR_PREPEND "pmix.evprepend" (bool)16
Prepend this handler to the precedence list within its category.17

PMIX_EVENT_HDLR_APPEND "pmix.evappend" (bool)18
Append this handler to the precedence list within its category.19

PMIX_EVENT_CUSTOM_RANGE "pmix.evrange" (pmix_data_array_t*)20
Array of pmix_proc_t defining range of event notification.21

PMIX_RANGE "pmix.range" (pmix_data_range_t)22
Define constraints on the processes that can access the provided data. Only processes that23
meet the constraints are allowed to access it.24

PMIX_EVENT_RETURN_OBJECT "pmix.evobject" (void *)25
Object to be returned whenever the registered callback function cbfunc is invoked. The26
object will only be returned to the process that registered it.27

28

Host environments that implement support for PMIx event notification are required to support the29
following attributes when registering handlers - these attributes are used to direct that the handler30
should be invoked only when the event affects the indicated process(es):31

PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)32
The single process that was affected.33

PMIX_EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_t*)34

CHAPTER 9. EVENT NOTIFICATION 139

Array of pmix_proc_t defining affected processes.1

Description2
Register an event handler to report events. Note that the codes being registered do not need to be3
PMIx error constants — any integer value can be registered. This allows for registration of4
non-PMIx events such as those defined by a particular SMS vendor or by an application itself.5

Advice to users

In order to avoid potential conflicts, users are advised to only define codes that lie outside the range6
of the PMIx standard’s error codes. Thus, SMS vendors and application developers should7
constrain their definitions to positive values or negative values beyond the8
PMIX_EXTERNAL_ERR_BASE boundary.9

Advice to users

As previously stated, upon completing its work, and prior to returning, each handler must call the10
event handler completion function provided when it was invoked (including a status code plus any11
information to be passed to later handlers) so that the chain can continue being progressed. An12
event handler can terminate all further progress along the chain by passing the13
PMIX_EVENT_ACTION_COMPLETE status to the completion callback function. Note that the14
parameters passed to the event handler (e.g., the info and results arrays) will cease to be valid once15
the completion function has been called - thus, any information in the incoming parameters that16
will be referenced following the call to the completion function must be copied.17

9.1.3 Event registration constants18

PMIX_ERR_EVENT_REGISTRATION Error in event registration.19

9.1.4 System events20

PMIX_EVENT_SYS_BASE Mark the beginning of a dedicated range of constants for system21
event reporting.22

PMIX_EVENT_NODE_DOWN A node has gone down - the identifier of the affected node will23
be included in the notification.24

PMIX_EVENT_NODE_OFFLINE A node has been marked as offline - the identifier of the25
affected node will be included in the notification.26

PMIX_EVENT_SYS_OTHER Mark the end of a dedicated range of constants for system event27
reporting.28

140 PMIx Standard – Version 4.1 – October 2021

Detect system event constant1
Test a given event constant to see if it falls within the dedicated range of constants for system event2
reporting.3

C
PMIX_SYSTEM_EVENT(a)4

C

IN a5
Error constant to be checked (pmix_status_t)6

Returns true if the provided values falls within the dedicated range of events for system event7
reporting.8

9.1.5 Event handler registration and notification attributes9

Attributes to support event registration and notification.10

PMIX_EVENT_HDLR_NAME "pmix.evname" (char*)11
String name identifying this handler.12

PMIX_EVENT_HDLR_FIRST "pmix.evfirst" (bool)13
Invoke this event handler before any other handlers.14

PMIX_EVENT_HDLR_LAST "pmix.evlast" (bool)15
Invoke this event handler after all other handlers have been called.16

PMIX_EVENT_HDLR_FIRST_IN_CATEGORY "pmix.evfirstcat" (bool)17
Invoke this event handler before any other handlers in this category.18

PMIX_EVENT_HDLR_LAST_IN_CATEGORY "pmix.evlastcat" (bool)19
Invoke this event handler after all other handlers in this category have been called.20

PMIX_EVENT_HDLR_BEFORE "pmix.evbefore" (char*)21
Put this event handler immediately before the one specified in the (char*) value.22

PMIX_EVENT_HDLR_AFTER "pmix.evafter" (char*)23
Put this event handler immediately after the one specified in the (char*) value.24

PMIX_EVENT_HDLR_PREPEND "pmix.evprepend" (bool)25
Prepend this handler to the precedence list within its category.26

PMIX_EVENT_HDLR_APPEND "pmix.evappend" (bool)27
Append this handler to the precedence list within its category.28

PMIX_EVENT_CUSTOM_RANGE "pmix.evrange" (pmix_data_array_t*)29
Array of pmix_proc_t defining range of event notification.30

PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)31
The single process that was affected.32

PMIX_EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_t*)33
Array of pmix_proc_t defining affected processes.34

PMIX_EVENT_NON_DEFAULT "pmix.evnondef" (bool)35
Event is not to be delivered to default event handlers.36

PMIX_EVENT_RETURN_OBJECT "pmix.evobject" (void *)37

CHAPTER 9. EVENT NOTIFICATION 141

Object to be returned whenever the registered callback function cbfunc is invoked. The1
object will only be returned to the process that registered it.2

PMIX_EVENT_DO_NOT_CACHE "pmix.evnocache" (bool)3
Instruct the PMIx server not to cache the event.4

PMIX_EVENT_PROXY "pmix.evproxy" (pmix_proc_t*)5
PMIx server that sourced the event.6

PMIX_EVENT_TEXT_MESSAGE "pmix.evtext" (char*)7
Text message suitable for output by recipient - e.g., describing the cause of the event.8

PMIX_EVENT_TIMESTAMP "pmix.evtstamp" (time_t)9
System time when the associated event occurred.10

9.1.5.1 Fault tolerance event attributes11

The following attributes may be used by the host environment when providing an event notification12
as qualifiers indicating the action it intends to take in response to the event:13

PMIX_EVENT_TERMINATE_SESSION "pmix.evterm.sess" (bool)14
The RM intends to terminate this session.15

PMIX_EVENT_TERMINATE_JOB "pmix.evterm.job" (bool)16
The RM intends to terminate this job.17

PMIX_EVENT_TERMINATE_NODE "pmix.evterm.node" (bool)18
The RM intends to terminate all processes on this node.19

PMIX_EVENT_TERMINATE_PROC "pmix.evterm.proc" (bool)20
The RM intends to terminate just this process.21

PMIX_EVENT_ACTION_TIMEOUT "pmix.evtimeout" (int)22
The time in seconds before the RM will execute the indicated operation.23

9.1.5.2 Hybrid programming event attributes24

The following attributes may be used by programming models to coordinate their use of common25
resources within a process in conjunction with the PMIX_OPENMP_PARALLEL_ENTERED event:26
PMIX_MODEL_PHASE_NAME "pmix.mdl.phase" (char*)27

User-assigned name for a phase in the application execution (e.g., “cfd reduction”).28

PMIX_MODEL_PHASE_TYPE "pmix.mdl.ptype" (char*)29
Type of phase being executed (e.g., “matrix multiply”).30

9.1.6 Notification Function31

Summary32
The pmix_notification_fn_t is called by PMIx to deliver notification of an event.33

Advice to users

The PMIx ad hoc v1.0 Standard defined an error notification function with an identical name, but34
different signature than the v2.0 Standard described below. The ad hoc v1.0 version was removed35
from the v2.0 Standard is not included in this document to avoid confusion.36

142 PMIx Standard – Version 4.1 – October 2021

C
typedef void (*pmix_notification_fn_t)1

(size_t evhdlr_registration_id,2
pmix_status_t status,3
const pmix_proc_t *source,4
pmix_info_t info[], size_t ninfo,5
pmix_info_t results[], size_t nresults,6
pmix_event_notification_cbfunc_fn_t cbfunc,7
void *cbdata);8

C

IN evhdlr_registration_id9
Registration number of the handler being called (size_t)10

IN status11
Status associated with the operation (pmix_status_t)12

IN source13
Identifier of the process that generated the event (pmix_proc_t). If the source is the SMS,14
then the nspace will be empty and the rank will be PMIX_RANK_UNDEF15

IN info16
Information describing the event (pmix_info_t). This argument will be NULL if no17
additional information was provided by the event generator.18

IN ninfo19
Number of elements in the info array (size_t)20

IN results21
Aggregated results from prior event handlers servicing this event (pmix_info_t). This22
argument will be NULL if this is the first handler servicing the event, or if no prior handlers23
provided results.24

IN nresults25
Number of elements in the results array (size_t)26

IN cbfunc27
pmix_event_notification_cbfunc_fn_t callback function to be executed upon28
completion of the handler’s operation and prior to handler return (function reference).29

IN cbdata30
Callback data to be passed to cbfunc (memory reference)31

Description32
Note that different RMs may provide differing levels of support for event notification to application33
processes. Thus, the info array may be NULL or may contain detailed information of the event. It is34
the responsibility of the application to parse any provided info array for defined key-values if it so35
desires.36

CHAPTER 9. EVENT NOTIFICATION 143

Advice to users

Possible uses of the info array include:1

• for the host RM to alert the process as to planned actions, such as aborting the session, in2
response to the reported event3

• provide a timeout for alternative action to occur, such as for the application to request an4
alternate response to the event5

For example, the RM might alert the application to the failure of a node that resulted in termination6
of several processes, and indicate that the overall session will be aborted unless the application7
requests an alternative behavior in the next 5 seconds. The application then has time to respond8
with a checkpoint request, or a request to recover from the failure by obtaining replacement nodes9
and restarting from some earlier checkpoint.10

Support for these options is left to the discretion of the host RM. Info keys are included in the11
common definitions above but may be augmented by environment vendors.12

Advice to PMIx server hosts

On the server side, the notification function is used to inform the PMIx server library’s host of a13
detected event in the PMIx server library. Events generated by PMIx clients are communicated to14
the PMIx server library, but will be relayed to the host via the15
pmix_server_notify_event_fn_t function pointer, if provided.16

9.1.7 PMIx_Deregister_event_handler17

Summary18
Deregister an event handler.19

144 PMIx Standard – Version 4.1 – October 2021

Format1 C
pmix_status_t2
PMIx_Deregister_event_handler(size_t evhdlr_ref,3

pmix_op_cbfunc_t cbfunc,4
void *cbdata);5

C
IN evhdlr_ref6

Event handler ID returned by registration (size_t)7
IN cbfunc8

Callback function to be executed upon completion of operation pmix_op_cbfunc_t9
(function reference)10

IN cbdata11
Data to be passed to the cbfunc callback function (memory reference)12

If cbfunc is NULL, the function will be treated as a blocking call and the result of the operation13
returned in the status code.14

If cbfunc is non-NULL, the function will be treated as a non-blocking call and return one of the15
following:16

• PMIX_SUCCESS, indicating that the request is being processed - result will be returned in the17
provided cbfunc. Note that the library must not invoke the callback function prior to returning18
from the API.19

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and20
returned success - the cbfunc will not be called21

• a PMIx error constant indicating either an error in the input or that the request was immediately22
processed and failed - the cbfunc will not be called23

The returned status code will be one of the following:24

• PMIX_SUCCESS The event handler was successfully deregistered.25

• PMIX_ERR_BAD_PARAM The provided evhdlr_ref was unrecognized.26

• PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support event notification.27

Description28
Deregister an event handler. Note that no events corresponding to the referenced registration may29
be delivered following completion of the deregistration operation (either return from the API with30
PMIX_OPERATION_SUCCEEDED or execution of the cbfunc).31

9.1.8 PMIx_Notify_event32

Summary33
Report an event for notification via any registered event handler.34

CHAPTER 9. EVENT NOTIFICATION 145

Format1 C
pmix_status_t2
PMIx_Notify_event(pmix_status_t status,3

const pmix_proc_t *source,4
pmix_data_range_t range,5
pmix_info_t info[], size_t ninfo,6
pmix_op_cbfunc_t cbfunc, void *cbdata);7

C

IN status8
Status code of the event (pmix_status_t)9

IN source10
Pointer to a pmix_proc_t identifying the original reporter of the event (handle)11

IN range12
Range across which this notification shall be delivered (pmix_data_range_t)13

IN info14
Array of pmix_info_t structures containing any further info provided by the originator of15
the event (array of handles)16

IN ninfo17
Number of elements in the info array (size_t)18

IN cbfunc19
Callback function to be executed upon completion of operation pmix_op_cbfunc_t20
(function reference)21

IN cbdata22
Data to be passed to the cbfunc callback function (memory reference)23

If cbfunc is NULL, the function will be treated as a blocking call and the result of the operation24
returned in the status code.25

If cbfunc is non-NULL, the function will be treated as a non-blocking call and return one of the26
following:27

• PMIX_SUCCESS The notification request is valid and is being processed. The callback function28
will be called when the process-local operation is complete and will provide the resulting status29
of that operation. Note that this does not reflect the success or failure of delivering the event to30
any recipients. The callback function must not be executed prior to returning from the API.31

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and32
returned success - the cbfunc will not be called33

• PMIX_ERR_BAD_PARAM The request contains at least one incorrect entry that prevents it from34
being processed. The callback function will not be called.35

146 PMIx Standard – Version 4.1 – October 2021

• PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support event notification,1
or in the case of a PMIx server calling the API, the range extended beyond the local node and the2
host SMS environment does not support event notification. The callback function will not be3
called.4

Required Attributes

The following attributes are required to be supported by all PMIx libraries:5

PMIX_EVENT_NON_DEFAULT "pmix.evnondef" (bool)6
Event is not to be delivered to default event handlers.7

PMIX_EVENT_CUSTOM_RANGE "pmix.evrange" (pmix_data_array_t*)8
Array of pmix_proc_t defining range of event notification.9

PMIX_EVENT_DO_NOT_CACHE "pmix.evnocache" (bool)10
Instruct the PMIx server not to cache the event.11

PMIX_EVENT_PROXY "pmix.evproxy" (pmix_proc_t*)12
PMIx server that sourced the event.13

PMIX_EVENT_TEXT_MESSAGE "pmix.evtext" (char*)14
Text message suitable for output by recipient - e.g., describing the cause of the event.15

16

Host environments that implement support for PMIx event notification are required to provide the17
following attributes for all events generated by the environment:18

PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)19
The single process that was affected.20

PMIX_EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_t*)21
Array of pmix_proc_t defining affected processes.22

Optional Attributes

Host environments that support PMIx event notification may offer notifications for environmental23
events impacting the job and for SMS events relating to the job. The following attributes may24
optionally be included to indicate the host environment’s intended response to the event:25

PMIX_EVENT_TERMINATE_SESSION "pmix.evterm.sess" (bool)26
The RM intends to terminate this session.27

PMIX_EVENT_TERMINATE_JOB "pmix.evterm.job" (bool)28
The RM intends to terminate this job.29

PMIX_EVENT_TERMINATE_NODE "pmix.evterm.node" (bool)30
The RM intends to terminate all processes on this node.31

PMIX_EVENT_TERMINATE_PROC "pmix.evterm.proc" (bool)32

CHAPTER 9. EVENT NOTIFICATION 147

The RM intends to terminate just this process.1

PMIX_EVENT_ACTION_TIMEOUT "pmix.evtimeout" (int)2
The time in seconds before the RM will execute the indicated operation.3

Description4
Report an event for notification via any registered event handler. This function can be called by any5
PMIx process, including application processes, PMIx servers, and SMS elements. The PMIx server6
calls this API to report events it detected itself so that the host SMS daemon distribute and handle7
them, and to pass events given to it by its host down to any attached client processes for processing.8
Examples might include notification of the failure of another process, detection of an impending9
node failure due to rising temperatures, or an intent to preempt the application. Events may be10
locally generated or come from anywhere in the system.11

Host SMS daemons call the API to pass events down to its embedded PMIx server both for12
transmittal to local client processes and for the host’s own internal processing where the host has13
registered its own event handlers. The PMIx server library is not allowed to echo any event given to14
it by its host via this API back to the host through the pmix_server_notify_event_fn_t15
server module function. The host is required to deliver the event to all PMIx servers where the16
targeted processes either are currently running, or (if they haven’t started yet) might be running at17
some point in the future as the events are required to be cached by the PMIx server library.18

Client application processes can call this function to notify the SMS and/or other application19
processes of an event it encountered. Note that processes are not constrained to report status values20
defined in the official PMIx standard — any integer value can be used. Thus, applications are free21
to define their own internal events and use the notification system for their own internal purposes.22

Advice to users

The callback function will be called upon completion of the notify_event function’s actions.23
At that time, any messages required for executing the operation (e.g., to send the notification to the24
local PMIx server) will have been queued, but may not yet have been transmitted. The caller is25
required to maintain the input data until the callback function has been executed — the sole purpose26
of the callback function is to indicate when the input data is no longer required.27

148 PMIx Standard – Version 4.1 – October 2021

9.1.9 Notification Handler Completion Callback Function1

Summary2
The pmix_event_notification_cbfunc_fn_t is called by event handlers to indicate3
completion of their operations.4

C
typedef void (*pmix_event_notification_cbfunc_fn_t)5

(pmix_status_t status,6
pmix_info_t *results, size_t nresults,7
pmix_op_cbfunc_t cbfunc, void *thiscbdata,8
void *notification_cbdata);9

C

IN status10
Status returned by the event handler’s operation (pmix_status_t)11

IN results12
Results from this event handler’s operation on the event (pmix_info_t)13

IN nresults14
Number of elements in the results array (size_t)15

IN cbfunc16
pmix_op_cbfunc_t function to be executed when PMIx completes processing the17
callback (function reference)18

IN thiscbdata19
Callback data that was passed in to the handler (memory reference)20

IN cbdata21
Callback data to be returned when PMIx executes cbfunc (memory reference)22

Description23
Define a callback by which an event handler can notify the PMIx library that it has completed its24
response to the notification. The handler is required to execute this callback so the library can25
determine if additional handlers need to be called. The handler shall return26
PMIX_EVENT_ACTION_COMPLETE if no further action is required. The return status of each27
event handler and any returned pmix_info_t structures will be added to the results array of28
pmix_info_t passed to any subsequent event handlers to help guide their operation.29

If non-NULL, the provided callback function will be called to allow the event handler to release the30
provided info array and execute any other required cleanup operations.31

9.1.9.1 Completion Callback Function Status Codes32

The following status code may be returned indicating various actions taken by other event handlers.33

PMIX_EVENT_NO_ACTION_TAKEN Event handler: No action taken.34
PMIX_EVENT_PARTIAL_ACTION_TAKEN Event handler: Partial action taken.35
PMIX_EVENT_ACTION_DEFERRED Event handler: Action deferred.36
PMIX_EVENT_ACTION_COMPLETE Event handler: Action complete.37

CHAPTER 9. EVENT NOTIFICATION 149

CHAPTER 10

Data Packing and Unpacking

PMIx intentionally does not include support for internode communications in the standard, instead1
relying on its host SMS environment to transfer any needed data and/or requests between nodes.2
These operations frequently involve PMIx-defined public data structures that include binary data.3
Many HPC clusters are homogeneous, and so transferring the structures can be done rather simply.4
However, greater effort is required in heterogeneous environments to ensure binary data is correctly5
transferred. PMIx buffer manipulation functions are provided for this purpose via standardized6
interfaces to ease adoption.7

10.1 Data Buffer Type8

The pmix_data_buffer_t structure describes a data buffer used for packing and unpacking.9
PMIx v2.0 C

typedef struct pmix_data_buffer {10
/** Start of my memory */11
char *base_ptr;12
/** Where the next data will be packed to13

(within the allocated memory starting14
at base_ptr) */15

char *pack_ptr;16
/** Where the next data will be unpacked17

from (within the allocated memory18
starting as base_ptr) */19

char *unpack_ptr;20
/** Number of bytes allocated (starting21

at base_ptr) */22
size_t bytes_allocated;23
/** Number of bytes used by the buffer24

(i.e., amount of data -- including25
overhead -- packed in the buffer) */26

size_t bytes_used;27
} pmix_data_buffer_t;28

C

150

10.2 Support Macros1

PMIx provides a set of convenience macros for creating, initiating, and releasing data buffers.2

PMIX_DATA_BUFFER_CREATE3
Allocate memory for a pmix_data_buffer_t object and initialize it. This macro uses calloc to4
allocate memory for the buffer and initialize all fields in it5

PMIx v2.0 C
PMIX_DATA_BUFFER_CREATE(buffer);6

C

OUT buffer7
Variable to be assigned the pointer to the allocated pmix_data_buffer_t (handle)8

PMIX_DATA_BUFFER_RELEASE9
Free a pmix_data_buffer_t object and the data it contains. Free’s the data contained in the10
buffer, and then free’s the buffer itself11

PMIx v2.0 C
PMIX_DATA_BUFFER_RELEASE(buffer);12

C

IN buffer13
Pointer to the pmix_data_buffer_t to be released (handle)14

PMIX_DATA_BUFFER_CONSTRUCT15
Initialize a statically declared pmix_data_buffer_t object.16

PMIx v2.0 C
PMIX_DATA_BUFFER_CONSTRUCT(buffer);17

C

IN buffer18
Pointer to the allocated pmix_data_buffer_t that is to be initialized (handle)19

PMIX_DATA_BUFFER_DESTRUCT20
Release the data contained in a pmix_data_buffer_t object.21

PMIx v2.0 C
PMIX_DATA_BUFFER_DESTRUCT(buffer);22

C

IN buffer23
Pointer to the pmix_data_buffer_t whose data is to be released (handle)24

CHAPTER 10. DATA PACKING AND UNPACKING 151

PMIX_DATA_BUFFER_LOAD1
Load a blob into a pmix_data_buffer_t object. Load the given data into the provided2
pmix_data_buffer_t object, usually done in preparation for unpacking the provided data.3
Note that the data is not copied into the buffer - thus, the blob must not be released until after4
operations on the buffer have completed.5

PMIx v2.0 C
PMIX_DATA_BUFFER_LOAD(buffer, data, size);6

C

IN buffer7
Pointer to a pre-allocated pmix_data_buffer_t (handle)8

IN data9
Pointer to a blob (char*)10

IN size11
Number of bytes in the blob size_t12

PMIX_DATA_BUFFER_UNLOAD13
Unload the data from a pmix_data_buffer_t object. Extract the data in a buffer, assigning the14
pointer to the data (and the number of bytes in the blob) to the provided variables, usually done to15
transmit the blob to a remote process for unpacking. The buffer’s internal pointer will be set to16
NULL to protect the data upon buffer destruct or release - thus, the user is responsible for releasing17
the blob when done with it.18

PMIx v2.0 C
PMIX_DATA_BUFFER_UNLOAD(buffer, data, size);19

C

IN buffer20
Pointer to the pmix_data_buffer_t whose data is to be extracted (handle)21

OUT data22
Variable to be assigned the pointer to the extracted blob (void*)23

OUT size24
Variable to be assigned the number of bytes in the blob size_t25

10.3 General Routines26

The following routines are provided to support internode transfers in heterogeneous environments.27

10.3.1 PMIx_Data_pack28

Summary29
Pack one or more values of a specified type into a buffer, usually for transmission to another process.30

152 PMIx Standard – Version 4.1 – October 2021

Format1 C
pmix_status_t2
PMIx_Data_pack(const pmix_proc_t *target,3

pmix_data_buffer_t *buffer,4
void *src, int32_t num_vals,5
pmix_data_type_t type);6

C

IN target7
Pointer to a pmix_proc_t containing the nspace/rank of the process that will be unpacking8
the final buffer. A NULL value may be used to indicate that the target is based on the same9
PMIx version as the caller. Note that only the target’s nspace is relevant. (handle)10

IN buffer11
Pointer to a pmix_data_buffer_t where the packed data is to be stored (handle)12

IN src13
Pointer to a location where the data resides. Strings are to be passed as (char **) — i.e., the14
caller must pass the address of the pointer to the string as the (void*). This allows the caller to15
pass multiple strings in a single call. (memory reference)16

IN num_vals17
Number of elements pointed to by the src pointer. A string value is counted as a single value18
regardless of length. The values must be contiguous in memory. Arrays of pointers (e.g.,19
string arrays) should be contiguous, although the data pointed to need not be contiguous20
across array entries.(int32_t)21

IN type22
The type of the data to be packed (pmix_data_type_t)23

Returns one of the following:24

PMIX_SUCCESS The data has been packed as requested25
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.26
PMIX_ERR_BAD_PARAM The provided buffer or src is NULL27
PMIX_ERR_UNKNOWN_DATA_TYPE The specified data type is not known to this28

implementation29
PMIX_ERR_OUT_OF_RESOURCE Not enough memory to support the operation30
PMIX_ERROR General error31

Description32
The pack function packs one or more values of a specified type into the specified buffer. The buffer33
must have already been initialized via the PMIX_DATA_BUFFER_CREATE or34
PMIX_DATA_BUFFER_CONSTRUCT macros — otherwise, PMIx_Data_pack will return an35
error. Providing an unsupported type flag will likewise be reported as an error.36

Note that any data to be packed that is not hard type cast (i.e., not type cast to a specific size) may37
lose precision when unpacked by a non-homogeneous recipient. The PMIx_Data_pack function38

CHAPTER 10. DATA PACKING AND UNPACKING 153

will do its best to deal with heterogeneity issues between the packer and unpacker in such cases.1
Sending a number larger than can be handled by the recipient will return an error code (generated2
upon unpacking) — the error cannot be detected during packing.3

The namespace of the intended recipient of the packed buffer (i.e., the process that will be4
unpacking it) is used solely to resolve any data type differences between PMIx versions. The5
recipient must, therefore, be known to the user prior to calling the pack function so that the PMIx6
library is aware of the version the recipient is using. Note that all processes in a given namespace7
are required to use the same PMIx version — thus, the caller must only know at least one process8
from the target’s namespace.9

10.3.2 PMIx_Data_unpack10

Summary11
Unpack values from a pmix_data_buffer_t12

Format13 PMIx v2.0 C
pmix_status_t14
PMIx_Data_unpack(const pmix_proc_t *source,15

pmix_data_buffer_t *buffer, void *dest,16
int32_t *max_num_values,17
pmix_data_type_t type);18

19
C

IN source20
Pointer to a pmix_proc_t structure containing the nspace/rank of the process that packed21
the provided buffer. A NULL value may be used to indicate that the source is based on the22
same PMIx version as the caller. Note that only the source’s nspace is relevant. (handle)23

IN buffer24
A pointer to the buffer from which the value will be extracted. (handle)25

INOUT dest26
A pointer to the memory location into which the data is to be stored. Note that these values27
will be stored contiguously in memory. For strings, this pointer must be to (char**) to provide28
a means of supporting multiple string operations. The unpack function will allocate memory29
for each string in the array - the caller must only provide adequate memory for the array of30
pointers. (void*)31

INOUT max_num_values32
The number of values to be unpacked — upon completion, the parameter will be set to the33
actual number of values unpacked. In most cases, this should match the maximum number34
provided in the parameters — but in no case will it exceed the value of this parameter. Note35
that unpacking fewer values than are actually available will leave the buffer in an unpackable36
state — the function will return an error code to warn of this condition.(int32_t)37

154 PMIx Standard – Version 4.1 – October 2021

IN type1
The type of the data to be unpacked — must be one of the PMIx defined data types2
(pmix_data_type_t)3

Returns one of the following:4

PMIX_SUCCESS The data has been unpacked as requested5
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.6
PMIX_ERR_BAD_PARAM The provided buffer or dest is NULL7
PMIX_ERR_UNKNOWN_DATA_TYPE The specified data type is not known to this8

implementation9
PMIX_ERR_OUT_OF_RESOURCE Not enough memory to support the operation10
PMIX_ERROR General error11

Description12
The unpack function unpacks the next value (or values) of a specified type from the given buffer.13
The buffer must have already been initialized via an PMIX_DATA_BUFFER_CREATE or14
PMIX_DATA_BUFFER_CONSTRUCT call (and assumedly filled with some data) — otherwise, the15
unpack_value function will return an error. Providing an unsupported type flag will likewise be16
reported as an error, as will specifying a data type that does not match the type of the next item in17
the buffer. An attempt to read beyond the end of the stored data held in the buffer will also return an18
error.19

Note that it is possible for the buffer to be corrupted and that PMIx will think there is a proper20
variable type at the beginning of an unpack region — but that the value is bogus (e.g., just a byte21
field in a string array that so happens to have a value that matches the specified data type flag).22
Therefore, the data type error check is not completely safe.23

Unpacking values is a "nondestructive" process — i.e., the values are not removed from the buffer.24
It is therefore possible for the caller to re-unpack a value from the same buffer by resetting the25
unpack_ptr.26

Warning: The caller is responsible for providing adequate memory storage for the requested data.27
The user must provide a parameter indicating the maximum number of values that can be unpacked28
into the allocated memory. If more values exist in the buffer than can fit into the memory storage,29
then the function will unpack what it can fit into that location and return an error code indicating30
that the buffer was only partially unpacked.31

Note that any data that was not hard type cast (i.e., not type cast to a specific size) when packed may32
lose precision when unpacked by a non-homogeneous recipient. PMIx will do its best to deal with33
heterogeneity issues between the packer and unpacker in such cases. Sending a number larger than34
can be handled by the recipient will return an error code generated upon unpacking — these errors35
cannot be detected during packing.36

The namespace of the process that packed the buffer is used solely to resolve any data type37
differences between PMIx versions. The packer must, therefore, be known to the user prior to38
calling the pack function so that the PMIx library is aware of the version the packer is using. Note39

CHAPTER 10. DATA PACKING AND UNPACKING 155

that all processes in a given namespace are required to use the same PMIx version — thus, the1
caller must only know at least one process from the packer’s namespace.2

10.3.3 PMIx_Data_copy3

Summary4
Copy a data value from one location to another.5

Format6 PMIx v2.0 C
pmix_status_t7
PMIx_Data_copy(void **dest, void *src,8

pmix_data_type_t type);9

C

IN dest10
The address of a pointer into which the address of the resulting data is to be stored. (void**)11

IN src12
A pointer to the memory location from which the data is to be copied (handle)13

IN type14
The type of the data to be copied — must be one of the PMIx defined data types.15
(pmix_data_type_t)16

Returns one of the following:17

PMIX_SUCCESS The data has been copied as requested18
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.19
PMIX_ERR_BAD_PARAM The provided src or dest is NULL20
PMIX_ERR_UNKNOWN_DATA_TYPE The specified data type is not known to this21

implementation22
PMIX_ERR_OUT_OF_RESOURCE Not enough memory to support the operation23
PMIX_ERROR General error24

Description25
Since registered data types can be complex structures, the system needs some way to know how to26
copy the data from one location to another (e.g., for storage in the registry). This function, which27
can call other copy functions to build up complex data types, defines the method for making a copy28
of the specified data type.29

10.3.4 PMIx_Data_print30

Summary31
Pretty-print a data value.32

156 PMIx Standard – Version 4.1 – October 2021

Format1 C
pmix_status_t2
PMIx_Data_print(char **output, char *prefix,3

void *src, pmix_data_type_t type);4

C

IN output5
The address of a pointer into which the address of the resulting output is to be stored.6
(char**)7

IN prefix8
String to be prepended to the resulting output (char*)9

IN src10
A pointer to the memory location of the data value to be printed (handle)11

IN type12
The type of the data value to be printed — must be one of the PMIx defined data types.13
(pmix_data_type_t)14

Returns one of the following:15

PMIX_SUCCESS The data has been printed as requested16
PMIX_ERR_BAD_PARAM The provided data type is not recognized.17
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.18

Description19
Since registered data types can be complex structures, the system needs some way to know how to20
print them (i.e., convert them to a string representation). Primarily for debug purposes.21

10.3.5 PMIx_Data_copy_payload22

Summary23
Copy a payload from one buffer to another24

Format25 PMIx v2.0 C
pmix_status_t26
PMIx_Data_copy_payload(pmix_data_buffer_t *dest,27

pmix_data_buffer_t *src);28

C

IN dest29
Pointer to the destination pmix_data_buffer_t (handle)30

IN src31
Pointer to the source pmix_data_buffer_t (handle)32

Returns one of the following:33

CHAPTER 10. DATA PACKING AND UNPACKING 157

PMIX_SUCCESS The data has been copied as requested1
PMIX_ERR_BAD_PARAM The src and dest pmix_data_buffer_t types do not match2
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.3

Description4
This function will append a copy of the payload in one buffer into another buffer. Note that this is5
not a destructive procedure — the source buffer’s payload will remain intact, as will any pre-existing6
payload in the destination’s buffer. Only the unpacked portion of the source payload will be copied.7

10.3.6 PMIx_Data_load8

Summary9
Load a buffer with the provided payload10

Format11 PMIx v4.1 C
pmix_status_t12
PMIx_Data_load(pmix_data_buffer_t *dest,13

pmix_byte_object_t *src);14

C

IN dest15
Pointer to the destination pmix_data_buffer_t (handle)16

IN src17
Pointer to the source pmix_byte_object_t (handle)18

Returns one of the following:19

PMIX_SUCCESS The data has been loaded as requested20
PMIX_ERR_BAD_PARAM The dest structure pointer is NULL21
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.22

Description23
The load function allows the caller to transfer the contents of the src pmix_byte_object_t to24
the dest target buffer. If a payload already exists in the buffer, the function will "free" the existing25
data to release it, and then replace the data payload with the one provided by the caller.26

Advice to users

The buffer must be allocated or constructed in advance - failing to do so will cause the load27
function to return an error code.28

The caller is responsible for pre-packing the provided payload. For example, the load function29
cannot convert to network byte order any data contained in the provided payload.30

158 PMIx Standard – Version 4.1 – October 2021

10.3.7 PMIx_Data_unload1

Summary2
Unload a buffer into a byte object3

Format4 PMIx v4.1 C
pmix_status_t5
PMIx_Data_unload(pmix_data_buffer_t *src,6

pmix_byte_object_t *dest);7

C

IN src8
Pointer to the source pmix_data_buffer_t (handle)9

IN dest10
Pointer to the destination pmix_byte_object_t (handle)11

Returns one of the following:12

PMIX_SUCCESS The data has been copied as requested13
PMIX_ERR_BAD_PARAM The destination and/or source pointer is NULL14
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.15

Description16
The unload function provides the caller with a pointer to the portion of the data payload within the17
buffer that has not yet been unpacked, along with the size of that region. Any portion of the payload18
that was previously unpacked using the PMIx_Data_unpack routine will be ignored. This19
allows the user to directly access the payload.20

Advice to users

This is a destructive operation. While the payload returned in the destination21
pmix_byte_object_t is undisturbed, the function will clear the src’s pointers to the payload.22
Thus, the src and the payload are completely separated, leaving the caller able to free or destruct the23
src.24

10.3.8 PMIx_Data_compress25

Summary26
Perform a lossless compression on the provided data27

CHAPTER 10. DATA PACKING AND UNPACKING 159

Format1 C
bool2
PMIx_Data_compress(const uint8_t *inbytes, size_t size,3

uint8_t **outbytes, size_t *nbytes);4

C

IN inbytes5
Pointer to the source data (handle)6

IN size7
Number of bytes in the source data region (size_t)8

OUT outbytes9
Address where the pointer to the compressed data region is to be returned (handle)10

OUT nbytes11
Address where the number of bytes in the compressed data region is to be returned (handle)12

Returns one of the following:13

• True The data has been compressed as requested14

• False The data has not been compressed15

Description16
Compress the provided data block. Destination memory will be allocated if operation is17
successfully concluded. Caller is responsible for release of the allocated region. The input data18
block will remain unaltered.19

Note: the compress function will return False if the operation would not result in a smaller data20
block.21

10.3.9 PMIx_Data_decompress22

Summary23
Decompress the provided data24

Format25 PMIx v4.1

160 PMIx Standard – Version 4.1 – October 2021

C
bool1
PMIx_Data_decompress(const uint8_t *inbytes, size_t size,2

uint8_t **outbytes, size_t *nbytes,);3

C

OUT outbytes4
Address where the pointer to the decompressed data region is to be returned (handle)5

OUT nbytes6
Address where the number of bytes in the decompressed data region is to be returned (handle)7

IN inbytes8
Pointer to the source data (handle)9

IN size10
Number of bytes in the source data region (size_t)11

Returns one of the following:12

• True The data has been decompressed as requested13

• False The data has not been decompressed14

Description15
Decompress the provided data block. Destination memory will be allocated if operation is16
successfully concluded. Caller is responsible for release of the allocated region. The input data17
block will remain unaltered.18

Only data compressed by the PMIx_Data_compress API can be decompressed by this19
function. Passing data that has not been compressed by PMIx_Data_compress will lead to20
unexpected and potentially catastrophic results.21

CHAPTER 10. DATA PACKING AND UNPACKING 161

CHAPTER 11

Process Management

This chapter defines functionality processes can use to abort processes, spawn processes, and1
determine the relative locality of local processes.2

11.1 Abort3

PMIx provides a dedicated API by which an application can request that specified processes be4
aborted by the system.5

11.1.1 PMIx_Abort6

Summary7
Abort the specified processes8

Format9 PMIx v1.0 C
pmix_status_t10
PMIx_Abort(int status, const char msg[],11

pmix_proc_t procs[], size_t nprocs)12

C
IN status13

Error code to return to invoking environment (integer)14
IN msg15

String message to be returned to user (string)16
IN procs17

Array of pmix_proc_t structures (array of handles)18
IN nprocs19

Number of elements in the procs array (integer)20

Returns one of the following:21

• PMIX_SUCCESS if the operation was successfully completed. Note that the function shall not22
return in this situation if the caller’s own process was included in the request.23

• PMIX_ERR_PARAM_VALUE_NOT_SUPPORTED if the PMIx implementation and host24
environment support this API, but the request includes processes that the host environment25
cannot abort - e.g., if the request is to abort subsets of processes from a namespace, or processes26
outside of the caller’s own namespace, and the host environment does not permit such27
operations. In this case, none of the specified processes will be terminated.28

• a PMIx error constant indicating an error in the request.29

162

Description1
Request that the host resource manager print the provided message and abort the provided array of2
procs. A Unix or POSIX environment should handle the provided status as a return error code from3
the main program that launched the application. A NULL for the procs array indicates that all4
processes in the caller’s namespace are to be aborted, including itself - this is the equivalent of5
passing a pmix_proc_t array element containing the caller’s namespace and a rank value of6
PMIX_RANK_WILDCARD. While it is permitted for a caller to request abort of processes from7
namespaces other than its own, not all environments will support such requests. Passing a NULL8
msg parameter is allowed.9

The function shall not return until the host environment has carried out the operation on the10
specified processes. If the caller is included in the array of targets, then the function will not return11
unless the host is unable to execute the operation.12

Advice to users

The response to this request is somewhat dependent on the specific RM and its configuration (e.g.,13
some resource managers will not abort the application if the provided status is zero unless14
specifically configured to do so, some cannot abort subsets of processes in an application, and some15
may not permit termination of processes outside of the caller’s own namespace), and thus lies16
outside the control of PMIx itself. However, the PMIx client library shall inform the RM of the17
request that the specified procs be aborted, regardless of the value of the provided status.18

Note that race conditions caused by multiple processes calling PMIx_Abort are left to the server19
implementation to resolve with regard to which status is returned and what messages (if any) are20
printed.21

11.2 Process Creation22

The PMIx_Spawn commands spawn new processes and/or applications in the PMIx universe.23
This may include requests to extend the existing resource allocation or obtain a new one, depending24
upon provided and supported attributes.25

11.2.1 PMIx_Spawn26

Summary27
Spawn a new job.28

CHAPTER 11. PROCESS MANAGEMENT 163

Format1 C
pmix_status_t2
PMIx_Spawn(const pmix_info_t job_info[], size_t ninfo,3

const pmix_app_t apps[], size_t napps,4
char nspace[])5

C

IN job_info6
Array of info structures (array of handles)7

IN ninfo8
Number of elements in the job_info array (integer)9

IN apps10
Array of pmix_app_t structures (array of handles)11

IN napps12
Number of elements in the apps array (integer)13

OUT nspace14
Namespace of the new job (string)15

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.16

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any17
provided attributes must be passed to the host environment for processing.18

Host environments are required to support the following attributes when present in either the19
job_info or the info array of an element of the apps array:20

PMIX_WDIR "pmix.wdir" (char*)21
Working directory for spawned processes.22

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)23
Set the current working directory to the session working directory assigned by the RM - can24
be assigned to the entire job (by including attribute in the job_info array) or on a25
per-application basis in the info array for each pmix_app_t.26

PMIX_PREFIX "pmix.prefix" (char*)27
Prefix to use for starting spawned processes - i.e., the directory where the executables can be28
found.29

PMIX_HOST "pmix.host" (char*)30
Comma-delimited list of hosts to use for spawned processes.31

PMIX_HOSTFILE "pmix.hostfile" (char*)32
Hostfile to use for spawned processes.33

164 PMIx Standard – Version 4.1 – October 2021

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)2
Hostfile containing hosts to add to existing allocation.3

PMIX_ADD_HOST "pmix.addhost" (char*)4
Comma-delimited list of hosts to add to the allocation.5

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)6
Preload executables onto nodes prior to executing launch procedure.7

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)8
Comma-delimited list of files to pre-position on nodes prior to executing launch procedure.9

PMIX_PERSONALITY "pmix.pers" (char*)10
Name of personality corresponding to programming model used by application - supported11
values depend upon PMIx implementation.12

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)13
Display process mapping upon spawn.14

PMIX_PPR "pmix.ppr" (char*)15
Number of processes to spawn on each identified resource.16

PMIX_MAPBY "pmix.mapby" (char*)17
Process mapping policy - when accessed using PMIx_Get, use the18
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the19
provided namespace. Supported values are launcher specific.20

PMIX_RANKBY "pmix.rankby" (char*)21
Process ranking policy - when accessed using PMIx_Get, use the22
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for the23
provided namespace. Supported values are launcher specific.24

PMIX_BINDTO "pmix.bindto" (char*)25
Process binding policy - when accessed using PMIx_Get, use the26
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the27
provided namespace. Supported values are launcher specific.28

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)29
Spawned process rank that is to receive any forwarded stdin.30

PMIX_TAG_OUTPUT "pmix.tagout" (bool)31
Tag stdout/stderr with the identity of the source process - can be assigned to the entire32
job (by including attribute in the job_info array) or on a per-application basis in the info33
array for each pmix_app_t.34

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)35

CHAPTER 11. PROCESS MANAGEMENT 165

Timestamp output - can be assigned to the entire job (by including attribute in the job_info1
array) or on a per-application basis in the info array for each pmix_app_t.2

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)3
Merge stdout and stderr streams - can be assigned to the entire job (by including4
attribute in the job_info array) or on a per-application basis in the info array for each5
pmix_app_t.6

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)7
Direct output (both stdout and stderr) into files of form "<filename>.rank" - can be8
assigned to the entire job (by including attribute in the job_info array) or on a per-application9
basis in the info array for each pmix_app_t.10

PMIX_INDEX_ARGV "pmix.indxargv" (bool)11
Mark the argv with the rank of the process.12

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)13
Number of PUs to assign to each rank - when accessed using PMIx_Get, use the14
PMIX_RANK_WILDCARD value for the rank to discover the PUs/process assigned to the15
provided namespace.16

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)17
Do not place processes on the head node.18

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)19
Do not oversubscribe the nodes - i.e., do not place more processes than allocated slots on a20
node.21

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)22
Report bindings of the individual processes.23

PMIX_CPU_LIST "pmix.cpulist" (char*)24
List of PUs to use for this job - when accessed using PMIx_Get, use the25
PMIX_RANK_WILDCARD value for the rank to discover the PU list used for the provided26
namespace.27

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)28
Application supports recoverable operations.29

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)30
Application is continuous, all failed processes should be immediately restarted.31

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)32
Maximum number of times to restart a process - when accessed using PMIx_Get, use the33
PMIX_RANK_WILDCARD value for the rank to discover the max restarts for the provided34
namespace.35

PMIX_SET_ENVAR "pmix.envar.set" (pmix_envar_t*)36
Set the envar to the given value, overwriting any pre-existing one37

166 PMIx Standard – Version 4.1 – October 2021

PMIX_UNSET_ENVAR "pmix.envar.unset" (char*)1
Unset the environment variable specified in the string.2

PMIX_ADD_ENVAR "pmix.envar.add" (pmix_envar_t*)3
Add the environment variable, but do not overwrite any pre-existing one4

PMIX_PREPEND_ENVAR "pmix.envar.prepnd" (pmix_envar_t*)5
Prepend the given value to the specified environmental value using the given separator6
character, creating the variable if it doesn’t already exist7

PMIX_APPEND_ENVAR "pmix.envar.appnd" (pmix_envar_t*)8
Append the given value to the specified environmental value using the given separator9
character, creating the variable if it doesn’t already exist10

PMIX_FIRST_ENVAR "pmix.envar.first" (pmix_envar_t*)11
Ensure the given value appears first in the specified envar using the separator character,12
creating the envar if it doesn’t already exist13

PMIX_ALLOC_QUEUE "pmix.alloc.queue" (char*)14
Name of the WLM queue to which the allocation request is to be directed, or the queue being15
referenced in a query.16

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)17
Total session time (in seconds) being requested in an allocation request.18

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)19
The number of nodes being requested in an allocation request.20

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)21
Regular expression of the specific nodes being requested in an allocation request.22

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)23
Number of PUs being requested in an allocation request.24

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)25
Regular expression of the number of PUs for each node being requested in an allocation26
request.27

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)28
Regular expression of the specific PUs being requested in an allocation request.29

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)30
Number of Megabytes[base2] of memory (per process) being requested in an allocation31
request.32

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)33
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation34
request.35

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)36

CHAPTER 11. PROCESS MANAGEMENT 167

Fabric quality of service level for the job being requested in an allocation request.1

PMIX_ALLOC_FABRIC_TYPE "pmix.alloc.nettype" (char*)2
Type of desired transport (e.g., “tcp”, “udp”) being requested in an allocation request.3

PMIX_ALLOC_FABRIC_PLANE "pmix.alloc.netplane" (char*)4
ID string for the fabric plane to be used for the requested allocation.5

PMIX_ALLOC_FABRIC_ENDPTS "pmix.alloc.endpts" (size_t)6
Number of endpoints to allocate per process in the job.7

PMIX_ALLOC_FABRIC_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)8
Number of endpoints to allocate per node for the job.9

PMIX_COSPAWN_APP "pmix.cospawn" (bool)10
Designated application is to be spawned as a disconnected job - i.e., the launcher shall not11
include the application in any of the job-level values (e.g., PMIX_RANK within the job)12
provided to any other application process generated by the same spawn request. Typically13
used to cospawn debugger daemons alongside an application.14

PMIX_SPAWN_TOOL "pmix.spwn.tool" (bool)15
Indicate that the job being spawned is a tool.16

PMIX_EVENT_SILENT_TERMINATION "pmix.evsilentterm" (bool)17
Do not generate an event when this job normally terminates.18

Description19
Spawn a new job. The assigned namespace of the spawned applications is returned in the nspace20
parameter. A NULL value in that location indicates that the caller doesn’t wish to have the21
namespace returned. The nspace array must be at least of size one more than PMIX_MAX_NSLEN.22

By default, the spawned processes will be PMIx “connected” to the parent process upon successful23
launch (see Section 11.3 for details). This includes that (a) the parent process will be given a copy24
of the new job’s information so it can query job-level info without incurring any communication25
penalties, (b) newly spawned child processes will receive a copy of the parent processes job-level26
info, and (c) both the parent process and members of the child job will receive notification of errors27
from processes in their combined assemblage.28

Advice to users

Behavior of individual resource managers may differ, but it is expected that failure of any29
application process to start will result in termination/cleanup of all processes in the newly spawned30
job and return of an error code to the caller.31

168 PMIx Standard – Version 4.1 – October 2021

Advice to PMIx library implementers

Tools may utilize PMIx_Spawn to start intermediate launchers as described in Section 17.2.2. For1
times where the tool is not attached to a PMIx server, internal support for fork/exec of the specified2
applications would allow the tool to maintain a single code path for both the connected and3
disconnected cases. Inclusion of such support is recommended, but not required.4

11.2.2 PMIx_Spawn_nb5

Summary6
Nonblocking version of the PMIx_Spawn routine.7

Format8 PMIx v1.0 C
pmix_status_t9
PMIx_Spawn_nb(const pmix_info_t job_info[], size_t ninfo,10

const pmix_app_t apps[], size_t napps,11
pmix_spawn_cbfunc_t cbfunc, void *cbdata)12

C

IN job_info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the job_info array (integer)16

IN apps17
Array of pmix_app_t structures (array of handles)18

IN cbfunc19
Callback function pmix_spawn_cbfunc_t (function reference)20

IN cbdata21
Data to be passed to the callback function (memory reference)22

Returns one of the following:23

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result24
will be returned in the provided cbfunc. Note that the library must not invoke the callback25
function prior to returning from the API.26

• a PMIx error constant indicating an error in the request - the cbfunc will not be called27

CHAPTER 11. PROCESS MANAGEMENT 169

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any1
provided attributes must be passed to the host SMS daemon for processing.2

Host environments are required to support the following attributes when present in either the3
job_info or the info array of an element of the apps array:4

PMIX_WDIR "pmix.wdir" (char*)5
Working directory for spawned processes.6

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)7
Set the current working directory to the session working directory assigned by the RM - can8
be assigned to the entire job (by including attribute in the job_info array) or on a9
per-application basis in the info array for each pmix_app_t.10

PMIX_PREFIX "pmix.prefix" (char*)11
Prefix to use for starting spawned processes - i.e., the directory where the executables can be12
found.13

PMIX_HOST "pmix.host" (char*)14
Comma-delimited list of hosts to use for spawned processes.15

PMIX_HOSTFILE "pmix.hostfile" (char*)16
Hostfile to use for spawned processes.17

Optional Attributes

The following attributes are optional for host environments that support this operation:18

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)19
Hostfile containing hosts to add to existing allocation.20

PMIX_ADD_HOST "pmix.addhost" (char*)21
Comma-delimited list of hosts to add to the allocation.22

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)23
Preload executables onto nodes prior to executing launch procedure.24

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)25
Comma-delimited list of files to pre-position on nodes prior to executing launch procedure.26

PMIX_PERSONALITY "pmix.pers" (char*)27
Name of personality corresponding to programming model used by application - supported28
values depend upon PMIx implementation.29

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)30
Display process mapping upon spawn.31

PMIX_PPR "pmix.ppr" (char*)32

170 PMIx Standard – Version 4.1 – October 2021

Number of processes to spawn on each identified resource.1

PMIX_MAPBY "pmix.mapby" (char*)2
Process mapping policy - when accessed using PMIx_Get, use the3
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the4
provided namespace. Supported values are launcher specific.5

PMIX_RANKBY "pmix.rankby" (char*)6
Process ranking policy - when accessed using PMIx_Get, use the7
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for the8
provided namespace. Supported values are launcher specific.9

PMIX_BINDTO "pmix.bindto" (char*)10
Process binding policy - when accessed using PMIx_Get, use the11
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the12
provided namespace. Supported values are launcher specific.13

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)14
Spawned process rank that is to receive any forwarded stdin.15

PMIX_TAG_OUTPUT "pmix.tagout" (bool)16
Tag stdout/stderr with the identity of the source process - can be assigned to the entire17
job (by including attribute in the job_info array) or on a per-application basis in the info18
array for each pmix_app_t.19

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)20
Timestamp output - can be assigned to the entire job (by including attribute in the job_info21
array) or on a per-application basis in the info array for each pmix_app_t.22

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)23
Merge stdout and stderr streams - can be assigned to the entire job (by including24
attribute in the job_info array) or on a per-application basis in the info array for each25
pmix_app_t.26

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)27
Direct output (both stdout and stderr) into files of form "<filename>.rank" - can be28
assigned to the entire job (by including attribute in the job_info array) or on a per-application29
basis in the info array for each pmix_app_t.30

PMIX_INDEX_ARGV "pmix.indxargv" (bool)31
Mark the argv with the rank of the process.32

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)33
Number of PUs to assign to each rank - when accessed using PMIx_Get, use the34
PMIX_RANK_WILDCARD value for the rank to discover the PUs/process assigned to the35
provided namespace.36

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)37
Do not place processes on the head node.38

CHAPTER 11. PROCESS MANAGEMENT 171

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)1
Do not oversubscribe the nodes - i.e., do not place more processes than allocated slots on a2
node.3

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)4
Report bindings of the individual processes.5

PMIX_CPU_LIST "pmix.cpulist" (char*)6
List of PUs to use for this job - when accessed using PMIx_Get, use the7
PMIX_RANK_WILDCARD value for the rank to discover the PU list used for the provided8
namespace.9

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)10
Application supports recoverable operations.11

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)12
Application is continuous, all failed processes should be immediately restarted.13

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)14
Maximum number of times to restart a process - when accessed using PMIx_Get, use the15
PMIX_RANK_WILDCARD value for the rank to discover the max restarts for the provided16
namespace.17

PMIX_SET_ENVAR "pmix.envar.set" (pmix_envar_t*)18
Set the envar to the given value, overwriting any pre-existing one19

PMIX_UNSET_ENVAR "pmix.envar.unset" (char*)20
Unset the environment variable specified in the string.21

PMIX_ADD_ENVAR "pmix.envar.add" (pmix_envar_t*)22
Add the environment variable, but do not overwrite any pre-existing one23

PMIX_PREPEND_ENVAR "pmix.envar.prepnd" (pmix_envar_t*)24
Prepend the given value to the specified environmental value using the given separator25
character, creating the variable if it doesn’t already exist26

PMIX_APPEND_ENVAR "pmix.envar.appnd" (pmix_envar_t*)27
Append the given value to the specified environmental value using the given separator28
character, creating the variable if it doesn’t already exist29

PMIX_FIRST_ENVAR "pmix.envar.first" (pmix_envar_t*)30
Ensure the given value appears first in the specified envar using the separator character,31
creating the envar if it doesn’t already exist32

PMIX_ALLOC_QUEUE "pmix.alloc.queue" (char*)33
Name of the WLM queue to which the allocation request is to be directed, or the queue being34
referenced in a query.35

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)36
Total session time (in seconds) being requested in an allocation request.37

172 PMIx Standard – Version 4.1 – October 2021

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)1
The number of nodes being requested in an allocation request.2

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)3
Regular expression of the specific nodes being requested in an allocation request.4

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)5
Number of PUs being requested in an allocation request.6

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)7
Regular expression of the number of PUs for each node being requested in an allocation8
request.9

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)10
Regular expression of the specific PUs being requested in an allocation request.11

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)12
Number of Megabytes[base2] of memory (per process) being requested in an allocation13
request.14

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)15
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation16
request.17

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)18
Fabric quality of service level for the job being requested in an allocation request.19

PMIX_ALLOC_FABRIC_TYPE "pmix.alloc.nettype" (char*)20
Type of desired transport (e.g., “tcp”, “udp”) being requested in an allocation request.21

PMIX_ALLOC_FABRIC_PLANE "pmix.alloc.netplane" (char*)22
ID string for the fabric plane to be used for the requested allocation.23

PMIX_ALLOC_FABRIC_ENDPTS "pmix.alloc.endpts" (size_t)24
Number of endpoints to allocate per process in the job.25

PMIX_ALLOC_FABRIC_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)26
Number of endpoints to allocate per node for the job.27

PMIX_COSPAWN_APP "pmix.cospawn" (bool)28
Designated application is to be spawned as a disconnected job - i.e., the launcher shall not29
include the application in any of the job-level values (e.g., PMIX_RANK within the job)30
provided to any other application process generated by the same spawn request. Typically31
used to cospawn debugger daemons alongside an application.32

PMIX_SPAWN_TOOL "pmix.spwn.tool" (bool)33
Indicate that the job being spawned is a tool.34

PMIX_EVENT_SILENT_TERMINATION "pmix.evsilentterm" (bool)35
Do not generate an event when this job normally terminates.36

CHAPTER 11. PROCESS MANAGEMENT 173

Description1
Nonblocking version of the PMIx_Spawn routine. The provided callback function will be2
executed upon successful start of all specified application processes.3

Advice to users

Behavior of individual resource managers may differ, but it is expected that failure of any4
application process to start will result in termination/cleanup of all processes in the newly spawned5
job and return of an error code to the caller.6

11.2.3 Spawn-specific constants7

In addition to the generic error constants, the following spawn-specific error constants may be8
returned by the spawn APIs:9

PMIX_ERR_JOB_ALLOC_FAILED The job request could not be executed due to failure to10
obtain the specified allocation11

PMIX_ERR_JOB_APP_NOT_EXECUTABLE The specified application executable either12
could not be found, or lacks execution privileges.13

PMIX_ERR_JOB_NO_EXE_SPECIFIED The job request did not specify an executable.14
PMIX_ERR_JOB_FAILED_TO_MAP The launcher was unable to map the processes for the15

specified job request.16
PMIX_ERR_JOB_FAILED_TO_LAUNCH One or more processes in the job request failed to17

launch18

11.2.4 Spawn attributes19

Attributes used to describe PMIx_Spawn behavior - they are values passed to the PMIx_Spawn20
API and therefore are not accessed using the PMIx_Get APIs when used in that context. However,21
some of the attributes defined in this section can be provided by the host environment for other22
purposes - e.g., the host might provide the PMIX_MAPBY attribute in the job-related information so23
that an application can use PMIx_Get to discover the mapping used for determining process24
locations. Multi-use attributes and their respective access reference rank are denoted below.25

PMIX_PERSONALITY "pmix.pers" (char*)26
Name of personality corresponding to programming model used by application - supported27
values depend upon PMIx implementation.28

PMIX_HOST "pmix.host" (char*)29
Comma-delimited list of hosts to use for spawned processes.30

PMIX_HOSTFILE "pmix.hostfile" (char*)31
Hostfile to use for spawned processes.32

174 PMIx Standard – Version 4.1 – October 2021

PMIX_ADD_HOST "pmix.addhost" (char*)1
Comma-delimited list of hosts to add to the allocation.2

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)3
Hostfile containing hosts to add to existing allocation.4

PMIX_PREFIX "pmix.prefix" (char*)5
Prefix to use for starting spawned processes - i.e., the directory where the executables can be6
found.7

PMIX_WDIR "pmix.wdir" (char*)8
Working directory for spawned processes.9

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)10
Display process mapping upon spawn.11

PMIX_PPR "pmix.ppr" (char*)12
Number of processes to spawn on each identified resource.13

PMIX_MAPBY "pmix.mapby" (char*)14
Process mapping policy - when accessed using PMIx_Get, use the15
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the16
provided namespace. Supported values are launcher specific.17

PMIX_RANKBY "pmix.rankby" (char*)18
Process ranking policy - when accessed using PMIx_Get, use the19
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for the20
provided namespace. Supported values are launcher specific.21

PMIX_BINDTO "pmix.bindto" (char*)22
Process binding policy - when accessed using PMIx_Get, use the23
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the24
provided namespace. Supported values are launcher specific.25

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)26
Preload executables onto nodes prior to executing launch procedure.27

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)28
Comma-delimited list of files to pre-position on nodes prior to executing launch procedure.29

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)30
Spawned process rank that is to receive any forwarded stdin.31

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)32
Set the current working directory to the session working directory assigned by the RM - can33
be assigned to the entire job (by including attribute in the job_info array) or on a34
per-application basis in the info array for each pmix_app_t.35

PMIX_TAG_OUTPUT "pmix.tagout" (bool)36
Tag stdout/stderr with the identity of the source process - can be assigned to the entire37
job (by including attribute in the job_info array) or on a per-application basis in the info38
array for each pmix_app_t.39

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)40
Timestamp output - can be assigned to the entire job (by including attribute in the job_info41
array) or on a per-application basis in the info array for each pmix_app_t.42

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)43

CHAPTER 11. PROCESS MANAGEMENT 175

Merge stdout and stderr streams - can be assigned to the entire job (by including1
attribute in the job_info array) or on a per-application basis in the info array for each2
pmix_app_t.3

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)4
Direct output (both stdout and stderr) into files of form "<filename>.rank" - can be5
assigned to the entire job (by including attribute in the job_info array) or on a per-application6
basis in the info array for each pmix_app_t.7

PMIX_OUTPUT_TO_DIRECTORY "pmix.outdir" (char*)8
Direct output into files of form "<directory>/<jobid>/rank.<rank>/9
stdout[err]" - can be assigned to the entire job (by including attribute in the job_info10
array) or on a per-application basis in the info array for each pmix_app_t.11

PMIX_INDEX_ARGV "pmix.indxargv" (bool)12
Mark the argv with the rank of the process.13

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)14
Number of PUs to assign to each rank - when accessed using PMIx_Get, use the15
PMIX_RANK_WILDCARD value for the rank to discover the PUs/process assigned to the16
provided namespace.17

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)18
Do not place processes on the head node.19

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)20
Do not oversubscribe the nodes - i.e., do not place more processes than allocated slots on a21
node.22

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)23
Report bindings of the individual processes.24

PMIX_CPU_LIST "pmix.cpulist" (char*)25
List of PUs to use for this job - when accessed using PMIx_Get, use the26
PMIX_RANK_WILDCARD value for the rank to discover the PU list used for the provided27
namespace.28

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)29
Application supports recoverable operations.30

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)31
Application is continuous, all failed processes should be immediately restarted.32

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)33
Maximum number of times to restart a process - when accessed using PMIx_Get, use the34
PMIX_RANK_WILDCARD value for the rank to discover the max restarts for the provided35
namespace.36

PMIX_SPAWN_TOOL "pmix.spwn.tool" (bool)37
Indicate that the job being spawned is a tool.38

PMIX_TIMEOUT_STACKTRACES "pmix.tim.stack" (bool)39
Include process stacktraces in timeout report from a job.40

PMIX_TIMEOUT_REPORT_STATE "pmix.tim.state" (bool)41
Report process states in timeout report from a job.42

PMIX_NOTIFY_JOB_EVENTS "pmix.note.jev" (bool)43

176 PMIx Standard – Version 4.1 – October 2021

Requests that the launcher generate the PMIX_EVENT_JOB_START,1
PMIX_LAUNCH_COMPLETE, and PMIX_EVENT_JOB_END events. Each event is to2
include at least the namespace of the corresponding job and a PMIX_EVENT_TIMESTAMP3
indicating the time the event occurred. Note that the requester must register for these4
individual events, or capture and process them by registering a default event handler instead5
of individual handlers and then process the events based on the returned status code.6
Another common method is to register one event handler for all job-related events, with a7
separate handler for non-job events - see PMIx_Register_event_handler for details.8

PMIX_NOTIFY_COMPLETION "pmix.notecomp" (bool)9
Requests that the launcher generate the PMIX_EVENT_JOB_END event for normal or10
abnormal termination of the spawned job. The event shall include the returned status code11
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)12
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a13
PMIX_EVENT_TIMESTAMP indicating the time the termination occurred. Note that the14
requester must register for the event or capture and process it within a default event handler.15

PMIX_NOTIFY_PROC_TERMINATION "pmix.noteproc" (bool)16
Requests that the launcher generate the PMIX_EVENT_PROC_TERMINATED event17
whenever a process either normally or abnormally terminates.18

PMIX_NOTIFY_PROC_ABNORMAL_TERMINATION "pmix.noteabproc" (bool)19
Requests that the launcher generate the PMIX_EVENT_PROC_TERMINATED event only20
when a process abnormally terminates.21

PMIX_LOG_PROC_TERMINATION "pmix.logproc" (bool)22
Requests that the launcher log the PMIX_EVENT_PROC_TERMINATED event whenever a23
process either normally or abnormally terminates.24

PMIX_LOG_PROC_ABNORMAL_TERMINATION "pmix.logabproc" (bool)25
Requests that the launcher log the PMIX_EVENT_PROC_TERMINATED event only when a26
process abnormally terminates.27

PMIX_LOG_JOB_EVENTS "pmix.log.jev" (bool)28
Requests that the launcher log the PMIX_EVENT_JOB_START,29
PMIX_LAUNCH_COMPLETE, and PMIX_EVENT_JOB_END events using PMIx_Log,30
subject to the logging attributes of Section 12.4.3.31

PMIX_LOG_COMPLETION "pmix.logcomp" (bool)32
Requests that the launcher log the PMIX_EVENT_JOB_END event for normal or abnormal33
termination of the spawned job using PMIx_Log, subject to the logging attributes of34
Section 12.4.3. The event shall include the returned status code35
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)36
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a37
PMIX_EVENT_TIMESTAMP indicating the time the termination occurred.38

PMIX_EVENT_SILENT_TERMINATION "pmix.evsilentterm" (bool)39
Do not generate an event when this job normally terminates.40

Attributes used to adjust remote environment variables prior to spawning the specified application41
processes.42

CHAPTER 11. PROCESS MANAGEMENT 177

PMIX_SET_ENVAR "pmix.envar.set" (pmix_envar_t*)1
Set the envar to the given value, overwriting any pre-existing one2

PMIX_UNSET_ENVAR "pmix.envar.unset" (char*)3
Unset the environment variable specified in the string.4

PMIX_ADD_ENVAR "pmix.envar.add" (pmix_envar_t*)5
Add the environment variable, but do not overwrite any pre-existing one6

PMIX_PREPEND_ENVAR "pmix.envar.prepnd" (pmix_envar_t*)7
Prepend the given value to the specified environmental value using the given separator8
character, creating the variable if it doesn’t already exist9

PMIX_APPEND_ENVAR "pmix.envar.appnd" (pmix_envar_t*)10
Append the given value to the specified environmental value using the given separator11
character, creating the variable if it doesn’t already exist12

PMIX_FIRST_ENVAR "pmix.envar.first" (pmix_envar_t*)13
Ensure the given value appears first in the specified envar using the separator character,14
creating the envar if it doesn’t already exist15

11.2.5 Application Structure16

The pmix_app_t structure describes the application context for the PMIx_Spawn and17
PMIx_Spawn_nb operations.18

PMIx v1.0 C
typedef struct pmix_app {19

/** Executable */20
char *cmd;21
/** Argument set, NULL terminated */22
char **argv;23
/** Environment set, NULL terminated */24
char **env;25
/** Current working directory */26
char *cwd;27
/** Maximum processes with this profile */28
int maxprocs;29
/** Array of info keys describing this application*/30
pmix_info_t *info;31
/** Number of info keys in ’info’ array */32
size_t ninfo;33

} pmix_app_t;34

C

11.2.5.1 App structure support macros35

The following macros are provided to support the pmix_app_t structure.36

178 PMIx Standard – Version 4.1 – October 2021

Initialize the app structure1
Initialize the pmix_app_t fields2

C
PMIX_APP_CONSTRUCT(m)3

C

IN m4
Pointer to the structure to be initialized (pointer to pmix_app_t)5

Destruct the app structure6
Destruct the pmix_app_t fields7

PMIx v1.0 C
PMIX_APP_DESTRUCT(m)8

C

IN m9
Pointer to the structure to be destructed (pointer to pmix_app_t)10

Create an app array11
Allocate and initialize an array of pmix_app_t structures12

PMIx v1.0 C
PMIX_APP_CREATE(m, n)13

C

INOUT m14
Address where the pointer to the array of pmix_app_t structures shall be stored (handle)15

IN n16
Number of structures to be allocated (size_t)17

Free an app structure18
Release a pmix_app_t structure19

PMIx v4.0 C
PMIX_APP_RELEASE(m)20

C

IN m21
Pointer to a pmix_app_t structure (handle)22

CHAPTER 11. PROCESS MANAGEMENT 179

Free an app array1
Release an array of pmix_app_t structures2

C
PMIX_APP_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_app_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

Create the info array of application directives8
Create an array of pmix_info_t structures for passing application-level directives, updating the9
ninfo field of the pmix_app_t structure.10

PMIx v2.2 C
PMIX_APP_INFO_CREATE(m, n)11

C

IN m12
Pointer to the pmix_app_t structure (handle)13

IN n14
Number of directives to be allocated (size_t)15

11.2.5.2 Spawn Callback Function16

Summary17
The pmix_spawn_cbfunc_t is used on the PMIx client side by PMIx_Spawn_nb and on the18
PMIx server side by pmix_server_spawn_fn_t.19

PMIx v1.0 C
typedef void (*pmix_spawn_cbfunc_t)20

(pmix_status_t status,21
pmix_nspace_t nspace, void *cbdata);22

C

IN status23
Status associated with the operation (handle)24

IN nspace25
Namespace string (pmix_nspace_t)26

IN cbdata27
Callback data passed to original API call (memory reference)28

180 PMIx Standard – Version 4.1 – October 2021

Description1
The callback will be executed upon launch of the specified applications in PMIx_Spawn_nb, or2
upon failure to launch any of them.3

The status of the callback will indicate whether or not the spawn succeeded. The nspace of the4
spawned processes will be returned, along with any provided callback data. Note that the returned5
nspace value will not be protected upon return from the callback function, so the receiver must6
copy it if it needs to be retained.7

11.3 Connecting and Disconnecting Processes8

This section defines functions to connect and disconnect processes in two or more separate PMIx9
namespaces. The PMIx definition of connected solely implies that the host environment should10
treat the failure of any process in the assemblage as a reportable event, taking action on the11
assemblage as if it were a single application. For example, if the environment defaults (in the12
absence of any application directives) to terminating an application upon failure of any process in13
that application, then the environment should terminate all processes in the connected assemblage14
upon failure of any member.15

The host environment may choose to assign a new namespace to the connected assemblage and/or16
assign new ranks for its members for its own internal tracking purposes. However, it is not required17
to communicate such assignments to the participants (e.g., in response to an appropriate call to18
PMIx_Query_info_nb). The host environment is required to generate a19
PMIX_ERR_PROC_TERM_WO_SYNC event should any process in the assemblage terminate or20
call PMIx_Finalize without first disconnecting from the assemblage. If the job including the21
process is terminated as a result of that action, then the host environment is required to also22
generate the PMIX_ERR_JOB_TERM_WO_SYNC for all jobs that were terminated as a result.23

Advice to PMIx server hosts

The connect operation does not require the exchange of job-level information nor the inclusion of24
information posted by participating processes via PMIx_Put. Indeed, the callback function25
utilized in pmix_server_connect_fn_t cannot pass information back into the PMIx server26
library. However, host environments are advised that collecting such information at the27
participating daemons represents an optimization opportunity as participating processes are likely28
to request such information after the connect operation completes.29

CHAPTER 11. PROCESS MANAGEMENT 181

Advice to users

Attempting to connect processes solely within the same namespace is essentially a no-op operation.1
While not explicitly prohibited, users are advised that a PMIx implementation or host environment2
may return an error in such cases.3

Neither the PMIx implementation nor host environment are required to provide any tracking4
support for the assemblage. Thus, the application is responsible for maintaining the membership5
list of the assemblage.6

11.3.1 PMIx_Connect7

Summary8
Connect namespaces.9

Format10 PMIx v1.0 C
pmix_status_t11
PMIx_Connect(const pmix_proc_t procs[], size_t nprocs,12

const pmix_info_t info[], size_t ninfo)13

C

IN procs14
Array of proc structures (array of handles)15

IN nprocs16
Number of elements in the procs array (integer)17

IN info18
Array of info structures (array of handles)19

IN ninfo20
Number of elements in the info array (integer)21

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.22

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any23
provided attributes must be passed to the host SMS daemon for processing.24

182 PMIx Standard – Version 4.1 – October 2021

Optional Attributes
The following attributes are optional for PMIx implementations:1

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)2
All clones of the calling process must participate in the collective operation.3

The following attributes are optional for host environments that support this operation:4

PMIX_TIMEOUT "pmix.timeout" (int)5
Time in seconds before the specified operation should time out (zero indicating infinite) and6
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions7
caused by multiple layers (client, server, and host) simultaneously timing the operation.8

Description9
Record the processes specified by the procs array as connected as per the PMIx definition. The10
function will return once all processes identified in procs have called either PMIx_Connect or its11
non-blocking version, and the host environment has completed any supporting operations required12
to meet the terms of the PMIx definition of connected processes.13

A process can only engage in one connect operation involving the identical procs array at a time.14
However, a process can be simultaneously engaged in multiple connect operations, each involving a15
different procs array.16

As in the case of the PMIx_Fence operation, the info array can be used to pass user-level17
directives regarding timeout constraints and other options available from the host RM.18

Advice to users

All processes engaged in a given PMIx_Connect operation must provide the identical procs array19
as ordering of entries in the array and the method by which those processes are identified (e.g., use20
of PMIX_RANK_WILDCARD versus listing the individual processes) may impact the host21
environment’s algorithm for uniquely identifying an operation.22

Advice to PMIx library implementers

PMIx_Connect and its non-blocking form are both collective operations. Accordingly, the PMIx23
server library is required to aggregate participation by local clients, passing the request to the host24
environment once all local participants have executed the API.25

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to26
identify the nodes containing participating processes, execute the collective across all participating27
nodes, and notify the local PMIx server library upon completion of the global collective.28

CHAPTER 11. PROCESS MANAGEMENT 183

11.3.2 PMIx_Connect_nb1

Summary2
Nonblocking PMIx_Connect_nb routine.3

Format4 PMIx v1.0 C
pmix_status_t5
PMIx_Connect_nb(const pmix_proc_t procs[], size_t nprocs,6

const pmix_info_t info[], size_t ninfo,7
pmix_op_cbfunc_t cbfunc, void *cbdata)8

C

IN procs9
Array of proc structures (array of handles)10

IN nprocs11
Number of elements in the procs array (integer)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the library must not invoke the callback23
function prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• a PMIx error constant indicating either an error in the input or that the request was immediately27
processed and failed - the cbfunc will not be called28

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any29
provided attributes must be passed to the host SMS daemon for processing.30

184 PMIx Standard – Version 4.1 – October 2021

Optional Attributes

The following attributes are optional for PMIx implementations:1

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)2
All clones of the calling process must participate in the collective operation.3

The following attributes are optional for host environments that support this operation:4

PMIX_TIMEOUT "pmix.timeout" (int)5
Time in seconds before the specified operation should time out (zero indicating infinite) and6
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions7
caused by multiple layers (client, server, and host) simultaneously timing the operation.8

Description9
Nonblocking version of PMIx_Connect. The callback function is called once all processes10
identified in procs have called either PMIx_Connect or its non-blocking version, and the host11
environment has completed any supporting operations required to meet the terms of the PMIx12
definition of connected processes. See the advice provided in the description for PMIx_Connect13
for more information.14

11.3.3 PMIx_Disconnect15

Summary16
Disconnect a previously connected set of processes.17

Format18 PMIx v1.0 C
pmix_status_t19
PMIx_Disconnect(const pmix_proc_t procs[], size_t nprocs,20

const pmix_info_t info[], size_t ninfo);21

C

IN procs22
Array of proc structures (array of handles)23

IN nprocs24
Number of elements in the procs array (integer)25

IN info26
Array of info structures (array of handles)27

IN ninfo28
Number of elements in the info array (integer)29

Returns one of the following:30

• PMIX_SUCCESS, indicating that the request was successfully executed31

CHAPTER 11. PROCESS MANAGEMENT 185

• the PMIX_ERR_INVALID_OPERATION error indicating that the specified set of procs was not1
previously connected via a call to PMIx_Connect or its non-blocking form.2

• a PMIx error constant indicating either an error in the input or that the request failed3

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any4
provided attributes must be passed to the host SMS daemon for processing.5

Optional Attributes

The following attributes are optional for PMIx implementations:6

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)7
All clones of the calling process must participate in the collective operation.8

The following attributes are optional for host environments that support this operation:9

PMIX_TIMEOUT "pmix.timeout" (int)10
Time in seconds before the specified operation should time out (zero indicating infinite) and11
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions12
caused by multiple layers (client, server, and host) simultaneously timing the operation.13

Description14
Disconnect a previously connected set of processes. The function will return once all processes15
identified in procs have called either PMIx_Disconnect or its non-blocking version, and the16
host environment has completed any required supporting operations.17

A process can only engage in one disconnect operation involving the identical procs array at a time.18
However, a process can be simultaneously engaged in multiple disconnect operations, each19
involving a different procs array.20

As in the case of the PMIx_Fence operation, the info array can be used to pass user-level21
directives regarding the algorithm to be used for any collective operation involved in the operation,22
timeout constraints, and other options available from the host RM.23

Advice to users

All processes engaged in a given PMIx_Disconnect operation must provide the identical procs24
array as ordering of entries in the array and the method by which those processes are identified25
(e.g., use of PMIX_RANK_WILDCARD versus listing the individual processes) may impact the host26
environment’s algorithm for uniquely identifying an operation.27

186 PMIx Standard – Version 4.1 – October 2021

Advice to PMIx library implementers

PMIx_Disconnect and its non-blocking form are both collective operations. Accordingly, the1
PMIx server library is required to aggregate participation by local clients, passing the request to the2
host environment once all local participants have executed the API.3

Advice to PMIx server hosts

The host will receive a single call for each collective operation. The host will receive a single call4
for each collective operation. It is the responsibility of the host to identify the nodes containing5
participating processes, execute the collective across all participating nodes, and notify the local6
PMIx server library upon completion of the global collective.7

11.3.4 PMIx_Disconnect_nb8

Summary9
Nonblocking PMIx_Disconnect routine.10

Format11 PMIx v1.0 C
pmix_status_t12
PMIx_Disconnect_nb(const pmix_proc_t procs[], size_t nprocs,13

const pmix_info_t info[], size_t ninfo,14
pmix_op_cbfunc_t cbfunc, void *cbdata);15

C

IN procs16
Array of proc structures (array of handles)17

IN nprocs18
Number of elements in the procs array (integer)19

IN info20
Array of info structures (array of handles)21

IN ninfo22
Number of elements in the info array (integer)23

IN cbfunc24
Callback function pmix_op_cbfunc_t (function reference)25

IN cbdata26
Data to be passed to the callback function (memory reference)27

Returns one of the following:28

CHAPTER 11. PROCESS MANAGEMENT 187

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result1
will be returned in the provided cbfunc. Note that the library must not invoke the callback2
function prior to returning from the API.3

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and4
returned success - the cbfunc will not be called5

• a PMIx error constant indicating either an error in the input or that the request was immediately6
processed and failed - the cbfunc will not be called7

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any8
provided attributes must be passed to the host SMS daemon for processing.9

Optional Attributes

The following attributes are optional for PMIx implementations:10

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)11
All clones of the calling process must participate in the collective operation.12

The following attributes are optional for host environments that support this operation:13

PMIX_TIMEOUT "pmix.timeout" (int)14
Time in seconds before the specified operation should time out (zero indicating infinite) and15
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions16
caused by multiple layers (client, server, and host) simultaneously timing the operation.17

Description18
Nonblocking PMIx_Disconnect routine. The callback function is called either:19

• to return the PMIX_ERR_INVALID_OPERATION error indicating that the specified set of20
procs was not previously connected via a call to PMIx_Connect or its non-blocking form;21

• to return a PMIx error constant indicating that the operation failed; or22

• once all processes identified in procs have called either PMIx_Disconnect_nb or its23
blocking version, and the host environment has completed any required supporting operations.24

See the advice provided in the description for PMIx_Disconnect for more information.25

188 PMIx Standard – Version 4.1 – October 2021

11.4 Process Locality1

The relative locality of processes is often used to optimize their interactions with the hardware and2
other processes. PMIx provides a means by which the host environment can communicate the3
locality of a given process using the PMIx_server_generate_locality_string to4
generate an abstracted representation of that value. This provides a human-readable format and5
allows the client to parse the locality string with a method of its choice that may differ from the one6
used by the server that generated it.7

There are times, however, when relative locality and other PMIx-provided information doesn’t8
include some element required by the application. In these instances, the application may need9
access to the full description of the local hardware topology. PMIx does not itself generate such10
descriptions - there are multiple third-party libraries that fulfill that role. Instead, PMIx offers an11
abstraction method by which users can obtain a pointer to the description. This transparently12
enables support for different methods of sharing the topology between the host environment (which13
may well have already generated it prior to local start of application processes) and the clients - e.g.,14
through passing of a shared memory region.15

11.4.1 PMIx_Load_topology16

Summary17
Load the local hardware topology description18

Format19 PMIx v4.0 C
pmix_status_t20
PMIx_Load_topology(pmix_topology_t *topo);21

C

INOUT topo22
Address of a pmix_topology_t structure where the topology information is to be loaded23
(handle)24

Returns PMIX_SUCCESS, indicating that the topo was successfully loaded, or an appropriate25
PMIx error constant.26

Description27
Obtain a pointer to the topology description of the local node. If the source field of the provided28
pmix_topology_t is set, then the PMIx library must return a description from the specified29
implementation or else indicate that the implementation is not available by returning the30
PMIX_ERR_NOT_SUPPORTED error constant.31

The returned pointer may point to a shared memory region or an actual instance of the topology32
description. In either case, the description shall be treated as a "read-only" object - attempts to33
modify the object are likely to fail and return an error. The PMIx library is responsible for34
performing any required cleanup when the client library finalizes.35

CHAPTER 11. PROCESS MANAGEMENT 189

Advice to users

It is the responsibility of the user to ensure that the topo argument is properly initialized prior to1
calling this API, and to check the returned source to verify that the returned topology description is2
compatible with the user’s code.3

11.4.2 PMIx_Get_relative_locality4

Summary5
Get the relative locality of two local processes given their locality strings.6

Format7 PMIx v4.0 C
pmix_status_t8
PMIx_Get_relative_locality(const char *locality1,9

const char *locality2,10
pmix_locality_t *locality);11

C
IN locality112

String returned by the PMIx_server_generate_locality_string API (handle)13
IN locality214

String returned by the PMIx_server_generate_locality_string API (handle)15
INOUT locality16

Location where the relative locality bitmask is to be constructed (memory reference)17

Returns PMIX_SUCCESS, indicating that the locality was successfully loaded, or an appropriate18
PMIx error constant.19

Description20
Parse the locality strings of two processes (as returned by PMIx_Get using the21
PMIX_LOCALITY_STRING key) and set the appropriate pmix_locality_t locality bits in22
the provided memory location.23

11.4.2.1 Topology description24

The pmix_topology_t structure contains a (case-insensitive) string identifying the source of25
the topology (e.g., "hwloc") and a pointer to the corresponding implementation-specific topology26
description.27

PMIx v4.0 C
typedef struct pmix_topology {28

char *source;29
void *topology;30

} pmix_topoology_t;31

C

190 PMIx Standard – Version 4.1 – October 2021

11.4.2.2 Topology support macros1

The following macros support the pmix_topology_t structure.2

Initialize the topology structure3
Initialize the pmix_topology_t fields to NULL4

PMIx v4.0 C
PMIX_TOPOLOGY_CONSTRUCT(m)5

C

IN m6
Pointer to the structure to be initialized (pointer to pmix_topology_t)7

Destruct the topology structure8
Destruct the pmix_topology_t fields9

PMIx v4.0 C
PMIX_TOPOLOGY_DESTRUCT(m)10

C

IN m11
Pointer to the structure to be destructed (pointer to pmix_topology_t)12

Create a topology array13
Allocate and initialize a pmix_topology_t array.14

PMIx v4.0 C
PMIX_TOPOLOGY_CREATE(m, n)15

C

INOUT m16
Address where the pointer to the array of pmix_topology_t structures shall be stored17
(handle)18

IN n19
Number of structures to be allocated (size_t)20

Release a topology array21
Release a pmix_topology_t array.22

PMIx v4.0 C
PMIX_TOPOLOGY_FREE(m, n)23

C

INOUT m24
Address of the array of pmix_topology_t structures to be released (handle)25

IN n26
Number of structures in the array (size_t)27

CHAPTER 11. PROCESS MANAGEMENT 191

11.4.2.3 Relative locality of two processes1

The pmix_locality_t datatype is a uint16_t bitmask that defines the relative locality of2
two processes on a node. The following constants represent specific bits in the mask and can be3
used to test a locality value using standard bit-test methods.4

PMIX_LOCALITY_UNKNOWN All bits are set to zero, indicating that the relative locality of the5
two processes is unknown6

PMIX_LOCALITY_NONLOCAL The two processes do not share any common locations7
PMIX_LOCALITY_SHARE_HWTHREAD The two processes share at least one hardware thread8
PMIX_LOCALITY_SHARE_CORE The two processes share at least one core9
PMIX_LOCALITY_SHARE_L1CACHE The two processes share at least an L1 cache10
PMIX_LOCALITY_SHARE_L2CACHE The two processes share at least an L2 cache11
PMIX_LOCALITY_SHARE_L3CACHE The two processes share at least an L3 cache12
PMIX_LOCALITY_SHARE_PACKAGE The two processes share at least a package13
PMIX_LOCALITY_SHARE_NUMA The two processes share at least one Non-Uniform14

Memory Access (NUMA) region15
PMIX_LOCALITY_SHARE_NODE The two processes are executing on the same node16

Implementers and vendors may choose to extend these definitions as needed to describe a particular17
system.18

11.4.2.4 Locality keys19

PMIX_LOCALITY_STRING "pmix.locstr" (char*)20
String describing a process’s bound location - referenced using the process’s rank. The string21
is prefixed by the implementation that created it (e.g., "hwloc") followed by a colon. The22
remainder of the string represents the corresponding locality as expressed by the underlying23
implementation. The entire string must be passed to PMIx_Get_relative_locality24
for processing. Note that hosts are only required to provide locality strings for local client25
processes - thus, a call to PMIx_Get for the locality string of a process that returns26
PMIX_ERR_NOT_FOUND indicates that the process is not executing on the same node.27

11.4.3 PMIx_Parse_cpuset_string28

Summary29
Parse the PU binding bitmap from its string representation.30

Format31 PMIx v4.0 C
pmix_status_t32
PMIx_Parse_cpuset_string(const char *cpuset_string,33

pmix_cpuset_t *cpuset);34

192 PMIx Standard – Version 4.1 – October 2021

C
IN cpuset_string1

String returned by the PMIx_server_generate_cpuset_string API (handle)2
INOUT cpuset3

Address of an object where the bitmap is to be stored (memory reference)4

Returns PMIX_SUCCESS, indicating that the cpuset was successfully loaded, or an appropriate5
PMIx error constant.6

Description7
Parse the string representation of the binding bitmap (as returned by PMIx_Get using the8
PMIX_CPUSET key) and set the appropriate PU binding location information in the provided9
memory location.10

11.4.4 PMIx_Get_cpuset11

Summary12
Get the PU binding bitmap of the current process.13

Format14 PMIx v4.0 C
pmix_status_t15
PMIx_Get_cpuset(pmix_cpuset_t *cpuset, pmix_bind_envelope_t ref);16

C
INOUT cpuset17

Address of an object where the bitmap is to be stored (memory reference)18
IN ref19

The binding envelope to be considered when formulating the bitmap20
(pmix_bind_envelope_t)21

Returns PMIX_SUCCESS, indicating that the cpuset was successfully loaded, or an appropriate22
PMIx error constant.23

Description24
Obtain and set the appropriate PU binding location information in the provided memory location25
based on the specified binding envelope.26

11.4.4.1 Binding envelope27
PMIx v4.0 The pmix_bind_envelope_t data type defines the envelope of threads within a possibly28

multi-threaded process that are to be considered when getting the cpuset associated with the29
process. Valid values include:30

PMIX_CPUBIND_PROCESS Use the location of all threads in the possibly multi-threaded31
process.32

PMIX_CPUBIND_THREAD Use only the location of the thread calling the API.33

CHAPTER 11. PROCESS MANAGEMENT 193

11.4.5 PMIx_Compute_distances1

Summary2
Compute distances from specified process location to local devices.3

Format4 PMIx v4.0 C
pmix_status_t5
PMIx_Compute_distances(pmix_topology_t *topo,6

pmix_cpuset_t *cpuset,7
pmix_info_t info[], size_t ninfo[],8
pmix_device_distance_t *distances[],9
size_t *ndist);10

C

IN topo11
Pointer to the topology description of the node where the process is located (NULL indicates12
the local node) (pmix_topology_t)13

IN cpuset14
Pointer to the location of the process (pmix_cpuset_t)15

IN info16
Array of pmix_info_t describing the devices whose distance is to be computed (handle)17

IN ninfo18
Number of elements in info (integer)19

INOUT distances20
Pointer to an address where the array of pmix_device_distance_t structures21
containing the distances from the caller to the specified devices is to be returned (handle)22

INOUT ndist23
Pointer to an address where the number of elements in the distances array is to be returned24
(handle)25

Returns one of the following:26

• PMIX_SUCCESS indicating that the distances were returned.27

• a non-zero PMIx error constant indicating the reason the request failed.28

Description29
Both the minimum and maximum distance fields in the elements of the array shall be filled with the30
respective distances between the current process location and the types of devices or specific device31
identified in the info directives. In the absence of directives, distances to all supported device types32
shall be returned.33

194 PMIx Standard – Version 4.1 – October 2021

Advice to users

A process whose threads are not all bound to the same location may return inconsistent results from1
calls to this API by different threads if the PMIX_CPUBIND_THREAD binding envelope was used2
when generating the cpuset.3

11.4.6 PMIx_Compute_distances_nb4

Summary5
Compute distances from specified process location to local devices.6

Format7 PMIx v4.0 C
pmix_status_t8
PMIx_Compute_distances_nb(pmix_topology_t *topo,9

pmix_cpuset_t *cpuset,10
pmix_info_t info[], size_t ninfo[],11
pmix_device_dist_cbfunc_t cbfunc,12
void *cbdata);13

C

IN topo14
Pointer to the topology description of the node where the process is located (NULL indicates15
the local node) (pmix_topology_t)16

IN cpuset17
Pointer to the location of the process (pmix_cpuset_t)18

IN info19
Array of pmix_info_t describing the devices whose distance is to be computed (handle)20

IN ninfo21
Number of elements in info (integer)22

IN cbfunc23
Callback function pmix_info_cbfunc_t (function reference)24

IN cbdata25
Data to be passed to the callback function (memory reference)26

Returns one of the following:27

• PMIX_SUCCESS indicating that the request has been accepted for processing and the provided28
callback function will be executed upon completion of the operation. Note that the library must29
not invoke the callback function prior to returning from the API.30

• a non-zero PMIx error constant indicating a reason for the request to have been rejected. In this31
case, the provided callback function will not be executed32

CHAPTER 11. PROCESS MANAGEMENT 195

Description1
Non-blocking form of the PMIx_Compute_distances API.2

11.4.7 Device Distance Callback Function3

Summary4
The pmix_device_dist_cbfunc_t is used to return an array of device distances.5

PMIx v4.0 C
typedef void (*pmix_device_dist_cbfunc_t)6

(pmix_status_t status,7
pmix_device_distance_t *dist,8
size_t ndist,9
void *cbdata,10
pmix_release_cbfunc_t release_fn,11
void *release_cbdata);12

C

IN status13
Status associated with the operation (pmix_status_t)14

IN dist15
Array of pmix_device_distance_t returned by the operation (pointer)16

IN ndist17
Number of elements in the dist array (size_t)18

IN cbdata19
Callback data passed to original API call (memory reference)20

IN release_fn21
Function to be called when done with the dist data (function pointer)22

IN release_cbdata23
Callback data to be passed to release_fn (memory reference)24

Description25
The status indicates if requested data was found or not. The array of26
pmix_device_distance_t will contain the distance information.27

11.4.8 Device type28

The pmix_device_type_t is a uint64_t bitmask for identifying the type(s) whose29
distances are being requested, or the type of a specific device being referenced (e.g., in a30
pmix_device_distance_t object).31

PMIx v1.0 C
typedef uint16_t pmix_device_type_t;32

196 PMIx Standard – Version 4.1 – October 2021

C

The following constants can be used to set a variable of the type pmix_device_type_t.1

PMIX_DEVTYPE_UNKNOWN The device is of an unknown type - will not be included in2
returned device distances.3

PMIX_DEVTYPE_BLOCK Operating system block device, or non-volatile memory device4
(e.g., "sda" or "dax2.0" on Linux).5

PMIX_DEVTYPE_GPU Operating system Graphics Processing Unit (GPU) device (e.g.,6
"card0" for a Linux Direct Rendering Manager (DRM) device).7

PMIX_DEVTYPE_NETWORK Operating system network device (e.g., the "eth0" interface on8
Linux).9

PMIX_DEVTYPE_OPENFABRICS Operating system OpenFabrics device (e.g., an "mlx4_0"10
InfiniBand Host Channel Adapter (HCA), or "hfi1_0" Omni-Path interface on Linux).11

PMIX_DEVTYPE_DMA Operating system Direct Memory Access (DMA) engine device (e.g.,12
the "dma0chan0" DMA channel on Linux).13

PMIX_DEVTYPE_COPROC Operating system co-processor device (e.g., "mic0" for a Xeon Phi14
on Linux, "opencl0d0" for a OpenCL device, or "cuda0" for a Compute Unified Device15
Architecture (CUDA) device).16

11.4.9 Device Distance Structure17

The pmix_device_distance_t structure contains the minimum and maximum relative18
distance from the caller to a given device.19

PMIx v4.0 C
typedef struct pmix_device_distance {20

char *uuid;21
char *osname;22
pmix_device_type_t type;23
uint16_t mindist;24
uint16_t maxdist;25

} pmix_device_distance_t;26

C

The uuid is a string identifier guaranteed to be unique within the cluster and is typically assembled27
from discovered device attributes (e.g., the Internet Protocol (IP) address of the device). The28
osname is the local operating system name of the device and is only unique to that node.29

The two distance fields provide the minimum and maximum relative distance to the device from the30
specified location of the process, expressed as a 16-bit integer value where a smaller number31
indicates that this device is closer to the process than a device with a larger distance value. Note32
that relative distance values are not necessarily correlated to a physical property - e.g., a device at33
twice the distance from another device does not necessarily have twice the latency for34
communication with it.35

CHAPTER 11. PROCESS MANAGEMENT 197

Relative distances only apply to similar devices and cannot be used to compare devices of different1
types. Both minimum and maximum distances are provided to support cases where the process may2
be bound to more than one location, and the locations are at different distances from the device.3

A relative distance value of UINT16_MAX indicates that the distance from the process to the4
device could not be provided. This may be due to lack of available information (e.g., the PMIx5
library not having access to device locations) or other factors.6

11.4.10 Device distance support macros7

The following macros are provided to support the pmix_device_distance_t structure.8

Initialize the device distance structure9
Initialize the pmix_device_distance_t fields.10

PMIx v4.0 C
PMIX_DEVICE_DIST_CONSTRUCT(m)11

C

IN m12
Pointer to the structure to be initialized (pointer to pmix_device_distance_t)13

Destruct the device distance structure14
Destruct the pmix_device_distance_t fields.15

PMIx v4.0 C
PMIX_DEVICE_DIST_DESTRUCT(m)16

C

IN m17
Pointer to the structure to be destructed (pointer to pmix_device_distance_t)18

Create an device distance array19
Allocate and initialize a pmix_device_distance_t array.20

PMIx v4.0 C
PMIX_DEVICE_DIST_CREATE(m, n)21

C

INOUT m22
Address where the pointer to the array of pmix_device_distance_t structures shall be23
stored (handle)24

IN n25
Number of structures to be allocated (size_t)26

198 PMIx Standard – Version 4.1 – October 2021

Release an device distance array1
Release an array of pmix_device_distance_t structures.2

C
PMIX_DEVICE_DIST_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_device_distance_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

11.4.11 Device distance attributes8

The following attributes can be used to retrieve device distances from the PMIx data store. Note9
that distances stored by the host environment are based on the process location at the time of start10
of execution and may not reflect changes to location imposed by the process itself.11
PMIX_DEVICE_DISTANCES "pmix.dev.dist" (pmix_data_array_t)12

Return an array of pmix_device_distance_t containing the minimum and maximum13
distances of the given process location to all devices of the specified type on the local node.14

PMIX_DEVICE_TYPE "pmix.dev.type" (pmix_device_type_t)15
Bitmask specifying the type(s) of device(s) whose information is being requested. Only used16
as a directive/qualifier.17

PMIX_DEVICE_ID "pmix.dev.id" (string)18
System-wide Universally Unique IDentifier (UUID) or node-local Operating System (OS)19
name of a particular device.20

CHAPTER 11. PROCESS MANAGEMENT 199

CHAPTER 12

Job Management and Reporting

The job management APIs provide an application with the ability to orchestrate its operation in1
partnership with the SMS. Members of this category include the2
PMIx_Allocation_request, PMIx_Job_control, and PMIx_Process_monitor3
APIs.4

12.1 Allocation Requests5

This section defines functionality to request new allocations from the RM, and request6
modifications to existing allocations. These are primarily used in the following scenarios:7

• Evolving applications that dynamically request and return resources as they execute.8

• Malleable environments where the scheduler redirects resources away from executing9
applications for higher priority jobs or load balancing.10

• Resilient applications that need to request replacement resources in the face of failures.11

• Rigid jobs where the user has requested a static allocation of resources for a fixed period of time,12
but realizes that they underestimated their required time while executing.13

PMIx attempts to address this range of use-cases with a flexible API.14

12.1.1 PMIx_Allocation_request15

Summary16
Request an allocation operation from the host resource manager.17

Format18 PMIx v3.0 C
pmix_status_t19
PMIx_Allocation_request(pmix_alloc_directive_t directive,20

pmix_info_t info[], size_t ninfo,21
pmix_info_t *results[], size_t *nresults);22

200

C

IN directive1
Allocation directive (pmix_alloc_directive_t)2

IN info3
Array of pmix_info_t structures (array of handles)4

IN ninfo5
Number of elements in the info array (integer)6

INOUT results7
Address where a pointer to an array of pmix_info_t containing the results of the request8
can be returned (memory reference)9

INOUT nresults10
Address where the number of elements in results can be returned (handle)11

Returns one of the following:12

• PMIX_SUCCESS, indicating that the request was processed and returned success13

• a PMIx error constant indicating either an error in the input or that the request was refused14

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any15
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is16
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making17
the request.18

Host environments that implement support for this operation are required to support the following19
attributes:20

PMIX_ALLOC_REQ_ID "pmix.alloc.reqid" (char*)21
User-provided string identifier for this allocation request which can later be used to query22
status of the request.23

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)24
The number of nodes being requested in an allocation request.25

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)26
Number of PUs being requested in an allocation request.27

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)28
Total session time (in seconds) being requested in an allocation request.29

CHAPTER 12. JOB MANAGEMENT AND REPORTING 201

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)2
Regular expression of the specific nodes being requested in an allocation request.3

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)4
Regular expression of the number of PUs for each node being requested in an allocation5
request.6

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)7
Regular expression of the specific PUs being requested in an allocation request.8

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)9
Number of Megabytes[base2] of memory (per process) being requested in an allocation10
request.11

PMIX_ALLOC_FABRIC "pmix.alloc.net" (array)12
Array of pmix_info_t describing requested fabric resources. This must include at least:13
PMIX_ALLOC_FABRIC_ID, PMIX_ALLOC_FABRIC_TYPE, and14
PMIX_ALLOC_FABRIC_ENDPTS, plus whatever other descriptors are desired.15

PMIX_ALLOC_FABRIC_ID "pmix.alloc.netid" (char*)16
The key to be used when accessing this requested fabric allocation. The fabric allocation17
will be returned/stored as a pmix_data_array_t of pmix_info_t whose first18
element is composed of this key and the allocated resource description. The type of the19
included value depends upon the fabric support. For example, a Transmission Control20
Protocol (TCP) allocation might consist of a comma-delimited string of socket ranges such21
as "32000-32100,33005,38123-38146". Additional array entries will consist of22
any provided resource request directives, along with their assigned values. Examples23
include: PMIX_ALLOC_FABRIC_TYPE - the type of resources provided;24
PMIX_ALLOC_FABRIC_PLANE - if applicable, what plane the resources were assigned25
from; PMIX_ALLOC_FABRIC_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -26
the allocated bandwidth; PMIX_ALLOC_FABRIC_SEC_KEY - a security key for the27
requested fabric allocation. NOTE: the array contents may differ from those requested,28
especially if PMIX_INFO_REQD was not set in the request.29

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)30
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation31
request.32

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)33
Fabric quality of service level for the job being requested in an allocation request.34

PMIX_ALLOC_FABRIC_TYPE "pmix.alloc.nettype" (char*)35
Type of desired transport (e.g., “tcp”, “udp”) being requested in an allocation request.36

PMIX_ALLOC_FABRIC_PLANE "pmix.alloc.netplane" (char*)37

202 PMIx Standard – Version 4.1 – October 2021

ID string for the fabric plane to be used for the requested allocation.1

PMIX_ALLOC_FABRIC_ENDPTS "pmix.alloc.endpts" (size_t)2
Number of endpoints to allocate per process in the job.3

PMIX_ALLOC_FABRIC_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)4
Number of endpoints to allocate per node for the job.5

PMIX_ALLOC_FABRIC_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)6
Request that the allocation include a fabric security key for the spawned job.7

Description8
Request an allocation operation from the host resource manager. Several broad categories are9
envisioned, including the ability to:10

• Request allocation of additional resources, including memory, bandwidth, and compute. This11
should be accomplished in a non-blocking manner so that the application can continue to12
progress while waiting for resources to become available. Note that the new allocation will be13
disjoint from (i.e., not affiliated with) the allocation of the requestor - thus the termination of one14
allocation will not impact the other.15

• Extend the reservation on currently allocated resources, subject to scheduling availability and16
priorities. This includes extending the time limit on current resources, and/or requesting17
additional resources be allocated to the requesting job. Any additional allocated resources will be18
considered as part of the current allocation, and thus will be released at the same time.19

• Return no-longer-required resources to the scheduler. This includes the “loan” of resources back20
to the scheduler with a promise to return them upon subsequent request.21

If successful, the returned results for a request for additional resources must include the host22
resource manager’s identifier (PMIX_ALLOC_ID) that the requester can use to specify the23
resources in, for example, a call to PMIx_Spawn.24

12.1.2 PMIx_Allocation_request_nb25

Summary26
Request an allocation operation from the host resource manager.27

CHAPTER 12. JOB MANAGEMENT AND REPORTING 203

Format1 C
pmix_status_t2
PMIx_Allocation_request_nb(pmix_alloc_directive_t directive,3

pmix_info_t info[], size_t ninfo,4
pmix_info_cbfunc_t cbfunc, void *cbdata);5

C

IN directive6
Allocation directive (pmix_alloc_directive_t)7

IN info8
Array of pmix_info_t structures (array of handles)9

IN ninfo10
Number of elements in the info array (integer)11

IN cbfunc12
Callback function pmix_info_cbfunc_t (function reference)13

IN cbdata14
Data to be passed to the callback function (memory reference)15

Returns one of the following:16

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result17
will be returned in the provided cbfunc. Note that the library must not invoke the callback18
function prior to returning from the API.19

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and20
returned success - the cbfunc will not be called21

• a PMIx error constant indicating either an error in the input or that the request was immediately22
processed and failed - the cbfunc will not be called23

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any24
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is25
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making26
the request.27

Host environments that implement support for this operation are required to support the following28
attributes:29

PMIX_ALLOC_REQ_ID "pmix.alloc.reqid" (char*)30
User-provided string identifier for this allocation request which can later be used to query31
status of the request.32

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)33
The number of nodes being requested in an allocation request.34

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)35

204 PMIx Standard – Version 4.1 – October 2021

Number of PUs being requested in an allocation request.1

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)2
Total session time (in seconds) being requested in an allocation request.3

Optional Attributes

The following attributes are optional for host environments that support this operation:4

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)5
Regular expression of the specific nodes being requested in an allocation request.6

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)7
Regular expression of the number of PUs for each node being requested in an allocation8
request.9

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)10
Regular expression of the specific PUs being requested in an allocation request.11

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)12
Number of Megabytes[base2] of memory (per process) being requested in an allocation13
request.14

PMIX_ALLOC_FABRIC "pmix.alloc.net" (array)15
Array of pmix_info_t describing requested fabric resources. This must include at least:16
PMIX_ALLOC_FABRIC_ID, PMIX_ALLOC_FABRIC_TYPE, and17
PMIX_ALLOC_FABRIC_ENDPTS, plus whatever other descriptors are desired.18

PMIX_ALLOC_FABRIC_ID "pmix.alloc.netid" (char*)19
The key to be used when accessing this requested fabric allocation. The fabric allocation20
will be returned/stored as a pmix_data_array_t of pmix_info_t whose first21
element is composed of this key and the allocated resource description. The type of the22
included value depends upon the fabric support. For example, a TCP allocation might23
consist of a comma-delimited string of socket ranges such as "32000-32100,24
33005,38123-38146". Additional array entries will consist of any provided resource25
request directives, along with their assigned values. Examples include:26
PMIX_ALLOC_FABRIC_TYPE - the type of resources provided;27
PMIX_ALLOC_FABRIC_PLANE - if applicable, what plane the resources were assigned28
from; PMIX_ALLOC_FABRIC_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -29
the allocated bandwidth; PMIX_ALLOC_FABRIC_SEC_KEY - a security key for the30
requested fabric allocation. NOTE: the array contents may differ from those requested,31
especially if PMIX_INFO_REQD was not set in the request.32

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)33
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation34
request.35

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)36

CHAPTER 12. JOB MANAGEMENT AND REPORTING 205

Fabric quality of service level for the job being requested in an allocation request.1

PMIX_ALLOC_FABRIC_TYPE "pmix.alloc.nettype" (char*)2
Type of desired transport (e.g., “tcp”, “udp”) being requested in an allocation request.3

PMIX_ALLOC_FABRIC_PLANE "pmix.alloc.netplane" (char*)4
ID string for the fabric plane to be used for the requested allocation.5

PMIX_ALLOC_FABRIC_ENDPTS "pmix.alloc.endpts" (size_t)6
Number of endpoints to allocate per process in the job.7

PMIX_ALLOC_FABRIC_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)8
Number of endpoints to allocate per node for the job.9

PMIX_ALLOC_FABRIC_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)10
Request that the allocation include a fabric security key for the spawned job.11

Description12
Non-blocking form of the PMIx_Allocation_request API.13

12.1.3 Job Allocation attributes14

Attributes used to describe the job allocation - these are values passed to and/or returned by the15
PMIx_Allocation_request_nb and PMIx_Allocation_request APIs and are not16
accessed using the PMIx_Get API.17

PMIX_ALLOC_REQ_ID "pmix.alloc.reqid" (char*)18
User-provided string identifier for this allocation request which can later be used to query19
status of the request.20

PMIX_ALLOC_ID "pmix.alloc.id" (char*)21
A string identifier (provided by the host environment) for the resulting allocation which can22
later be used to reference the allocated resources in, for example, a call to PMIx_Spawn.23

PMIX_ALLOC_QUEUE "pmix.alloc.queue" (char*)24
Name of the WLM queue to which the allocation request is to be directed, or the queue being25
referenced in a query.26

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)27
The number of nodes being requested in an allocation request.28

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)29
Regular expression of the specific nodes being requested in an allocation request.30

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)31
Number of PUs being requested in an allocation request.32

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)33
Regular expression of the number of PUs for each node being requested in an allocation34
request.35

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)36

206 PMIx Standard – Version 4.1 – October 2021

Regular expression of the specific PUs being requested in an allocation request.1
PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)2

Number of Megabytes[base2] of memory (per process) being requested in an allocation3
request.4

PMIX_ALLOC_FABRIC "pmix.alloc.net" (array)5
Array of pmix_info_t describing requested fabric resources. This must include at least:6
PMIX_ALLOC_FABRIC_ID, PMIX_ALLOC_FABRIC_TYPE, and7
PMIX_ALLOC_FABRIC_ENDPTS, plus whatever other descriptors are desired.8

PMIX_ALLOC_FABRIC_ID "pmix.alloc.netid" (char*)9
The key to be used when accessing this requested fabric allocation. The fabric allocation10
will be returned/stored as a pmix_data_array_t of pmix_info_t whose first11
element is composed of this key and the allocated resource description. The type of the12
included value depends upon the fabric support. For example, a TCP allocation might13
consist of a comma-delimited string of socket ranges such as "32000-32100,14
33005,38123-38146". Additional array entries will consist of any provided resource15
request directives, along with their assigned values. Examples include:16
PMIX_ALLOC_FABRIC_TYPE - the type of resources provided;17
PMIX_ALLOC_FABRIC_PLANE - if applicable, what plane the resources were assigned18
from; PMIX_ALLOC_FABRIC_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -19
the allocated bandwidth; PMIX_ALLOC_FABRIC_SEC_KEY - a security key for the20
requested fabric allocation. NOTE: the array contents may differ from those requested,21
especially if PMIX_INFO_REQD was not set in the request.22

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)23
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation24
request.25

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)26
Fabric quality of service level for the job being requested in an allocation request.27

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)28
Total session time (in seconds) being requested in an allocation request.29

PMIX_ALLOC_FABRIC_TYPE "pmix.alloc.nettype" (char*)30
Type of desired transport (e.g., “tcp”, “udp”) being requested in an allocation request.31

PMIX_ALLOC_FABRIC_PLANE "pmix.alloc.netplane" (char*)32
ID string for the fabric plane to be used for the requested allocation.33

PMIX_ALLOC_FABRIC_ENDPTS "pmix.alloc.endpts" (size_t)34
Number of endpoints to allocate per process in the job.35

PMIX_ALLOC_FABRIC_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)36
Number of endpoints to allocate per node for the job.37

PMIX_ALLOC_FABRIC_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)38
Request that the allocation include a fabric security key for the spawned job.39

12.1.4 Job Allocation Directives40

PMIx v2.0 The pmix_alloc_directive_t structure is a uint8_t type that defines the behavior of41
allocation requests. The following constants can be used to set a variable of the type42

CHAPTER 12. JOB MANAGEMENT AND REPORTING 207

pmix_alloc_directive_t. All definitions were introduced in version 2 of the standard1
unless otherwise marked.2

PMIX_ALLOC_NEW A new allocation is being requested. The resulting allocation will be3
disjoint (i.e., not connected in a job sense) from the requesting allocation.4

PMIX_ALLOC_EXTEND Extend the existing allocation, either in time or as additional5
resources.6

PMIX_ALLOC_RELEASE Release part of the existing allocation. Attributes in the7
accompanying pmix_info_t array may be used to specify permanent release of the8
identified resources, or “lending” of those resources for some period of time.9

PMIX_ALLOC_REAQUIRE Reacquire resources that were previously “lent” back to the10
scheduler.11

PMIX_ALLOC_EXTERNAL A value boundary above which implementers are free to define12
their own directive values.13

12.2 Job Control14

This section defines APIs that enable the application and host environment to coordinate the15
response to failures and other events. This can include requesting termination of the entire job or a16
subset of processes within a job, but can also be used in combination with other PMIx capabilities17
(e.g., allocation support and event notification) for more nuanced responses. For example, an18
application notified of an incipient over-temperature condition on a node could use the19
PMIx_Allocation_request_nb interface to request replacement nodes while20
simultaneously using the PMIx_Job_control_nb interface to direct that a checkpoint event be21
delivered to all processes in the application. If replacement resources are not available, the22
application might use the PMIx_Job_control_nb interface to request that the job continue at a23
lower power setting, perhaps sufficient to avoid the over-temperature failure.24

The job control APIs can also be used by an application to register itself as available for preemption25
when operating in an environment such as a cloud or where incentives, financial or otherwise, are26
provided to jobs willing to be preempted. Registration can include attributes indicating how many27
resources are being offered for preemption (e.g., all or only some portion), whether the application28
will require time to prepare for preemption, etc. Jobs that request a warning will receive an event29
notifying them of an impending preemption (possibly including information as to the resources that30
will be taken away, how much time the application will be given prior to being preempted, whether31
the preemption will be a suspension or full termination, etc.) so they have an opportunity to save32
their work. Once the application is ready, it calls the provided event completion callback function to33
indicate that the SMS is free to suspend or terminate it, and can include directives regarding any34
desired restart.35

12.2.1 PMIx_Job_control36

Summary37
Request a job control action.38

208 PMIx Standard – Version 4.1 – October 2021

Format1 C
pmix_status_t2
PMIx_Job_control(const pmix_proc_t targets[], size_t ntargets,3

const pmix_info_t directives[], size_t ndirs,4
pmix_info_t *results[], size_t *nresults);5

C

IN targets6
Array of proc structures (array of handles)7

IN ntargets8
Number of elements in the targets array (integer)9

IN directives10
Array of info structures (array of handles)11

IN ndirs12
Number of elements in the directives array (integer)13

INOUT results14
Address where a pointer to an array of pmix_info_t containing the results of the request15
can be returned (memory reference)16

INOUT nresults17
Address where the number of elements in results can be returned (handle)18

Returns one of the following:19

• PMIX_SUCCESS, indicating that the request was processed by the host environment and20
returned success. Details of the result will be returned in the results array21

• a PMIx error constant indicating either an error in the input or that the request was refused22

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any23
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is24
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making25
the request.26

Host environments that implement support for this operation are required to support the following27
attributes:28

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)29
Provide a string identifier for this request. The user can provide an identifier for the30
requested operation, thus allowing them to later request status of the operation or to31
terminate it. The host, therefore, shall track it with the request for future reference.32

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)33
Pause the specified processes.34

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)35

CHAPTER 12. JOB MANAGEMENT AND REPORTING 209

Resume (“un-pause”) the specified processes.1

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)2
Forcibly terminate the specified processes and cleanup.3

PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)4
Send given signal to specified processes.5

PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)6
Politely terminate the specified processes.7

PMIX_REGISTER_CLEANUP "pmix.reg.cleanup" (char*)8
Comma-delimited list of files to be removed upon process termination.9

PMIX_REGISTER_CLEANUP_DIR "pmix.reg.cleanupdir" (char*)10
Comma-delimited list of directories to be removed upon process termination.11

PMIX_CLEANUP_RECURSIVE "pmix.clnup.recurse" (bool)12
Recursively cleanup all subdirectories under the specified one(s).13

PMIX_CLEANUP_EMPTY "pmix.clnup.empty" (bool)14
Only remove empty subdirectories.15

PMIX_CLEANUP_IGNORE "pmix.clnup.ignore" (char*)16
Comma-delimited list of filenames that are not to be removed.17

PMIX_CLEANUP_LEAVE_TOPDIR "pmix.clnup.lvtop" (bool)18
When recursively cleaning subdirectories, do not remove the top-level directory (the one19
given in the cleanup request).20

Optional Attributes

The following attributes are optional for host environments that support this operation:21

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)22
Cancel the specified request - the provided request ID must match the23
PMIX_JOB_CTRL_ID provided to a previous call to PMIx_Job_control. An ID of24
NULL implies cancel all requests from this requestor.25

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)26
Restart the specified processes using the given checkpoint ID.27

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)28
Checkpoint the specified processes and assign the given ID to it.29

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)30
Use event notification to trigger a process checkpoint.31

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)32
Use the given signal to trigger a process checkpoint.33

210 PMIx Standard – Version 4.1 – October 2021

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)1
Time in seconds to wait for a checkpoint to complete.2

PMIX_JOB_CTRL_CHECKPOINT_METHOD3
"pmix.jctrl.ckmethod" (pmix_data_array_t)4

Array of pmix_info_t declaring each method and value supported by this application.5

PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)6
Regular expression identifying nodes that are to be provisioned.7

PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)8
Name of the image that is to be provisioned.9

PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)10
Indicate that the job can be pre-empted.11

Description12
Request a job control action. The targets array identifies the processes to which the requested job13
control action is to be applied. All clones of an identified process are to have the requested action14
applied to them. A NULL value can be used to indicate all processes in the caller’s namespace. The15
use of PMIX_RANK_WILDCARD can also be used to indicate that all processes in the given16
namespace are to be included.17

The directives are provided as pmix_info_t structures in the directives array. The returned18
status indicates whether or not the request was granted, and information as to the reason for any19
denial of the request shall be returned in the results array.20

12.2.2 PMIx_Job_control_nb21

Summary22
Request a job control action.23

Format24 PMIx v2.0 C
pmix_status_t25
PMIx_Job_control_nb(const pmix_proc_t targets[], size_t ntargets,26

const pmix_info_t directives[], size_t ndirs,27
pmix_info_cbfunc_t cbfunc, void *cbdata);28

CHAPTER 12. JOB MANAGEMENT AND REPORTING 211

C

IN targets1
Array of proc structures (array of handles)2

IN ntargets3
Number of elements in the targets array (integer)4

IN directives5
Array of info structures (array of handles)6

IN ndirs7
Number of elements in the directives array (integer)8

IN cbfunc9
Callback function pmix_info_cbfunc_t (function reference)10

IN cbdata11
Data to be passed to the callback function (memory reference)12

Returns one of the following:13

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result14
will be returned in the provided cbfunc. Note that the library must not invoke the callback15
function prior to returning from the API.16

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and17
returned success - the cbfunc will not be called18

• a PMIx error constant indicating either an error in the input or that the request was immediately19
processed and failed - the cbfunc will not be called20

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any21
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is22
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making23
the request.24

Host environments that implement support for this operation are required to support the following25
attributes:26

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)27
Provide a string identifier for this request. The user can provide an identifier for the28
requested operation, thus allowing them to later request status of the operation or to29
terminate it. The host, therefore, shall track it with the request for future reference.30

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)31
Pause the specified processes.32

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)33
Resume (“un-pause”) the specified processes.34

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)35

212 PMIx Standard – Version 4.1 – October 2021

Forcibly terminate the specified processes and cleanup.1

PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)2
Send given signal to specified processes.3

PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)4
Politely terminate the specified processes.5

PMIX_REGISTER_CLEANUP "pmix.reg.cleanup" (char*)6
Comma-delimited list of files to be removed upon process termination.7

PMIX_REGISTER_CLEANUP_DIR "pmix.reg.cleanupdir" (char*)8
Comma-delimited list of directories to be removed upon process termination.9

PMIX_CLEANUP_RECURSIVE "pmix.clnup.recurse" (bool)10
Recursively cleanup all subdirectories under the specified one(s).11

PMIX_CLEANUP_EMPTY "pmix.clnup.empty" (bool)12
Only remove empty subdirectories.13

PMIX_CLEANUP_IGNORE "pmix.clnup.ignore" (char*)14
Comma-delimited list of filenames that are not to be removed.15

PMIX_CLEANUP_LEAVE_TOPDIR "pmix.clnup.lvtop" (bool)16
When recursively cleaning subdirectories, do not remove the top-level directory (the one17
given in the cleanup request).18

Optional Attributes

The following attributes are optional for host environments that support this operation:19

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)20
Cancel the specified request - the provided request ID must match the21
PMIX_JOB_CTRL_ID provided to a previous call to PMIx_Job_control. An ID of22
NULL implies cancel all requests from this requestor.23

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)24
Restart the specified processes using the given checkpoint ID.25

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)26
Checkpoint the specified processes and assign the given ID to it.27

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)28
Use event notification to trigger a process checkpoint.29

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)30
Use the given signal to trigger a process checkpoint.31

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)32
Time in seconds to wait for a checkpoint to complete.33

CHAPTER 12. JOB MANAGEMENT AND REPORTING 213

PMIX_JOB_CTRL_CHECKPOINT_METHOD1
"pmix.jctrl.ckmethod" (pmix_data_array_t)2

Array of pmix_info_t declaring each method and value supported by this application.3

PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)4
Regular expression identifying nodes that are to be provisioned.5

PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)6
Name of the image that is to be provisioned.7

PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)8
Indicate that the job can be pre-empted.9

Description10
Non-blocking form of the PMIx_Job_control API. The targets array identifies the processes to11
which the requested job control action is to be applied. All clones of an identified process are to12
have the requested action applied to them. A NULL value can be used to indicate all processes in13
the caller’s namespace. The use of PMIX_RANK_WILDCARD can also be used to indicate that all14
processes in the given namespace are to be included.15

The directives are provided as pmix_info_t structures in the directives array. The callback16
function provides a status to indicate whether or not the request was granted, and to provide some17
information as to the reason for any denial in the pmix_info_cbfunc_t array of18
pmix_info_t structures.19

12.2.3 Job control constants20

The following constants are specifically defined for return by the job control APIs:21

PMIX_ERR_CONFLICTING_CLEANUP_DIRECTIVES Conflicting directives given for22
job/process cleanup.23

12.2.4 Job control events24

The following job control events may be available for registration, depending upon implementation25
and host environment support:26

PMIX_JCTRL_CHECKPOINT Monitored by PMIx client to trigger a checkpoint operation.27
PMIX_JCTRL_CHECKPOINT_COMPLETE Sent by a PMIx client and monitored by a PMIx28

server to notify that requested checkpoint operation has completed.29
PMIX_JCTRL_PREEMPT_ALERT Monitored by a PMIx client to detect that an RM intends to30

preempt the job.31
PMIX_ERR_PROC_RESTART Error in process restart.32
PMIX_ERR_PROC_CHECKPOINT Error in process checkpoint.33
PMIX_ERR_PROC_MIGRATE Error in process migration.34

214 PMIx Standard – Version 4.1 – October 2021

12.2.5 Job control attributes1

Attributes used to request control operations on an executing application - these are values passed2
to the job control APIs and are not accessed using the PMIx_Get API.3

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)4
Provide a string identifier for this request. The user can provide an identifier for the5
requested operation, thus allowing them to later request status of the operation or to6
terminate it. The host, therefore, shall track it with the request for future reference.7

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)8
Pause the specified processes.9

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)10
Resume (“un-pause”) the specified processes.11

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)12
Cancel the specified request - the provided request ID must match the13
PMIX_JOB_CTRL_ID provided to a previous call to PMIx_Job_control. An ID of14
NULL implies cancel all requests from this requestor.15

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)16
Forcibly terminate the specified processes and cleanup.17

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)18
Restart the specified processes using the given checkpoint ID.19

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)20
Checkpoint the specified processes and assign the given ID to it.21

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)22
Use event notification to trigger a process checkpoint.23

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)24
Use the given signal to trigger a process checkpoint.25

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)26
Time in seconds to wait for a checkpoint to complete.27

PMIX_JOB_CTRL_CHECKPOINT_METHOD28
"pmix.jctrl.ckmethod" (pmix_data_array_t)29

Array of pmix_info_t declaring each method and value supported by this application.30
PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)31

Send given signal to specified processes.32
PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)33

Regular expression identifying nodes that are to be provisioned.34
PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)35

Name of the image that is to be provisioned.36
PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)37

Indicate that the job can be pre-empted.38
PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)39

Politely terminate the specified processes.40
PMIX_REGISTER_CLEANUP "pmix.reg.cleanup" (char*)41

Comma-delimited list of files to be removed upon process termination.42

CHAPTER 12. JOB MANAGEMENT AND REPORTING 215

PMIX_REGISTER_CLEANUP_DIR "pmix.reg.cleanupdir" (char*)1
Comma-delimited list of directories to be removed upon process termination.2

PMIX_CLEANUP_RECURSIVE "pmix.clnup.recurse" (bool)3
Recursively cleanup all subdirectories under the specified one(s).4

PMIX_CLEANUP_EMPTY "pmix.clnup.empty" (bool)5
Only remove empty subdirectories.6

PMIX_CLEANUP_IGNORE "pmix.clnup.ignore" (char*)7
Comma-delimited list of filenames that are not to be removed.8

PMIX_CLEANUP_LEAVE_TOPDIR "pmix.clnup.lvtop" (bool)9
When recursively cleaning subdirectories, do not remove the top-level directory (the one10
given in the cleanup request).11

12.3 Process and Job Monitoring12

In addition to external faults, a common problem encountered in HPC applications is a failure to13
make progress due to some internal conflict in the computation. These situations can result in a14
significant waste of resources as the SMS is unaware of the problem, and thus cannot terminate the15
job. Various watchdog methods have been developed for detecting this situation, including16
requiring a periodic “heartbeat” from the application and monitoring a specified file for changes in17
size and/or modification time.18

The following APIs allow applications to request monitoring, directing what is to be monitored, the19
frequency of the associated check, whether or not the application is to be notified (via the event20
notification subsystem) of stall detection, and other characteristics of the operation.21

12.3.1 PMIx_Process_monitor22

Summary23
Request that application processes be monitored.24

Format25 PMIx v3.0 C
pmix_status_t26
PMIx_Process_monitor(const pmix_info_t *monitor,27

pmix_status_t error,28
const pmix_info_t directives[], size_t ndirs,29
pmix_info_t *results[], size_t *nresults);30

C

IN monitor31
info (handle)32

IN error33
status (integer)34

216 PMIx Standard – Version 4.1 – October 2021

IN directives1
Array of info structures (array of handles)2

IN ndirs3
Number of elements in the directives array (integer)4

INOUT results5
Address where a pointer to an array of pmix_info_t containing the results of the request6
can be returned (memory reference)7

INOUT nresults8
Address where the number of elements in results can be returned (handle)9

Returns one of the following:10

• PMIX_SUCCESS, indicating that the request was processed and returned success. Details of the11
result will be returned in the results array12

• a PMIx error constant indicating either an error in the input or that the request was refused13

Optional Attributes

The following attributes may be implemented by a PMIx library or by the host environment. If14
supported by the PMIx server library, then the library must not pass the supported attributes to the15
host environment. All attributes not directly supported by the server library must be passed to the16
host environment if it supports this operation, and the library is required to add the17
PMIX_USERID and the PMIX_GRPID attributes of the requesting process:18

PMIX_MONITOR_ID "pmix.monitor.id" (char*)19
Provide a string identifier for this request.20

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)21
Identifier to be canceled (NULL means cancel all monitoring for this process).22

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)23
The application desires to control the response to a monitoring event - i.e., the application is24
requesting that the host environment not take immediate action in response to the event (e.g.,25
terminating the job).26

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)27
Register to have the PMIx server monitor the requestor for heartbeats.28

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)29
Time in seconds before declaring heartbeat missed.30

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)31
Number of heartbeats that can be missed before generating the event.32

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)33
Register to monitor file for signs of life.34

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)35
Monitor size of given file is growing to determine if the application is running.36

CHAPTER 12. JOB MANAGEMENT AND REPORTING 217

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)1
Monitor time since last access of given file to determine if the application is running.2

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)3
Monitor time since last modified of given file to determine if the application is running.4

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)5
Time in seconds between checking the file.6

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)7
Number of file checks that can be missed before generating the event.8

PMIX_SEND_HEARTBEAT "pmix.monitor.beat" (void)9
Send heartbeat to local PMIx server.10

Description11
Request that application processes be monitored via several possible methods. For example, that12
the server monitor this process for periodic heartbeats as an indication that the process has not13
become “wedged”. When a monitor detects the specified alarm condition, it will generate an event14
notification using the provided error code and passing along any available relevant information. It15
is up to the caller to register a corresponding event handler.16

The monitor argument is an attribute indicating the type of monitor being requested. For example,17
PMIX_MONITOR_FILE to indicate that the requestor is asking that a file be monitored.18

The error argument is the status code to be used when generating an event notification alerting that19
the monitor has been triggered. The range of the notification defaults to20
PMIX_RANGE_NAMESPACE. This can be changed by providing a PMIX_RANGE directive.21

The directives argument characterizes the monitoring request (e.g., monitor file size) and frequency22
of checking to be done23

The returned status indicates whether or not the request was granted, and information as to the24
reason for any denial of the request shall be returned in the results array.25

12.3.2 PMIx_Process_monitor_nb26

Summary27
Request that application processes be monitored.28

218 PMIx Standard – Version 4.1 – October 2021

Format1 C
pmix_status_t2
PMIx_Process_monitor_nb(const pmix_info_t *monitor,3

pmix_status_t error,4
const pmix_info_t directives[],5
size_t ndirs,6
pmix_info_cbfunc_t cbfunc, void *cbdata);7

C

IN monitor8
info (handle)9

IN error10
status (integer)11

IN directives12
Array of info structures (array of handles)13

IN ndirs14
Number of elements in the directives array (integer)15

IN cbfunc16
Callback function pmix_info_cbfunc_t (function reference)17

IN cbdata18
Data to be passed to the callback function (memory reference)19

Returns one of the following:20

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result21
will be returned in the provided cbfunc. Note that the library must not invoke the callback22
function prior to returning from the API.23

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and24
returned success - the cbfunc will not be called.25

• a PMIx error constant indicating either an error in the input or that the request was immediately26
processed and failed - the cbfunc will not be called.27

Optional Attributes

The following attributes may be implemented by a PMIx library or by the host environment. If28
supported by the PMIx server library, then the library must not pass the supported attributes to the29
host environment. All attributes not directly supported by the server library must be passed to the30
host environment if it supports this operation, and the library is required to add the31
PMIX_USERID and the PMIX_GRPID attributes of the requesting process:32

PMIX_MONITOR_ID "pmix.monitor.id" (char*)33
Provide a string identifier for this request.34

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)35

CHAPTER 12. JOB MANAGEMENT AND REPORTING 219

Identifier to be canceled (NULL means cancel all monitoring for this process).1

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)2
The application desires to control the response to a monitoring event - i.e., the application is3
requesting that the host environment not take immediate action in response to the event (e.g.,4
terminating the job).5

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)6
Register to have the PMIx server monitor the requestor for heartbeats.7

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)8
Time in seconds before declaring heartbeat missed.9

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)10
Number of heartbeats that can be missed before generating the event.11

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)12
Register to monitor file for signs of life.13

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)14
Monitor size of given file is growing to determine if the application is running.15

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)16
Monitor time since last access of given file to determine if the application is running.17

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)18
Monitor time since last modified of given file to determine if the application is running.19

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)20
Time in seconds between checking the file.21

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)22
Number of file checks that can be missed before generating the event.23

PMIX_SEND_HEARTBEAT "pmix.monitor.beat" (void)24
Send heartbeat to local PMIx server.25

Description26
Non-blocking form of the PMIx_Process_monitor API. The cbfunc function provides a27
status to indicate whether or not the request was granted, and to provide some information as to the28
reason for any denial in the pmix_info_cbfunc_t array of pmix_info_t structures.29

12.3.3 PMIx_Heartbeat30

Summary31
Send a heartbeat to the PMIx server library32

220 PMIx Standard – Version 4.1 – October 2021

Format1 C
PMIx_Heartbeat();2

C

Description3
A simplified macro wrapping PMIx_Process_monitor_nb that sends a heartbeat to the PMIx4
server library.5

12.3.4 Monitoring events6

The following monitoring events may be available for registration, depending upon implementation7
and host environment support:8

PMIX_MONITOR_HEARTBEAT_ALERT Heartbeat failed to arrive within specified window.9
The process that triggered this alert will be identified in the event.10

PMIX_MONITOR_FILE_ALERT File failed its monitoring detection criteria. The file that11
triggered this alert will be identified in the event.12

12.3.5 Monitoring attributes13

Attributes used to control monitoring of an executing application- these are values passed to the14
PMIx_Process_monitor_nb API and are not accessed using the PMIx_Get API.15

PMIX_MONITOR_ID "pmix.monitor.id" (char*)16
Provide a string identifier for this request.17

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)18
Identifier to be canceled (NULL means cancel all monitoring for this process).19

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)20
The application desires to control the response to a monitoring event - i.e., the application is21
requesting that the host environment not take immediate action in response to the event (e.g.,22
terminating the job).23

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)24
Register to have the PMIx server monitor the requestor for heartbeats.25

PMIX_SEND_HEARTBEAT "pmix.monitor.beat" (void)26
Send heartbeat to local PMIx server.27

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)28
Time in seconds before declaring heartbeat missed.29

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)30
Number of heartbeats that can be missed before generating the event.31

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)32
Register to monitor file for signs of life.33

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)34
Monitor size of given file is growing to determine if the application is running.35

CHAPTER 12. JOB MANAGEMENT AND REPORTING 221

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)1
Monitor time since last access of given file to determine if the application is running.2

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)3
Monitor time since last modified of given file to determine if the application is running.4

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)5
Time in seconds between checking the file.6

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)7
Number of file checks that can be missed before generating the event.8

12.4 Logging9

The logging interface supports posting information by applications and SMS elements to persistent10
storage. This function is not intended for output of computational results, but rather for reporting11
status and saving state information such as inserting computation progress reports into the12
application’s SMS job log or error reports to the local syslog.13

12.4.1 PMIx_Log14

Summary15
Log data to a data service.16

Format17 PMIx v3.0 C
pmix_status_t18
PMIx_Log(const pmix_info_t data[], size_t ndata,19

const pmix_info_t directives[], size_t ndirs);20

C

IN data21
Array of info structures (array of handles)22

IN ndata23
Number of elements in the data array (size_t)24

IN directives25
Array of info structures (array of handles)26

IN ndirs27
Number of elements in the directives array (size_t)28

Return codes are one of the following:29

PMIX_SUCCESS The logging request was successful.30
PMIX_ERR_BAD_PARAM The logging request contains at least one incorrect entry.31
PMIX_ERR_NOT_SUPPORTED The PMIx implementation or host environment does not support32

this function.33
other appropriate PMIx error code34

222 PMIx Standard – Version 4.1 – October 2021

Required Attributes

If the PMIx library does not itself perform this operation, then it is required to pass any attributes1
provided by the client to the host environment for processing. In addition, it must include the2
following attributes in the passed info array:3

PMIX_USERID "pmix.euid" (uint32_t)4
Effective user ID of the connecting process.5

PMIX_GRPID "pmix.egid" (uint32_t)6
Effective group ID of the connecting process.7

Host environments or PMIx libraries that implement support for this operation are required to8
support the following attributes:9

PMIX_LOG_STDERR "pmix.log.stderr" (char*)10
Log string to stderr.11

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)12
Log string to stdout.13

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)14
Log data to syslog. Defaults to ERROR priority. Will log to global syslog if available,15
otherwise to local syslog.16

PMIX_LOG_LOCAL_SYSLOG "pmix.log.lsys" (char*)17
Log data to local syslog. Defaults to ERROR priority.18

PMIX_LOG_GLOBAL_SYSLOG "pmix.log.gsys" (char*)19
Forward data to system “gateway” and log msg to that syslog Defaults to ERROR priority.20

PMIX_LOG_SYSLOG_PRI "pmix.log.syspri" (int)21
Syslog priority level.22

PMIX_LOG_ONCE "pmix.log.once" (bool)23
Only log this once with whichever channel can first support it, taking the channels in priority24
order.25

Optional Attributes

The following attributes are optional for host environments or PMIx libraries that support this26
operation:27

PMIX_LOG_SOURCE "pmix.log.source" (pmix_proc_t*)28
ID of source of the log request.29

PMIX_LOG_TIMESTAMP "pmix.log.tstmp" (time_t)30
Timestamp for log report.31

PMIX_LOG_GENERATE_TIMESTAMP "pmix.log.gtstmp" (bool)32

CHAPTER 12. JOB MANAGEMENT AND REPORTING 223

Generate timestamp for log.1

PMIX_LOG_TAG_OUTPUT "pmix.log.tag" (bool)2
Label the output stream with the channel name (e.g., “stdout”).3

PMIX_LOG_TIMESTAMP_OUTPUT "pmix.log.tsout" (bool)4
Print timestamp in output string.5

PMIX_LOG_XML_OUTPUT "pmix.log.xml" (bool)6
Print the output stream in eXtensible Markup Language (XML) format.7

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)8
Log via email based on pmix_info_t containing directives.9

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)10
Comma-delimited list of email addresses that are to receive the message.11

PMIX_LOG_EMAIL_SENDER_ADDR "pmix.log.emfaddr" (char*)12
Return email address of sender.13

PMIX_LOG_EMAIL_SERVER "pmix.log.esrvr" (char*)14
Hostname (or IP address) of SMTP server.15

PMIX_LOG_EMAIL_SRVR_PORT "pmix.log.esrvrprt" (int32_t)16
Port the email server is listening to.17

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)18
Subject line for email.19

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)20
Message to be included in email.21

PMIX_LOG_JOB_RECORD "pmix.log.jrec" (bool)22
Log the provided information to the host environment’s job record.23

PMIX_LOG_GLOBAL_DATASTORE "pmix.log.gstore" (bool)24
Store the log data in a global data store (e.g., database).25

Description26
Log data subject to the services offered by the host environment. The data to be logged is provided27
in the data array. The (optional) directives can be used to direct the choice of logging channel.28

Advice to users

It is strongly recommended that the PMIx_Log API not be used by applications for streaming data29
as it is not a “performant” transport and can perturb the application since it involves the local PMIx30
server and host SMS daemon. Note that a return of PMIX_SUCCESS only denotes that the data31
was successfully handed to the appropriate system call (for local channels) or the host environment32
and does not indicate receipt at the final destination.33

224 PMIx Standard – Version 4.1 – October 2021

12.4.2 PMIx_Log_nb1

Summary2
Log data to a data service.3

Format4 PMIx v2.0 C
pmix_status_t5
PMIx_Log_nb(const pmix_info_t data[], size_t ndata,6

const pmix_info_t directives[], size_t ndirs,7
pmix_op_cbfunc_t cbfunc, void *cbdata);8

C

IN data9
Array of info structures (array of handles)10

IN ndata11
Number of elements in the data array (size_t)12

IN directives13
Array of info structures (array of handles)14

IN ndirs15
Number of elements in the directives array (size_t)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Return codes are one of the following:21

PMIX_SUCCESS The logging request is valid and is being processed. The resulting status from22
the operation will be provided in the callback function. Note that the library must not invoke23
the callback function prior to returning from the API.24

PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

PMIX_ERR_BAD_PARAM The logging request contains at least one incorrect entry that prevents27
it from being processed. The callback function will not be called.28

PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function. The29
callback function will not be called.30

other appropriate PMIx error code - the callback function will not be called.31

CHAPTER 12. JOB MANAGEMENT AND REPORTING 225

Required Attributes

If the PMIx library does not itself perform this operation, then it is required to pass any attributes1
provided by the client to the host environment for processing. In addition, it must include the2
following attributes in the passed info array:3

PMIX_USERID "pmix.euid" (uint32_t)4
Effective user ID of the connecting process.5

PMIX_GRPID "pmix.egid" (uint32_t)6
Effective group ID of the connecting process.7

Host environments or PMIx libraries that implement support for this operation are required to8
support the following attributes:9

PMIX_LOG_STDERR "pmix.log.stderr" (char*)10
Log string to stderr.11

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)12
Log string to stdout.13

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)14
Log data to syslog. Defaults to ERROR priority. Will log to global syslog if available,15
otherwise to local syslog.16

PMIX_LOG_LOCAL_SYSLOG "pmix.log.lsys" (char*)17
Log data to local syslog. Defaults to ERROR priority.18

PMIX_LOG_GLOBAL_SYSLOG "pmix.log.gsys" (char*)19
Forward data to system “gateway” and log msg to that syslog Defaults to ERROR priority.20

PMIX_LOG_SYSLOG_PRI "pmix.log.syspri" (int)21
Syslog priority level.22

PMIX_LOG_ONCE "pmix.log.once" (bool)23
Only log this once with whichever channel can first support it, taking the channels in priority24
order.25

Optional Attributes

The following attributes are optional for host environments or PMIx libraries that support this26
operation:27

PMIX_LOG_SOURCE "pmix.log.source" (pmix_proc_t*)28
ID of source of the log request.29

PMIX_LOG_TIMESTAMP "pmix.log.tstmp" (time_t)30
Timestamp for log report.31

PMIX_LOG_GENERATE_TIMESTAMP "pmix.log.gtstmp" (bool)32

226 PMIx Standard – Version 4.1 – October 2021

Generate timestamp for log.1

PMIX_LOG_TAG_OUTPUT "pmix.log.tag" (bool)2
Label the output stream with the channel name (e.g., “stdout”).3

PMIX_LOG_TIMESTAMP_OUTPUT "pmix.log.tsout" (bool)4
Print timestamp in output string.5

PMIX_LOG_XML_OUTPUT "pmix.log.xml" (bool)6
Print the output stream in XML format.7

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)8
Log via email based on pmix_info_t containing directives.9

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)10
Comma-delimited list of email addresses that are to receive the message.11

PMIX_LOG_EMAIL_SENDER_ADDR "pmix.log.emfaddr" (char*)12
Return email address of sender.13

PMIX_LOG_EMAIL_SERVER "pmix.log.esrvr" (char*)14
Hostname (or IP address) of SMTP server.15

PMIX_LOG_EMAIL_SRVR_PORT "pmix.log.esrvrprt" (int32_t)16
Port the email server is listening to.17

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)18
Subject line for email.19

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)20
Message to be included in email.21

PMIX_LOG_JOB_RECORD "pmix.log.jrec" (bool)22
Log the provided information to the host environment’s job record.23

PMIX_LOG_GLOBAL_DATASTORE "pmix.log.gstore" (bool)24
Store the log data in a global data store (e.g., database).25

Description26
Log data subject to the services offered by the host environment. The data to be logged is provided27
in the data array. The (optional) directives can be used to direct the choice of logging channel. The28
callback function will be executed when the log operation has been completed. The data and29
directives arrays must be maintained until the callback is provided.30

CHAPTER 12. JOB MANAGEMENT AND REPORTING 227

Advice to users

It is strongly recommended that the PMIx_Log_nb API not be used by applications for streaming1
data as it is not a “performant” transport and can perturb the application since it involves the local2
PMIx server and host SMS daemon. Note that a return of PMIX_SUCCESS only denotes that the3
data was successfully handed to the appropriate system call (for local channels) or the host4
environment and does not indicate receipt at the final destination.5

12.4.3 Log attributes6

Attributes used to describe PMIx_Log behavior - these are values passed to the PMIx_Log API7
and therefore are not accessed using the PMIx_Get API.8

PMIX_LOG_SOURCE "pmix.log.source" (pmix_proc_t*)9
ID of source of the log request.10

PMIX_LOG_STDERR "pmix.log.stderr" (char*)11
Log string to stderr.12

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)13
Log string to stdout.14

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)15
Log data to syslog. Defaults to ERROR priority. Will log to global syslog if available,16
otherwise to local syslog.17

PMIX_LOG_LOCAL_SYSLOG "pmix.log.lsys" (char*)18
Log data to local syslog. Defaults to ERROR priority.19

PMIX_LOG_GLOBAL_SYSLOG "pmix.log.gsys" (char*)20
Forward data to system “gateway” and log msg to that syslog Defaults to ERROR priority.21

PMIX_LOG_SYSLOG_PRI "pmix.log.syspri" (int)22
Syslog priority level.23

PMIX_LOG_TIMESTAMP "pmix.log.tstmp" (time_t)24
Timestamp for log report.25

PMIX_LOG_GENERATE_TIMESTAMP "pmix.log.gtstmp" (bool)26
Generate timestamp for log.27

PMIX_LOG_TAG_OUTPUT "pmix.log.tag" (bool)28
Label the output stream with the channel name (e.g., “stdout”).29

PMIX_LOG_TIMESTAMP_OUTPUT "pmix.log.tsout" (bool)30
Print timestamp in output string.31

PMIX_LOG_XML_OUTPUT "pmix.log.xml" (bool)32
Print the output stream in XML format.33

PMIX_LOG_ONCE "pmix.log.once" (bool)34
Only log this once with whichever channel can first support it, taking the channels in priority35
order.36

PMIX_LOG_MSG "pmix.log.msg" (pmix_byte_object_t)37

228 PMIx Standard – Version 4.1 – October 2021

Message blob to be sent somewhere.1
PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)2

Log via email based on pmix_info_t containing directives.3
PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)4

Comma-delimited list of email addresses that are to receive the message.5
PMIX_LOG_EMAIL_SENDER_ADDR "pmix.log.emfaddr" (char*)6

Return email address of sender.7
PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)8

Subject line for email.9
PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)10

Message to be included in email.11
PMIX_LOG_EMAIL_SERVER "pmix.log.esrvr" (char*)12

Hostname (or IP address) of SMTP server.13
PMIX_LOG_EMAIL_SRVR_PORT "pmix.log.esrvrprt" (int32_t)14

Port the email server is listening to.15
PMIX_LOG_GLOBAL_DATASTORE "pmix.log.gstore" (bool)16

Store the log data in a global data store (e.g., database).17
PMIX_LOG_JOB_RECORD "pmix.log.jrec" (bool)18

Log the provided information to the host environment’s job record.19

CHAPTER 12. JOB MANAGEMENT AND REPORTING 229

CHAPTER 13

Process Sets and Groups

PMIx supports two slightly related, but functionally different concepts known as process sets and1
process groups. This chapter defines these two concepts and describes how they are utilized, along2
with their corresponding APIs.3

13.1 Process Sets4

A PMIx Process Set is a user-provided or host environment assigned label associated with a given5
set of application processes. Processes can belong to multiple process sets at a time. Users may6
define a PMIx process set at time of application execution. For example, if using the command line7
parallel launcher "prun", one could specify process sets as follows:8

C
$ prun -n 4 --pset ocean myoceanapp : -n 3 --pset ice myiceapp9

C

In this example, the processes in the first application will be labeled with a PMIX_PSET_NAMES10
attribute with a value of ocean while those in the second application will be labeled with an ice11
value. During the execution, application processes could lookup the process set attribute for any12
process using PMIx_Get. Alternatively, other executing applications could utilize the13
PMIx_Query_info APIs to obtain the number of declared process sets in the system, a list of14
their names, and other information about them. In other words, the process set identifier provides a15
label by which an application can derive information about a process and its application - it does16
not, however, confer any operational function.17

Host environments can create or delete process sets at any time through the18
PMIx_server_define_process_set and PMIx_server_delete_process_set19
APIs. PMIx servers shall notify all local clients of process set operations via the20
PMIX_PROCESS_SET_DEFINE or PMIX_PROCESS_SET_DELETE events.21

Process sets differ from process groups in several key ways:22

• Process sets have no implied relationship between their members - i.e., a process in a process set23
has no concept of a “pset rank” as it would in a process group.24

• Process set identifiers are set by the host environment or by the user at time of application25
submission for execution - there are no PMIx APIs provided by which an application can define a26
process set or change a process set membership. In contrast, PMIx process groups can only be27
defined dynamically by the application.28

230

• Process sets are immutable - members cannot be added or removed once the set has been defined.1
In contrast, PMIx process groups can dynamically change their membership using the2
appropriate APIs.3

• Process groups can be used in calls to PMIx operations. Members of process groups that are4
involved in an operation are translated by their PMIx server into their native identifier prior to the5
operation being passed to the host environment. For example, an application can define a process6
group to consist of ranks 0 and 1 from the host-assigned namespace of 210456, identified by the7
group id of foo. If the application subsequently calls the PMIx_Fence API with a process8
identifier of {foo, PMIX_RANK_WILDCARD}, the PMIx server will replace that identifier9
with an array consisting of {210456, 0} and {210456, 1} - the host-assigned identifiers10
of the participating processes - prior to processing the request.11

• Process groups can request that the host environment assign a unique size_t Process Group12
Context IDentifier (PGCID) to the group at time of group construction. An Message Passing13
Interface (MPI) library may, for example, use the PGCID as the MPI communicator identifier for14
the group.15

The two concepts do, however, overlap in that they both involve collections of processes. Users16
desiring to create a process group based on a process set could, for example, obtain the membership17
array of the process set and use that as input to PMIx_Group_construct, perhaps including18
the process set name as the group identifier for clarity. Note that no linkage between the set and19
group of the same name is implied nor maintained - e.g., changes in process group membership can20
not be reflected in the process set using the same identifier.21

Advice to PMIx server hosts

The host environment is responsible for ensuring:22

• consistent knowledge of process set membership across all involved PMIx servers; and23

• that process set names do not conflict with system-assigned namespaces within the scope of the24
set.25

13.1.1 Process Set Constants26

PMIx v4.0 The PMIx server is required to send a notification to all local clients upon creation or deletion of27
process sets. Client processes wishing to receive such notifications must register for the28
corresponding event:29

PMIX_PROCESS_SET_DEFINE The host environment has defined a new process set - the30
event will include the process set name (PMIX_PSET_NAME) and the membership31
(PMIX_PSET_MEMBERS).32

PMIX_PROCESS_SET_DELETE The host environment has deleted a process set - the event33
will include the process set name (PMIX_PSET_NAME).34

CHAPTER 13. PROCESS SETS AND GROUPS 231

13.1.2 Process Set Attributes1

Several attributes are provided for querying the system regarding process sets using the2
PMIx_Query_info APIs.3

PMIX_QUERY_NUM_PSETS "pmix.qry.psetnum" (size_t)4
Return the number of process sets defined in the specified range (defaults to5
PMIX_RANGE_SESSION).6

PMIX_QUERY_PSET_NAMES "pmix.qry.psets" (pmix_data_array_t*)7
Return a pmix_data_array_t containing an array of strings of the process set names8
defined in the specified range (defaults to PMIX_RANGE_SESSION).9

PMIX_QUERY_PSET_MEMBERSHIP "pmix.qry.pmems" (pmix_data_array_t*)10
Return an array of pmix_proc_t containing the members of the specified process set.11

The PMIX_PROCESS_SET_DEFINE event shall include the name of the newly defined process12
set and its members: PMIX_PSET_NAME "pmix.pset.nm" (char*)13

The name of the newly defined process set.14
PMIX_PSET_MEMBERS "pmix.pset.mems" (pmix_data_array_t*)15

An array of pmix_proc_t containing the members of the newly defined process set.16

In addition, a process can request (via PMIx_Get) the process sets to which a given process17
(including itself) belongs:18

PMIX_PSET_NAMES "pmix.pset.nms" (pmix_data_array_t*)19
Returns an array of char* string names of the process sets in which the given process is a20
member.21

13.2 Process Groups22

PMIx Groups are defined as a collection of processes desiring a common, unique identifier for23
operational purposes such as passing events or participating in PMIx fence operations. As with24
processes that assemble via PMIx_Connect, each member of the group is provided with both the25
job-level information of any other namespace represented in the group, and the contact information26
for all group members.27

However, members of PMIx Groups are loosely coupled as opposed to tightly connected when28
constructed via PMIx_Connect. Thus, groups differ from PMIx_Connect assemblages in29
several key areas, as detailed in the following sections.30

13.2.1 Relation to the host environment31

Calls to PMIx Group APIs are first processed within the local PMIx server. When constructed, the32
server creates a tracker that associates the specified processes with the user-provided group33
identifier, and assigns a new group rank based on their relative position in the array of processes34
provided in the call to PMIx_Group_construct. Members of the group can subsequently35

232 PMIx Standard – Version 4.1 – October 2021

utilize the group identifier in PMIx function calls to address the group’s members, using either1
PMIX_RANK_WILDCARD to refer to all of them or the group-level rank of specific members. The2
PMIx server will translate the specified processes into their RM-assigned identifiers prior to3
passing the request up to its host. Thus, the host environment has no visibility into the group’s4
existence or membership.5

In contrast, calls to PMIx_Connect are relayed to the host environment. This means that the host6
RM should treat the failure of any process in the specified assemblage as a reportable event and7
take appropriate action. However, the environment is not required to define a new identifier for the8
connected assemblage or any of its member processes, nor does it define a new rank for each9
process within that assemblage. In addition, the PMIx server does not provide any tracking support10
for the assemblage. Thus, the caller is responsible for addressing members of the connected11
assemblage using their RM-provided identifiers.12

Advice to users

User-provided group identifiers must be distinct from both other group identifiers within the system13
and namespaces provided by the RM so as to avoid collisions between group identifiers and14
RM-assigned namespaces. This can usually be accomplished through the use of an15
application-specific prefix – e.g., “myapp-foo”16

13.2.2 Construction procedure17

PMIx_Connect calls require that every process call the API before completing – i.e., it is18
modeled upon the bulk synchronous traditional MPI connect/accept methodology. Thus, a given19
application thread can only be involved in one connect/accept operation at a time, and is blocked in20
that operation until all specified processes participate. In addition, there is no provision for21
replacing processes in the assemblage due to failure to participate, nor a mechanism by which a22
process might decline participation.23

In contrast, PMIx Groups are designed to be more flexible in their construction procedure by24
relaxing these constraints. While a standard blocking form of constructing groups is provided, the25
event notification system is utilized to provide a designated group leader with the ability to replace26
participants that fail to participate within a given timeout period. This provides a mechanism by27
which the application can, if desired, replace members on-the-fly or allow the group to proceed28
with partial membership. In such cases, the final group membership is returned to all participants29
upon completion of the operation.30

Additionally, PMIx supports dynamic definition of group membership based on an invite/join31
model. A process can asynchronously initiate construction of a group of any processes via the32
PMIx_Group_invite function call. Invitations are delivered via a PMIx event (using the33
PMIX_GROUP_INVITED event) to the invited processes which can then either accept or decline34
the invitation using the PMIx_Group_join API. The initiating process tracks responses by35
registering for the events generated by the call to PMIx_Group_join, timeouts, or process36

CHAPTER 13. PROCESS SETS AND GROUPS 233

terminations, optionally replacing processes that decline the invitation, fail to respond in time, or1
terminate without responding. Upon completion of the operation, the final list of participants is2
communicated to each member of the new group.3

13.2.3 Destruct procedure4

Members of a PMIx Group may depart the group at any time via the PMIx_Group_leave API.5
Other members are notified of the departure via the PMIX_GROUP_LEFT event to distinguish such6
events from those reporting process termination. This leaves the remaining members free to7
continue group operations. The PMIx_Group_destruct operation offers a collective method8
akin to PMIx_Disconnect for deconstructing the entire group.9

In contrast, processes that assemble via PMIx_Connect must all depart the assemblage together –10
i.e., no member can depart the assemblage while leaving the remaining members in it. Even the11
non-blocking form of PMIx_Disconnect retains this requirement in that members remain a part12
of the assemblage until all members have called PMIx_Disconnect_nb13

Note that applications supporting dynamic group behaviors such as asynchronous departure take14
responsibility for ensuring global consistency in the group definition prior to executing group15
collective operations - i.e., it is the application’s responsibility to either ensure that knowledge of16
the current group membership is globally consistent across the participants, or to register for17
appropriate events to deal with the lack of consistency during the operation.18

Advice to users

The reliance on PMIx events in the PMIx Group concept dictates that processes utilizing these APIs19
must register for the corresponding events. Failure to do so will likely lead to operational failures.20
Users are recommended to utilize the PMIX_TIMEOUT directive (or retain an internal timer) on21
calls to PMIx Group APIs (especially the blocking form of those functions) as processes that have22
not registered for required events will never respond.23

13.2.4 Process Group Events24

PMIx v4.0 Asynchronous process group operations rely heavily on PMIx events. The following events have25
been defined for that purpose.26

PMIX_GROUP_INVITED The process has been invited to join a PMIx Group - the identifier of27
the group and the ID’s of other invited (or already joined) members will be included in the28
notification.29

PMIX_GROUP_LEFT A process has asynchronously left a PMIx Group - the process identifier30
of the departing process will in included in the notification.31

PMIX_GROUP_MEMBER_FAILED A member of a PMIx Group has abnormally terminated32
(i.e., without formally leaving the group prior to termination) - the process identifier of the33
failed process will be included in the notification.34

234 PMIx Standard – Version 4.1 – October 2021

PMIX_GROUP_INVITE_ACCEPTED A process has accepted an invitation to join a PMIx1
Group - the identifier of the group being joined will be included in the notification.2

PMIX_GROUP_INVITE_DECLINED A process has declined an invitation to join a PMIx3
Group - the identifier of the declined group will be included in the notification.4

PMIX_GROUP_INVITE_FAILED An invited process failed or terminated prior to responding5
to the invitation - the identifier of the failed process will be included in the notification.6

PMIX_GROUP_MEMBERSHIP_UPDATE The membership of a PMIx group has changed - the7
identifiers of the revised membership will be included in the notification.8

PMIX_GROUP_CONSTRUCT_ABORT Any participant in a PMIx group construct operation9
that returns PMIX_GROUP_CONSTRUCT_ABORT from the leader failed event handler will10
cause all participants to receive an event notifying them of that status. Similarly, the leader11
may elect to abort the procedure by either returning this error code from the handler assigned12
to the PMIX_GROUP_INVITE_ACCEPTED or PMIX_GROUP_INVITE_DECLINED13
codes, or by generating an event for the abort code. Abort events will be sent to all invited or14
existing members of the group.15

PMIX_GROUP_CONSTRUCT_COMPLETE The group construct operation has completed - the16
final membership will be included in the notification.17

PMIX_GROUP_LEADER_FAILED The current leader of a group including this process has18
abnormally terminated - the group identifier will be included in the notification.19

PMIX_GROUP_LEADER_SELECTED A new leader of a group including this process has been20
selected - the identifier of the new leader will be included in the notification.21

PMIX_GROUP_CONTEXT_ID_ASSIGNED A new PGCID has been assigned by the host22
environment to a group that includes this process - the group identifier will be included in the23
notification.24

13.2.5 Process Group Attributes25

PMIx v4.0 Attributes for querying the system regarding process groups include:26

PMIX_QUERY_NUM_GROUPS "pmix.qry.pgrpnum" (size_t)27
Return the number of process groups defined in the specified range (defaults to session).28
OPTIONAL QUALIFERS: PMIX_RANGE.29

PMIX_QUERY_GROUP_NAMES "pmix.qry.pgrp" (pmix_data_array_t*)30
Return a pmix_data_array_t containing an array of string names of the process groups31
defined in the specified range (defaults to session). OPTIONAL QUALIFERS:32
PMIX_RANGE.33

PMIX_QUERY_GROUP_MEMBERSHIP34
"pmix.qry.pgrpmems" (pmix_data_array_t*)35

Return a pmix_data_array_t of pmix_proc_t containing the members of the36
specified process group. REQUIRED QUALIFIERS: PMIX_GROUP_ID.37

The following attributes are used as directives in PMIx Group operations:38

PMIX_GROUP_ID "pmix.grp.id" (char*)39

CHAPTER 13. PROCESS SETS AND GROUPS 235

User-provided group identifier - as the group identifier may be used in PMIx operations, the1
user is required to ensure that the provided ID is unique within the scope of the host2
environment (e.g., by including some user-specific or application-specific prefix or suffix to3
the string).4

PMIX_GROUP_LEADER "pmix.grp.ldr" (bool)5
This process is the leader of the group.6

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)7
Participation is optional - do not return an error if any of the specified processes terminate8
without having joined. The default is false.9

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)10
Notify remaining members when another member terminates without first leaving the group.11

PMIX_GROUP_FT_COLLECTIVE "pmix.grp.ftcoll" (bool)12
Adjust internal tracking on-the-fly for terminated processes during a PMIx group collective13
operation.14

PMIX_GROUP_MEMBERSHIP "pmix.grp.mbrs" (pmix_data_array_t*)15
Array pmix_proc_t identifiers identifying the members of the specified group.16

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)17
Requests that the RM assign a new context identifier to the newly created group. The18
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range19
specified in the request. Thus, the value serves as a means of identifying the group within20
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.21

PMIX_GROUP_LOCAL_ONLY "pmix.grp.lcl" (bool)22
Group operation only involves local processes. PMIx implementations are required to23
automatically scan an array of group members for local vs remote processes - if only local24
processes are detected, the implementation need not execute a global collective for the25
operation unless a context ID has been requested from the host environment. This can result26
in significant time savings. This attribute can be used to optimize the operation by indicating27
whether or not only local processes are represented, thus allowing the implementation to28
bypass the scan.29

The following attributes are used to return information at the conclusion of a PMIx Group30
operation and/or in event notifications:31

PMIX_GROUP_CONTEXT_ID "pmix.grp.ctxid" (size_t)32
Context identifier assigned to the group by the host RM.33

PMIX_GROUP_ENDPT_DATA "pmix.grp.endpt" (pmix_byte_object_t)34
Data collected during group construction to ensure communication between group members35
is supported upon completion of the operation.36

In addition, a process can request (via PMIx_Get) the process groups to which a given process37
(including itself) belongs:38

PMIX_GROUP_NAMES "pmix.pgrp.nm" (pmix_data_array_t*)39

236 PMIx Standard – Version 4.1 – October 2021

Returns an array of char* string names of the process groups in which the given process is1
a member.2

13.2.6 PMIx_Group_construct3

Summary4
Construct a PMIx process group.5

Format6 PMIx v4.0 C
pmix_status_t7
PMIx_Group_construct(const char grp[],8

const pmix_proc_t procs[], size_t nprocs,9
const pmix_info_t directives[],10
size_t ndirs,11
pmix_info_t **results,12
size_t *nresults);13

C
IN grp14

NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group15
identifier (string)16

IN procs17
Array of pmix_proc_t structures containing the PMIx identifiers of the member processes18
(array of handles)19

IN nprocs20
Number of elements in the procs array (size_t)21

IN directives22
Array of pmix_info_t structures (array of handles)23

IN ndirs24
Number of elements in the directives array (size_t)25

INOUT results26
Pointer to a location where the array of pmix_info_t describing the results of the27
operation is to be returned (pointer to handle)28

INOUT nresults29
Pointer to a size_t location where the number of elements in results is to be returned30
(memory reference)31

Returns one of the following:32

• PMIX_SUCCESS, indicating that the request has been successfully completed33

• PMIX_ERR_NOT_SUPPORTED The PMIx library and/or the host RM does not support this34
operation35

• a PMIx error constant indicating either an error in the input or that the request failed to be36
completed37

CHAPTER 13. PROCESS SETS AND GROUPS 237

Required Attributes

The following attributes are required to be supported by all PMIx libraries that support this1
operation:2

PMIX_GROUP_LEADER "pmix.grp.ldr" (bool)3
This process is the leader of the group.4

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)5
Participation is optional - do not return an error if any of the specified processes terminate6
without having joined. The default is false.7

PMIX_GROUP_LOCAL_ONLY "pmix.grp.lcl" (bool)8
Group operation only involves local processes. PMIx implementations are required to9
automatically scan an array of group members for local vs remote processes - if only local10
processes are detected, the implementation need not execute a global collective for the11
operation unless a context ID has been requested from the host environment. This can result12
in significant time savings. This attribute can be used to optimize the operation by indicating13
whether or not only local processes are represented, thus allowing the implementation to14
bypass the scan.15

PMIX_GROUP_FT_COLLECTIVE "pmix.grp.ftcoll" (bool)16
Adjust internal tracking on-the-fly for terminated processes during a PMIx group collective17
operation.18

Host environments that support this operation are required to support the following attributes:19

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)20
Requests that the RM assign a new context identifier to the newly created group. The21
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range22
specified in the request. Thus, the value serves as a means of identifying the group within23
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.24

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)25
Notify remaining members when another member terminates without first leaving the group.26

27

Optional Attributes

The following attributes are optional for host environments that support this operation:28

PMIX_TIMEOUT "pmix.timeout" (int)29
Time in seconds before the specified operation should time out (zero indicating infinite) and30
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions31
caused by multiple layers (client, server, and host) simultaneously timing the operation.32

238 PMIx Standard – Version 4.1 – October 2021

Description1
Construct a new group composed of the specified processes and identified with the provided group2
identifier. The group identifier is a user-defined, NULL-terminated character array of length less3
than or equal to PMIX_MAX_NSLEN. Only characters accepted by standard string comparison4
functions (e.g., strncmp) are supported. Processes may engage in multiple simultaneous group5
construct operations so long as each is provided with a unique group ID. The directives array can be6
used to pass user-level directives regarding timeout constraints and other options available from the7
PMIx server.8

If the PMIX_GROUP_NOTIFY_TERMINATION attribute is provided and has a value of true,9
then either the construct leader (if PMIX_GROUP_LEADER is provided) or all participants who10
register for the PMIX_GROUP_MEMBER_FAILED event will receive events whenever a process11
fails or terminates prior to calling PMIx_Group_construct – i.e. if a group leader is declared,12
only that process will receive the event. In the absence of a declared leader, all specified group13
members will receive the event.14

The event will contain the identifier of the process that failed to join plus any other information that15
the host RM provided. This provides an opportunity for the leader or the collective members to16
react to the event – e.g., to decide to proceed with a smaller group or to abort the operation. The17
decision is communicated to the PMIx library in the results array at the end of the event handler.18
This allows PMIx to properly adjust accounting for procedure completion. When construct is19
complete, the participating PMIx servers will be alerted to any change in participants and each20
group member will receive an updated group membership (marked with the21
PMIX_GROUP_MEMBERSHIP attribute) as part of the results array returned by this API.22

Failure of the declared leader at any time will cause a PMIX_GROUP_LEADER_FAILED event to23
be delivered to all participants so they can optionally declare a new leader. A new leader is24
identified by providing the PMIX_GROUP_LEADER attribute in the results array in the return of25
the event handler. Only one process is allowed to return that attribute, thereby declaring itself as the26
new leader. Results of the leader selection will be communicated to all participants via a27
PMIX_GROUP_LEADER_SELECTED event identifying the new leader. If no leader was selected,28
then the pmix_info_t provided to that event handler will include that information so the29
participants can take appropriate action.30

Any participant that returns PMIX_GROUP_CONSTRUCT_ABORT from either the31
PMIX_GROUP_MEMBER_FAILED or the PMIX_GROUP_LEADER_FAILED event handler will32
cause the construct process to abort, returning from the call with a33
PMIX_GROUP_CONSTRUCT_ABORT status.34

If the PMIX_GROUP_NOTIFY_TERMINATION attribute is not provided or has a value of35
false, then the PMIx_Group_construct operation will simply return an error whenever a36
proposed group member fails or terminates prior to calling PMIx_Group_construct.37

Providing the PMIX_GROUP_OPTIONAL attribute with a value of true directs the PMIx library38
to consider participation by any specified group member as non-required - thus, the operation will39
return PMIX_SUCCESS if all members participate, or PMIX_ERR_PARTIAL_SUCCESS if some40

CHAPTER 13. PROCESS SETS AND GROUPS 239

members fail to participate. The results array will contain the final group membership in the latter1
case. Note that this use-case can cause the operation to hang if the PMIX_TIMEOUT attribute is2
not specified and one or more group members fail to call PMIx_Group_construct while3
continuing to execute. Also, note that no leader or member failed events will be generated during4
the operation.5

Processes in a group under construction are not allowed to leave the group until group construction6
is complete. Upon completion of the construct procedure, each group member will have access to7
the job-level information of all namespaces represented in the group plus any information posted8
via PMIx_Put (subject to the usual scoping directives) for every group member.9

Advice to PMIx library implementers

At the conclusion of the construct operation, the PMIx library is required to ensure that job-related10
information from each participating namespace plus any information posted by group members via11
PMIx_Put (subject to scoping directives) is available to each member via calls to PMIx_Get.12

Advice to PMIx server hosts

The collective nature of this API generally results in use of a fence-like operation by the backend13
host environment. Host environments that utilize the array of process participants as a signature for14
such operations may experience potential conflicts should both a PMIx_Group_construct and15
a PMIx_Fence operation involving the same participants be simultaneously executed. As PMIx16
allows for such use-cases, it is therefore the responsibility of the host environment to resolve any17
potential conflicts.18

13.2.7 PMIx_Group_construct_nb19

Summary20
Non-blocking form of PMIx_Group_construct.21

240 PMIx Standard – Version 4.1 – October 2021

Format1 C
pmix_status_t2
PMIx_Group_construct_nb(const char grp[],3

const pmix_proc_t procs[], size_t nprocs,4
const pmix_info_t directives[],5
size_t ndirs,6
pmix_info_cbfunc_t cbfunc, void *cbdata);7

C

IN grp8
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group9
identifier (string)10

IN procs11
Array of pmix_proc_t structures containing the PMIx identifiers of the member processes12
(array of handles)13

IN nprocs14
Number of elements in the procs array (size_t)15

IN directives16
Array of pmix_info_t structures (array of handles)17

IN ndirs18
Number of elements in the directives array (size_t)19

IN cbfunc20
Callback function pmix_info_cbfunc_t (function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

Returns one of the following:24

• PMIX_SUCCESS indicating that the request has been accepted for processing and the provided25
callback function will be executed upon completion of the operation. Note that the library must26
not invoke the callback function prior to returning from the API.27

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and28
returned success - the cbfunc will not be called.29

• PMIX_ERR_NOT_SUPPORTED The PMIx library does not support this operation - the cbfunc30
will not be called.31

• a non-zero PMIx error constant indicating a reason for the request to have been rejected - the32
cbfunc will not be called.33

If executed, the status returned in the provided callback function will be one of the following34
constants:35

• PMIX_SUCCESS The operation succeeded and all specified members participated.36

CHAPTER 13. PROCESS SETS AND GROUPS 241

• PMIX_ERR_PARTIAL_SUCCESS The operation succeeded but not all specified members1
participated - the final group membership is included in the callback function.2

• PMIX_ERR_NOT_SUPPORTEDWhile the PMIx server supports this operation, the host RM3
does not.4

• a non-zero PMIx error constant indicating a reason for the request’s failure.5

Required Attributes

PMIx libraries that choose not to support this operation must return6
PMIX_ERR_NOT_SUPPORTED when the function is called.7

The following attributes are required to be supported by all PMIx libraries that support this8
operation:9

PMIX_GROUP_LEADER "pmix.grp.ldr" (bool)10
This process is the leader of the group.11

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)12
Participation is optional - do not return an error if any of the specified processes terminate13
without having joined. The default is false.14

PMIX_GROUP_LOCAL_ONLY "pmix.grp.lcl" (bool)15
Group operation only involves local processes. PMIx implementations are required to16
automatically scan an array of group members for local vs remote processes - if only local17
processes are detected, the implementation need not execute a global collective for the18
operation unless a context ID has been requested from the host environment. This can result19
in significant time savings. This attribute can be used to optimize the operation by indicating20
whether or not only local processes are represented, thus allowing the implementation to21
bypass the scan.22

PMIX_GROUP_FT_COLLECTIVE "pmix.grp.ftcoll" (bool)23
Adjust internal tracking on-the-fly for terminated processes during a PMIx group collective24
operation.25

Host environments that support this operation are required to provide the following attributes:26

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)27
Requests that the RM assign a new context identifier to the newly created group. The28
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range29
specified in the request. Thus, the value serves as a means of identifying the group within30
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.31

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)32
Notify remaining members when another member terminates without first leaving the group.33

34

242 PMIx Standard – Version 4.1 – October 2021

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Non-blocking version of the PMIx_Group_construct operation. The callback function will be7
called once all group members have called either PMIx_Group_construct or8
PMIx_Group_construct_nb.9

13.2.8 PMIx_Group_destruct10

Summary11
Destruct a PMIx process group.12

Format13 PMIx v4.0 C
pmix_status_t14
PMIx_Group_destruct(const char grp[],15

const pmix_info_t directives[],16
size_t ndirs);17

C

IN grp18
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the19
identifier of the group to be destructed (string)20

IN directives21
Array of pmix_info_t structures (array of handles)22

IN ndirs23
Number of elements in the directives array (size_t)24

Returns one of the following:25

• PMIX_SUCCESS, indicating that the request has been successfully completed26

• PMIX_ERR_NOT_SUPPORTED The PMIx library and/or the host RM does not support this27
operation28

• a PMIx error constant indicating either an error in the input or that the request failed to be29
completed30

CHAPTER 13. PROCESS SETS AND GROUPS 243

Required Attributes

For implementations and host environments that support the operation, there are no identified1
required attributes for this API.2

Optional Attributes

The following attributes are optional for host environments that support this operation:3

PMIX_TIMEOUT "pmix.timeout" (int)4
Time in seconds before the specified operation should time out (zero indicating infinite) and5
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions6
caused by multiple layers (client, server, and host) simultaneously timing the operation.7

Description8
Destruct a group identified by the provided group identifier. Processes may engage in multiple9
simultaneous group destruct operations so long as each involves a unique group ID. The directives10
array can be used to pass user-level directives regarding timeout constraints and other options11
available from the PMIx server.12

The destruct API will return an error if any group process fails or terminates prior to calling13
PMIx_Group_destruct or its non-blocking version unless the14
PMIX_GROUP_NOTIFY_TERMINATION attribute was provided (with a value of false) at time15
of group construction. If notification was requested, then the PMIX_GROUP_MEMBER_FAILED16
event will be delivered for each process that fails to call destruct and the destruct tracker updated to17
account for the lack of participation. The PMIx_Group_destruct operation will subsequently18
return PMIX_SUCCESS when the remaining processes have all called destruct – i.e., the event will19
serve in place of return of an error.20

Advice to PMIx server hosts

The collective nature of this API generally results in use of a fence-like operation by the backend21
host environment. Host environments that utilize the array of process participants as a signature for22
such operations may experience potential conflicts should both a PMIx_Group_destruct and a23
PMIx_Fence operation involving the same participants be simultaneously executed. As PMIx24
allows for such use-cases, it is therefore the responsibility of the host environment to resolve any25
potential conflicts.26

13.2.9 PMIx_Group_destruct_nb27

Summary28
Non-blocking form of PMIx_Group_destruct.29

244 PMIx Standard – Version 4.1 – October 2021

Format1 C
pmix_status_t2
PMIx_Group_destruct_nb(const char grp[],3

const pmix_info_t directives[],4
size_t ndirs,5
pmix_op_cbfunc_t cbfunc, void *cbdata);6

C

IN grp7
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the8
identifier of the group to be destructed (string)9

IN directives10
Array of pmix_info_t structures (array of handles)11

IN ndirs12
Number of elements in the directives array (size_t)13

IN cbfunc14
Callback function pmix_op_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS, indicating that the request is being processed - result will be returned in the19
provided cbfunc. Note that the library must not invoke the callback function prior to returning20
from the API.21

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and22
returned success - the cbfunc will not be called23

• PMIX_ERR_NOT_SUPPORTED The PMIx library does not support this operation - the cbfunc24
will not be called.25

• a PMIx error constant indicating either an error in the input or that the request was immediately26
processed and failed - the cbfunc will not be called.27

If executed, the status returned in the provided callback function will be one of the following28
constants:29

• PMIX_SUCCESS The operation was successfully completed.30

• PMIX_ERR_NOT_SUPPORTEDWhile the PMIx server supports this operation, the host RM31
does not.32

• a non-zero PMIx error constant indicating a reason for the request’s failure.33

CHAPTER 13. PROCESS SETS AND GROUPS 245

Required Attributes

PMIx libraries that choose not to support this operation must return1
PMIX_ERR_NOT_SUPPORTED when the function is called. For implementations and host2
environments that support the operation, there are no identified required attributes for this API.3

Optional Attributes

The following attributes are optional for host environments that support this operation:4

PMIX_TIMEOUT "pmix.timeout" (int)5
Time in seconds before the specified operation should time out (zero indicating infinite) and6
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions7
caused by multiple layers (client, server, and host) simultaneously timing the operation.8

Description9
Non-blocking version of the PMIx_Group_destruct operation. The callback function will be10
called once all members of the group have executed either PMIx_Group_destruct or11
PMIx_Group_destruct_nb.12

13.2.10 PMIx_Group_invite13

Summary14
Asynchronously construct a PMIx process group.15

246 PMIx Standard – Version 4.1 – October 2021

Format1 C
pmix_status_t2
PMIx_Group_invite(const char grp[],3

const pmix_proc_t procs[], size_t nprocs,4
const pmix_info_t directives[], size_t ndirs,5
pmix_info_t **results, size_t *nresult);6

C

IN grp7
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group8
identifier (string)9

IN procs10
Array of pmix_proc_t structures containing the PMIx identifiers of the processes to be11
invited (array of handles)12

IN nprocs13
Number of elements in the procs array (size_t)14

IN directives15
Array of pmix_info_t structures (array of handles)16

IN ndirs17
Number of elements in the directives array (size_t)18

INOUT results19
Pointer to a location where the array of pmix_info_t describing the results of the20
operation is to be returned (pointer to handle)21

INOUT nresults22
Pointer to a size_t location where the number of elements in results is to be returned23
(memory reference)24

Returns one of the following:25

• PMIX_SUCCESS, indicating that the request has been successfully completed.26

• PMIX_ERR_NOT_SUPPORTED The PMIx library and/or the host RM does not support this27
operation.28

• a PMIx error constant indicating either an error in the input or that the request failed to be29
completed.30

Required Attributes

The following attributes are required to be supported by all PMIx libraries that support this31
operation:32

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)33
Participation is optional - do not return an error if any of the specified processes terminate34
without having joined. The default is false.35

PMIX_GROUP_FT_COLLECTIVE "pmix.grp.ftcoll" (bool)36

CHAPTER 13. PROCESS SETS AND GROUPS 247

Adjust internal tracking on-the-fly for terminated processes during a PMIx group collective1
operation.2

Host environments that support this operation are required to provide the following attributes:3

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)4
Requests that the RM assign a new context identifier to the newly created group. The5
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range6
specified in the request. Thus, the value serves as a means of identifying the group within7
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.8

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)9
Notify remaining members when another member terminates without first leaving the group.10

11

Optional Attributes

The following attributes are optional for host environments that support this operation:12

PMIX_TIMEOUT "pmix.timeout" (int)13
Time in seconds before the specified operation should time out (zero indicating infinite) and14
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions15
caused by multiple layers (client, server, and host) simultaneously timing the operation.16

Description17
Explicitly invite the specified processes to join a group. The process making the18
PMIx_Group_invite call is automatically declared to be the group leader. Each invited19
process will be notified of the invitation via the PMIX_GROUP_INVITED event - the processes20
being invited must therefore register for the PMIX_GROUP_INVITED event in order to be notified21
of the invitation. Note that the PMIx event notification system caches events - thus, no ordering of22
invite versus event registration is required.23

The invitation event will include the identity of the inviting process plus the name of the group.24
When ready to respond, each invited process provides a response using either the blocking or25
non-blocking form of PMIx_Group_join. This will notify the inviting process that the26
invitation was either accepted (via the PMIX_GROUP_INVITE_ACCEPTED event) or declined27
(via the PMIX_GROUP_INVITE_DECLINED event). The PMIX_GROUP_INVITE_ACCEPTED28
event is captured by the PMIx client library of the inviting process – i.e., the application itself does29
not need to register for this event. The library will track the number of accepting processes and30
alert the inviting process (by returning from the blocking form of PMIx_Group_invite or31
calling the callback function of the non-blocking form) when group construction completes.32

The inviting process should, however, register for the PMIX_GROUP_INVITE_DECLINED if the33
application allows invited processes to decline the invitation. This provides an opportunity for the34
application to either invite a replacement, declare “abort”, or choose to remove the declining35

248 PMIx Standard – Version 4.1 – October 2021

process from the final group. The inviting process should also register to receive1
PMIX_GROUP_INVITE_FAILED events whenever a process fails or terminates prior to2
responding to the invitation. Actions taken by the inviting process in response to these events must3
be communicated at the end of the event handler by returning the corresponding result so that the4
PMIx library can adjust accordingly.5

Upon completion of the operation, all members of the new group will receive access to the job-level6
information of each other’s namespaces plus any information posted via PMIx_Put by the other7
members.8

The inviting process is automatically considered the leader of the asynchronous group construction9
procedure and will receive all failure or termination events for invited members prior to completion.10
The inviting process is required to provide a PMIX_GROUP_CONSTRUCT_COMPLETE event once11
the group has been fully assembled – this event is used by the PMIx library as a trigger to release12
participants from their call to PMIx_Group_join and provides information (e.g., the final group13
membership) to be returned in the results array.14

Failure of the inviting process at any time will cause a PMIX_GROUP_LEADER_FAILED event to15
be delivered to all participants so they can optionally declare a new leader. A new leader is16
identified by providing the PMIX_GROUP_LEADER attribute in the results array in the return of17
the event handler. Only one process is allowed to return that attribute, declaring itself as the new18
leader. Results of the leader selection will be communicated to all participants via a19
PMIX_GROUP_LEADER_SELECTED event identifying the new leader. If no leader was selected,20
then the status code provided in the event handler will provide an error value so the participants can21
take appropriate action.22

Advice to users

Applications are not allowed to use the group in any operations until group construction is23
complete. This is required in order to ensure consistent knowledge of group membership across all24
participants.25

13.2.11 PMIx_Group_invite_nb26

Summary27
Non-blocking form of PMIx_Group_invite.28

CHAPTER 13. PROCESS SETS AND GROUPS 249

Format1 C
pmix_status_t2
PMIx_Group_invite_nb(const char grp[],3

const pmix_proc_t procs[], size_t nprocs,4
const pmix_info_t directives[], size_t ndirs,5
pmix_info_cbfunc_t cbfunc, void *cbdata);6

C
IN grp7

NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group8
identifier (string)9

IN procs10
Array of pmix_proc_t structures containing the PMIx identifiers of the processes to be11
invited (array of handles)12

IN nprocs13
Number of elements in the procs array (size_t)14

IN directives15
Array of pmix_info_t structures (array of handles)16

IN ndirs17
Number of elements in the directives array (size_t)18

IN cbfunc19
Callback function pmix_info_cbfunc_t (function reference)20

IN cbdata21
Data to be passed to the callback function (memory reference)22

Returns one of the following:23

• PMIX_SUCCESS, indicating that the request is being processed - result will be returned in the24
provided cbfunc. Note that the library must not invoke the callback function prior to returning25
from the API.26

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and27
returned success - the cbfunc will not be called.28

• PMIX_ERR_NOT_SUPPORTED The PMIx library does not support this operation - the cbfunc29
will not be called.30

• a PMIx error constant indicating either an error in the input or that the request was immediately31
processed and failed - the cbfunc will not be called.32

If executed, the status returned in the provided callback function will be one of the following33
constants:34

• PMIX_SUCCESS The operation succeeded and all specified members participated.35

• PMIX_ERR_PARTIAL_SUCCESS The operation succeeded but not all specified members36
participated - the final group membership is included in the callback function.37

250 PMIx Standard – Version 4.1 – October 2021

• PMIX_ERR_NOT_SUPPORTEDWhile the PMIx server supports this operation, the host RM1
does not.2

• a non-zero PMIx error constant indicating a reason for the request’s failure.3

Required Attributes

The following attributes are required to be supported by all PMIx libraries that support this4
operation:5

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)6
Participation is optional - do not return an error if any of the specified processes terminate7
without having joined. The default is false.8

PMIX_GROUP_FT_COLLECTIVE "pmix.grp.ftcoll" (bool)9
Adjust internal tracking on-the-fly for terminated processes during a PMIx group collective10
operation.11

Host environments that support this operation are required to provide the following attributes:12

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)13
Requests that the RM assign a new context identifier to the newly created group. The14
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range15
specified in the request. Thus, the value serves as a means of identifying the group within16
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.17

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)18
Notify remaining members when another member terminates without first leaving the group.19

20

Optional Attributes

The following attributes are optional for host environments that support this operation:21

PMIX_TIMEOUT "pmix.timeout" (int)22
Time in seconds before the specified operation should time out (zero indicating infinite) and23
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions24
caused by multiple layers (client, server, and host) simultaneously timing the operation.25

Description26
Non-blocking version of the PMIx_Group_invite operation. The callback function will be27
called once all invited members of the group (or their substitutes) have executed either28
PMIx_Group_join or PMIx_Group_join_nb.29

CHAPTER 13. PROCESS SETS AND GROUPS 251

13.2.12 PMIx_Group_join1

Summary2
Accept an invitation to join a PMIx process group.3

Format4 PMIx v4.0 C
pmix_status_t5
PMIx_Group_join(const char grp[],6

const pmix_proc_t *leader,7
pmix_group_opt_t opt,8
const pmix_info_t directives[], size_t ndirs,9
pmix_info_t **results, size_t *nresult);10

C

IN grp11
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group12
identifier (string)13

IN leader14
Process that generated the invitation (handle)15

IN opt16
Accept or decline flag (pmix_group_opt_t)17

IN directives18
Array of pmix_info_t structures (array of handles)19

IN ndirs20
Number of elements in the directives array (size_t)21

INOUT results22
Pointer to a location where the array of pmix_info_t describing the results of the23
operation is to be returned (pointer to handle)24

INOUT nresults25
Pointer to a size_t location where the number of elements in results is to be returned26
(memory reference)27

Returns one of the following:28

• PMIX_SUCCESS, indicating that the request has been successfully completed.29

• PMIX_ERR_NOT_SUPPORTED The PMIx library and/or the host RM does not support this30
operation.31

• a PMIx error constant indicating either an error in the input or that the request failed to be32
completed.33

Required Attributes

There are no identified required attributes for implementers.34

252 PMIx Standard – Version 4.1 – October 2021

Optional Attributes
The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Respond to an invitation to join a group that is being asynchronously constructed. The process must7
have registered for the PMIX_GROUP_INVITED event in order to be notified of the invitation.8
When called, the event information will include the pmix_proc_t identifier of the process that9
generated the invitation along with the identifier of the group being constructed. When ready to10
respond, the process provides a response using either form of PMIx_Group_join.11

Advice to users
Since the process is alerted to the invitation in a PMIx event handler, the process must not use the12
blocking form of this call unless it first “thread shifts” out of the handler and into its own thread13
context. Likewise, while it is safe to call the non-blocking form of the API from the event handler,14
the process must not block in the handler while waiting for the callback function to be called.15

Calling this function causes the inviting process (aka the group leader) to be notified that the16
process has either accepted or declined the request. The blocking form of the API will return once17
the group has been completely constructed or the group’s construction has failed (as described18
below) – likewise, the callback function of the non-blocking form will be executed upon the same19
conditions.20

Failure of the leader during the call to PMIx_Group_join will cause a21
PMIX_GROUP_LEADER_FAILED event to be delivered to all invited participants so they can22
optionally declare a new leader. A new leader is identified by providing the23
PMIX_GROUP_LEADER attribute in the results array in the return of the event handler. Only one24
process is allowed to return that attribute, declaring itself as the new leader. Results of the leader25
selection will be communicated to all participants via a PMIX_GROUP_LEADER_SELECTED26
event identifying the new leader. If no leader was selected, then the status code provided in the27
event handler will provide an error value so the participants can take appropriate action.28

Any participant that returns PMIX_GROUP_CONSTRUCT_ABORT from the leader failed event29
handler will cause all participants to receive an event notifying them of that status. Similarly, the30
leader may elect to abort the procedure by either returning PMIX_GROUP_CONSTRUCT_ABORT31
from the handler assigned to the PMIX_GROUP_INVITE_ACCEPTED or32
PMIX_GROUP_INVITE_DECLINED codes, or by generating an event for the abort code. Abort33
events will be sent to all invited participants.34

CHAPTER 13. PROCESS SETS AND GROUPS 253

13.2.13 PMIx_Group_join_nb1

Summary2
Non-blocking form of PMIx_Group_join3

Format4 PMIx v4.0 C
pmix_status_t5
PMIx_Group_join_nb(const char grp[],6

const pmix_proc_t *leader,7
pmix_group_opt_t opt,8
const pmix_info_t directives[], size_t ndirs,9
pmix_info_cbfunc_t cbfunc, void *cbdata);10

C

IN grp11
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group12
identifier (string)13

IN leader14
Process that generated the invitation (handle)15

IN opt16
Accept or decline flag (pmix_group_opt_t)17

IN directives18
Array of pmix_info_t structures (array of handles)19

IN ndirs20
Number of elements in the directives array (size_t)21

IN cbfunc22
Callback function pmix_info_cbfunc_t (function reference)23

IN cbdata24
Data to be passed to the callback function (memory reference)25

Returns one of the following:26

• PMIX_SUCCESS, indicating that the request is being processed - result will be returned in the27
provided cbfunc. Note that the library must not invoke the callback function prior to returning28
from the API.29

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and30
returned success - the cbfunc will not be called.31

• PMIX_ERR_NOT_SUPPORTED The PMIx library does not support this operation - the cbfunc32
will not be called.33

• a PMIx error constant indicating either an error in the input or that the request was immediately34
processed and failed - the cbfunc will not be called.35

254 PMIx Standard – Version 4.1 – October 2021

If executed, the status returned in the provided callback function will be one of the following1
constants:2

• PMIX_SUCCESS The operation succeeded and group membership is in the callback function3
parameters.4

• PMIX_ERR_NOT_SUPPORTEDWhile the PMIx server supports this operation, the host RM5
does not.6

• a non-zero PMIx error constant indicating a reason for the request’s failure.7

Required Attributes

There are no identified required attributes for implementers.8

Optional Attributes

The following attributes are optional for host environments that support this operation:9

PMIX_TIMEOUT "pmix.timeout" (int)10
Time in seconds before the specified operation should time out (zero indicating infinite) and11
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions12
caused by multiple layers (client, server, and host) simultaneously timing the operation.13

Description14
Non-blocking version of the PMIx_Group_join operation. The callback function will be called15
once all invited members of the group (or their substitutes) have executed either16
PMIx_Group_join or PMIx_Group_join_nb.17

13.2.13.1 Group accept/decline directives18
PMIx v4.0 The pmix_group_opt_t type is a uint8_t value used with the PMIx_Group_join API to19

indicate accept or decline of the invitation - these are provided for readability of user code:20

PMIX_GROUP_DECLINE Decline the invitation.21
PMIX_GROUP_ACCEPT Accept the invitation.22

13.2.14 PMIx_Group_leave23

Summary24
Leave a PMIx process group.25

CHAPTER 13. PROCESS SETS AND GROUPS 255

Format1 C
pmix_status_t2
PMIx_Group_leave(const char grp[],3

const pmix_info_t directives[],4
size_t ndirs);5

C

IN grp6
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group7
identifier (string)8

IN directives9
Array of pmix_info_t structures (array of handles)10

IN ndirs11
Number of elements in the directives array (size_t)12

Returns one of the following:13

• PMIX_SUCCESS, indicating that the request has been communicated to the local PMIx server.14

• PMIX_ERR_NOT_SUPPORTED The PMIx library and/or the host RM does not support this15
operation.16

• a PMIx error constant indicating either an error in the input or that the request is unsupported.17

Required Attributes

There are no identified required attributes for implementers.18

Description19
Calls to PMIx_Group_leave (or its non-blocking form) will cause a PMIX_GROUP_LEFT20
event to be generated notifying all members of the group of the caller’s departure. The function will21
return (or the non-blocking function will execute the specified callback function) once the event has22
been locally generated and is not indicative of remote receipt.23

Advice to users

The PMIx_Group_leave API is intended solely for asynchronous departures of individual24
processes from a group as it is not a scalable operation – i.e., when a process determines it should25
no longer be a part of a defined group, but the remainder of the group retains a valid reason to26
continue in existence. Developers are advised to use PMIx_Group_destruct (or its27
non-blocking form) for all other scenarios as it represents a more scalable operation.28

256 PMIx Standard – Version 4.1 – October 2021

13.2.15 PMIx_Group_leave_nb1

Summary2
Non-blocking form of PMIx_Group_leave.3

Format4 PMIx v4.0 C
pmix_status_t5
PMIx_Group_leave_nb(const char grp[],6

const pmix_info_t directives[],7
size_t ndirs,8
pmix_op_cbfunc_t cbfunc,9
void *cbdata);10

C

IN grp11
NULL-terminated character array of maximum size PMIX_MAX_NSLEN containing the group12
identifier (string)13

IN directives14
Array of pmix_info_t structures (array of handles)15

IN ndirs16
Number of elements in the directives array (size_t)17

IN cbfunc18
Callback function pmix_op_cbfunc_t (function reference)19

IN cbdata20
Data to be passed to the callback function (memory reference)21

Returns one of the following:22

• PMIX_SUCCESS, indicating that the request is being processed - result will be returned in the23
provided cbfunc. Note that the library must not invoke the callback function prior to returning24
from the API.25

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and26
returned success - the cbfunc will not be called.27

• PMIX_ERR_NOT_SUPPORTED The PMIx library does not support this operation - the cbfunc28
will not be called.29

• a PMIx error constant indicating either an error in the input or that the request was immediately30
processed and failed - the cbfunc will not be called.31

If executed, the status returned in the provided callback function will be one of the following32
constants:33

• PMIX_SUCCESS The operation succeeded - i.e., the PMIX_GROUP_LEFT event was generated.34

CHAPTER 13. PROCESS SETS AND GROUPS 257

• PMIX_ERR_NOT_SUPPORTEDWhile the PMIx library supports this operation, the host RM1
does not.2

• a non-zero PMIx error constant indicating a reason for the request’s failure.3

Required Attributes

There are no identified required attributes for implementers.4

Description5
Non-blocking version of the PMIx_Group_leave operation. The callback function will be6
called once the event has been locally generated and is not indicative of remote receipt.7

258 PMIx Standard – Version 4.1 – October 2021

CHAPTER 14

Fabric Support Definitions

As the drive for performance continues, interest has grown in scheduling algorithms that take into1
account network locality of the allocated resources and in optimizing collective communication2
patterns by structuring them to follow fabric topology. In addition, concerns over the time required3
to initiate execution of parallel applications and enable communication across them have grown as4
the size of those applications extends into the hundreds of thousands of individual processes5
spanning tens of thousands of nodes.6

PMIx supports the communication part of these efforts by defining data types and attributes by7
which fabric endpoints and coordinates for processes and devices can be obtained from the host8
environment. When used in conjunction with other PMIx methods described in Chapter 16, this9
results in the ability of a process to obtain the fabric endpoint and coordinate of all other processes10
without incurring additional overhead associated with a global exchange of that information. This11
includes:12

• Defining several interfaces specifically intended to support WLMs by providing access to13
information of potential use to scheduling algorithms - e.g., information on communication costs14
between different points on the fabric.15

• Supporting hierarchical collective operations by providing the fabric coordinates for all devices16
on participating nodes as well as a list of the peers sharing each fabric switch. This enables one,17
for example, to aggregate the contribution from all processes on a node, then again across all18
nodes on a common switch, and finally across all switches based on detailed knowledge of the19
fabric location of each participant.20

• Enabling the "instant on" paradigm to mitigate the scalable launch problem by providing each21
process with a rich set of information about the environment and the application, including22
everything required for communication between peers within the application, at time of process23
start of execution.24

Meeting these needs in the case where only a single fabric device exists on each node is relatively25
straightforward - PMIx and the host environment provide a single endpoint for each process plus a26
coordinate for the device on each node, and there is no uncertainty regarding the endpoint each27
process will use. Extending this to the multiple device per node case is more difficult as the choice28
of endpoint by any given process cannot be known in advance, and questions arise regarding29
reachability between devices on different nodes. Resolving these ambiguities without requiring a30
global operation requires that PMIx provide both (a) an endpoint for each application process on31
each of its local devices; and (b) the fabric coordinates of all remote and local devices on32
participating nodes. It also requires that each process open all of its assigned endpoints as the33
endpoint selected for contact by a remote peer cannot be known in advance.34

259

While these steps ensure the ability of a process to connect to a remote peer, it leaves unanswered1
the question of selecting the preferred device for that communication. If multiple devices are2
present on a node, then the application can benefit from having each process utilize its "closest"3
fabric device (i.e., the device that minimizes the communication distance between the process’4
location and that device) for messaging operations. In some cases, messaging libraries prefer to5
also retain the ability to use non-nearest devices, prioritizing the devices based on distance to6
support multi-device operations (e.g., for large message transmission in parallel).7

PMIx supports this requirement by providing the array of process-to-device distance information8
for each process and local fabric device at start of execution. Both minimum and maximum9
distances are provided since a single process can occupy multiple processor locations. In addition,10
since processes can relocate themselves by changing their processor bindings, PMIx provides an11
API that allows the process to dynamically request an update to its distance array.12

However, while these measures assist a process in selecting its own best endpoint, they do not13
resolve the uncertainty over the choice of preferred device by a remote peer. There are two methods14
by which this ambiguity can be resolved:15

a) A process can select a remote endpoint to use based on its own preferred device and reachability16
of the peer’s remote devices. Once the initial connection has been made, the two processes can17
exchange information and mutually determine their desired communication path going forward.18

b) The application can use knowledge of both the local and remote distance arrays to compute the19
best communication path and establish that connection. In some instances (e.g., a homogeneous20
system), a PMIx server may provide distance information for both local and remote devices.21
Alternatively, when this isn’t available, an application can opt to collect the information using22
the PMIX_COLLECT_GENERATED_JOB_INFO with the PMIx_Fence API, or can obtain it23
on a one peer-at-a-time basis using the PMIx_Get API on systems where the host environment24
supports the Direct Modex operation.25

Information on fabric coordinates, endpoints, and device distances are provided as reserved keys as26
detailed in Chapter 6 - i.e., they are to be available at client start of execution and are subject to the27
retrieval rules of Section 6.2. Examples for retrieving fabric-related information include retrieval of:28

• An array of information on fabric devices for a node by passing PMIX_FABRIC_DEVICES as29
the key to PMIx_Get along with the PMIX_HOSTNAME of the node as a directive30

• An array of information on a specific fabric device by passing PMIX_FABRIC_DEVICE as the31
key to PMIx_Get along with the PMIX_DEVICE_ID of the device as a directive32

• An array of information on a specific fabric device by passing PMIX_FABRIC_DEVICE as the33
key to PMIx_Get along with both PMIX_FABRIC_DEVICE_NAME of the device and the34
PMIX_HOSTNAME of the node as directives35

When requesting data on a device, returned data must include at least the following attributes:36

• PMIX_HOSTNAME "pmix.hname" (char*)37

260 PMIx Standard – Version 4.1 – October 2021

Name of the host, as returned by the gethostname utility or its equivalent. The1
PMIX_NODEID may be returned in its place, or in addition to the hostname.2

• PMIX_DEVICE_ID "pmix.dev.id" (string)3
System-wide UUID or node-local OS name of a particular device.4

• PMIX_FABRIC_DEVICE_NAME "pmix.fabdev.nm" (string)5
The operating system name associated with the device. This may be a logical fabric6
interface name (e.g. "eth0" or "eno1") or an absolute filename.7

• PMIX_FABRIC_DEVICE_VENDOR "pmix.fabdev.vndr" (string)8
Indicates the name of the vendor that distributes the device.9

• PMIX_FABRIC_DEVICE_BUS_TYPE "pmix.fabdev.btyp" (string)10
The type of bus to which the device is attached (e.g., "PCI", "GEN-Z").11

• PMIX_FABRIC_DEVICE_PCI_DEVID "pmix.fabdev.pcidevid" (string)12
A node-level unique identifier for a Peripheral Component Interconnect (PCI) device.13
Provided only if the device is located on a PCI bus. The identifier is constructed as a14
four-part tuple delimited by colons comprised of the PCI 16-bit domain, 8-bit bus, 8-bit15
device, and 8-bit function IDs, each expressed in zero-extended hexadecimal form. Thus,16
an example identifier might be "abc1:0f:23:01". The combination of node identifier17
(PMIX_HOSTNAME or PMIX_NODEID) and PMIX_FABRIC_DEVICE_PCI_DEVID18
shall be unique within the overall system. This item should be included if the device bus19
type is PCI - the equivalent should be provided for any other bus type.20

The returned array may optionally contain one or more of the following in addition to the above list:21

• PMIX_FABRIC_DEVICE_INDEX "pmix.fabdev.idx" (uint32_t)22
Index of the device within an associated communication cost matrix.23

• PMIX_FABRIC_DEVICE_VENDORID "pmix.fabdev.vendid" (string)24
This is a vendor-provided identifier for the device or product.25

• PMIX_FABRIC_DEVICE_DRIVER "pmix.fabdev.driver" (string)26
The name of the driver associated with the device.27

• PMIX_FABRIC_DEVICE_FIRMWARE "pmix.fabdev.fmwr" (string)28
The device’s firmware version.29

• PMIX_FABRIC_DEVICE_ADDRESS "pmix.fabdev.addr" (string)30
The primary link-level address associated with the device, such as a Media Access31
Control (MAC) address. If multiple addresses are available, only one will be reported.32

• PMIX_FABRIC_DEVICE_COORDINATES "pmix.fab.coord" (pmix_geometry_t)33
The pmix_geometry_t fabric coordinates for the device, including values for all34
supported coordinate views.35

CHAPTER 14. FABRIC SUPPORT DEFINITIONS 261

• PMIX_FABRIC_DEVICE_MTU "pmix.fabdev.mtu" (size_t)1
The maximum transfer unit of link level frames or packets, in bytes.2

• PMIX_FABRIC_DEVICE_SPEED "pmix.fabdev.speed" (size_t)3
The active link data rate, given in bits per second.4

• PMIX_FABRIC_DEVICE_STATE "pmix.fabdev.state" (pmix_link_state_t)5
The last available physical port state for the specified device. Possible values are6
PMIX_LINK_STATE_UNKNOWN, PMIX_LINK_DOWN, and PMIX_LINK_UP, to7
indicate if the port state is unknown or not applicable (unknown), inactive (down), or8
active (up).9

• PMIX_FABRIC_DEVICE_TYPE "pmix.fabdev.type" (string)10
Specifies the type of fabric interface currently active on the device, such as Ethernet or11
InfiniBand.12

The remainder of this chapter details the events, data types, attributes, and APIs associated with13
fabric-related operations.14

14.1 Fabric Support Events15

The following events are defined for use in fabric-related operations.16

PMIX_FABRIC_UPDATE_PENDING The PMIx server library has been alerted to a change in17
the fabric that requires updating of one or more registered pmix_fabric_t objects.18

PMIX_FABRIC_UPDATED The PMIx server library has completed updating the entries of all19
affected pmix_fabric_t objects registered with the library. Access to the entries of those20
objects may now resume.21

PMIX_FABRIC_UPDATE_ENDPOINTS Endpoint assignments have been updated, usually in22
response to migration or restart of a process. Clients should use PMIx_Get to update any23
internally cached connections.24

14.2 Fabric Support Datatypes25

Several datatype definitions have been created to support fabric-related operations and information.26

14.2.1 Fabric Endpoint Structure27

The pmix_endpoint_t structure contains an assigned endpoint for a given fabric device.28
PMIx v4.0

262 PMIx Standard – Version 4.1 – October 2021

C
typedef struct pmix_endpoint {1

char *uuid;2
char *osname;3
pmix_byte_object_t endpt;4

} pmix_endpoint_t;5

C
The uuid field contains the UUID of the fabric device, the osname is the local operating system’s6
name for the device, and the endpt field contains a fabric vendor-specific object identifying the7
communication endpoint assigned to the process.8

14.2.2 Fabric endpoint support macros9

The following macros are provided to support the pmix_endpoint_t structure.10

Initialize the endpoint structure11
Initialize the pmix_endpoint_t fields.12

PMIx v4.0 C
PMIX_ENDPOINT_CONSTRUCT(m)13

C
IN m14

Pointer to the structure to be initialized (pointer to pmix_endpoint_t)15

Destruct the endpoint structure16
Destruct the pmix_endpoint_t fields.17

PMIx v4.0 C
PMIX_ENDPOINT_DESTRUCT(m)18

C
IN m19

Pointer to the structure to be destructed (pointer to pmix_endpoint_t)20

Create an endpoint array21
Allocate and initialize a pmix_endpoint_t array.22

PMIx v4.0 C
PMIX_ENDPOINT_CREATE(m, n)23

C
INOUT m24

Address where the pointer to the array of pmix_endpoint_t structures shall be stored25
(handle)26

IN n27
Number of structures to be allocated (size_t)28

CHAPTER 14. FABRIC SUPPORT DEFINITIONS 263

Release an endpoint array1
Release an array of pmix_endpoint_t structures.2

PMIx v4.0 C
PMIX_ENDPOINT_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_endpoint_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

14.2.3 Fabric Coordinate Structure8

The pmix_coord_t structure describes the fabric coordinates of a specified device in a given9
view.10

C
typedef struct pmix_coord {11

pmix_coord_view_t view;12
uint32_t *coord;13
size_t dims;14

} pmix_coord_t;15

C

All coordinate values shall be expressed as unsigned integers due to their units being defined in16
fabric devices and not physical distances. The coordinate is therefore an indicator of connectivity17
and not relative communication distance.18

Advice to PMIx library implementers

Note that the pmix_coord_t structure does not imply nor mandate any requirement on how the19
coordinate data is to be stored within the PMIx library. Implementers are free to store the20
coordinate in whatever format they choose.21

A fabric coordinate is associated with a given fabric device and must be unique within a given view.22
Fabric devices are associated with the operating system which hosts them - thus, fabric coordinates23
are logically grouped within the node realm (as described in Section 6.1) and can be retrieved per24
the rules detailed in Section 6.1.5.25

14.2.4 Fabric coordinate support macros26

The following macros are provided to support the pmix_coord_t structure.27

264 PMIx Standard – Version 4.1 – October 2021

Initialize the coord structure1
Initialize the pmix_coord_t fields.2

C
PMIX_COORD_CONSTRUCT(m)3

C

IN m4
Pointer to the structure to be initialized (pointer to pmix_coord_t)5

Destruct the coord structure6
Destruct the pmix_coord_t fields.7

PMIx v4.0 C
PMIX_COORD_DESTRUCT(m)8

C

IN m9
Pointer to the structure to be destructed (pointer to pmix_coord_t)10

Create a coord array11
Allocate and initialize a pmix_coord_t array.12

PMIx v4.0 C
PMIX_COORD_CREATE(m, n)13

C

INOUT m14
Address where the pointer to the array of pmix_coord_t structures shall be stored (handle)15

IN n16
Number of structures to be allocated (size_t)17

Release a coord array18
Release an array of pmix_coord_t structures.19

PMIx v4.0 C
PMIX_COORD_FREE(m, n)20

C

IN m21
Pointer to the array of pmix_coord_t structures (handle)22

IN n23
Number of structures in the array (size_t)24

CHAPTER 14. FABRIC SUPPORT DEFINITIONS 265

14.2.5 Fabric Geometry Structure1

The pmix_geometry_t structure describes the fabric coordinates of a specified device.2
C

typedef struct pmix_geometry {3
size_t fabric;4
char *uuid;5
char *osname;6
pmix_coord_t *coordinates;7
size_t ncoords;8

} pmix_geometry_t;9

C

All coordinate values shall be expressed as unsigned integers due to their units being defined in10
fabric devices and not physical distances. The coordinate is therefore an indicator of connectivity11
and not relative communication distance.12

Advice to PMIx library implementers

Note that the pmix_coord_t structure does not imply nor mandate any requirement on how the13
coordinate data is to be stored within the PMIx library. Implementers are free to store the14
coordinate in whatever format they choose.15

A fabric coordinate is associated with a given fabric device and must be unique within a given view.16
Fabric devices are associated with the operating system which hosts them - thus, fabric coordinates17
are logically grouped within the node realm (as described in Section 6.1) and can be retrieved per18
the rules detailed in Section 6.1.5.19

14.2.6 Fabric geometry support macros20

The following macros are provided to support the pmix_geometry_t structure.21

Initialize the geometry structure22
Initialize the pmix_geometry_t fields.23

PMIx v4.0 C
PMIX_GEOMETRY_CONSTRUCT(m)24

C

IN m25
Pointer to the structure to be initialized (pointer to pmix_geometry_t)26

266 PMIx Standard – Version 4.1 – October 2021

Destruct the geometry structure1
Destruct the pmix_geometry_t fields.2

C
PMIX_GEOMETRY_DESTRUCT(m)3

C

IN m4
Pointer to the structure to be destructed (pointer to pmix_geometry_t)5

Create a geometry array6
Allocate and initialize a pmix_geometry_t array.7

PMIx v4.0 C
PMIX_GEOMETRY_CREATE(m, n)8

C

INOUT m9
Address where the pointer to the array of pmix_geometry_t structures shall be stored10
(handle)11

IN n12
Number of structures to be allocated (size_t)13

Release a geometry array14
Release an array of pmix_geometry_t structures.15

PMIx v4.0 C
PMIX_GEOMETRY_FREE(m, n)16

C

IN m17
Pointer to the array of pmix_geometry_t structures (handle)18

IN n19
Number of structures in the array (size_t)20

14.2.7 Fabric Coordinate Views21

PMIx v4.0 C
typedef uint8_t pmix_coord_view_t;22
#define PMIX_COORD_VIEW_UNDEF 0x0023
#define PMIX_COORD_LOGICAL_VIEW 0x0124
#define PMIX_COORD_PHYSICAL_VIEW 0x0225

CHAPTER 14. FABRIC SUPPORT DEFINITIONS 267

C

Fabric coordinates can be reported based on different views according to user preference at the time1
of request. The following views have been defined:2

PMIX_COORD_VIEW_UNDEF The coordinate view has not been defined.3
PMIX_COORD_LOGICAL_VIEW The coordinates are provided in a logical view, typically4

given in Cartesian (x,y,z) dimensions, that describes the data flow in the fabric as defined by5
the arrangement of the hierarchical addressing scheme, fabric segmentation, routing domains,6
and other similar factors employed by that fabric.7

PMIX_COORD_PHYSICAL_VIEW The coordinates are provided in a physical view based on8
the actual wiring diagram of the fabric - i.e., values along each axis reflect the relative9
position of that interface on the specific fabric cabling.10

If the requester does not specify a view, coordinates shall default to the logical view.11

14.2.8 Fabric Link State12

The pmix_link_state_t is a uint32_t type for fabric link states.13
PMIx v4.0 C

typedef uint8_t pmix_link_state_t;14

C

The following constants can be used to set a variable of the type pmix_link_state_t. All15
definitions were introduced in version 4 of the standard unless otherwise marked. Valid link state16
values start at zero.17

PMIX_LINK_STATE_UNKNOWN The port state is unknown or not applicable.18
PMIX_LINK_DOWN The port is inactive.19
PMIX_LINK_UP The port is active.20

14.2.9 Fabric Operation Constants21

PMIx v4.0 The pmix_fabric_operation_t data type is an enumerated type for specifying fabric22
operations used in the PMIx server module’s pmix_server_fabric_fn_t API.23

PMIX_FABRIC_REQUEST_INFO Request information on a specific fabric - if the fabric isn’t24
specified as per PMIx_Fabric_register, then return information on the default fabric of25
the overall system. Information to be returned is described in pmix_fabric_t.26

PMIX_FABRIC_UPDATE_INFO Update information on a specific fabric - the index of the27
fabric (PMIX_FABRIC_INDEX) to be updated must be provided.28

268 PMIx Standard – Version 4.1 – October 2021

14.2.10 Fabric registration structure1

The pmix_fabric_t structure is used by a WLM to interact with fabric-related PMIx interfaces,2
and to provide information about the fabric for use in scheduling algorithms or other purposes.3

C
typedef struct pmix_fabric_s {4

char *name;5
size_t index;6
pmix_info_t *info;7
size_t ninfo;8
void *module;9

} pmix_fabric_t;;10

C

Note that in this structure:11

• name is an optional user-supplied string name identifying the fabric being referenced by this12
struct. If provided, the field must be a NULL-terminated string composed of standard13
alphanumeric values supported by common utilities such as strcmp.;14

• index is a PMIx-provided number identifying this object;15

• info is an array of pmix_info_t containing information (provided by the PMIx library) about16
the fabric;17

• ninfo is the number of elements in the info array;18

• module points to an opaque object reserved for use by the PMIx server library.19

Note that only the name field is provided by the user - all other fields are provided by the PMIx20
library and must not be modified by the user. The info array contains a varying amount of21
information depending upon both the PMIx implementation and information available from the22
fabric vendor. At a minimum, it must contain (ordering is arbitrary):23

Required Attributes

PMIX_FABRIC_VENDOR "pmix.fab.vndr" (string)24
Name of the vendor (e.g., Amazon, Mellanox, HPE, Intel) for the specified fabric.25

PMIX_FABRIC_IDENTIFIER "pmix.fab.id" (string)26
An identifier for the specified fabric (e.g., MgmtEthernet, Slingshot-11, OmniPath-1).27

PMIX_FABRIC_NUM_DEVICES "pmix.fab.nverts" (size_t)28
Total number of fabric devices in the overall system - corresponds to the number of rows or29
columns in the cost matrix.30

and may optionally contain one or more of the following:31

CHAPTER 14. FABRIC SUPPORT DEFINITIONS 269

Optional Attributes

PMIX_FABRIC_COST_MATRIX "pmix.fab.cm" (pointer)1
Pointer to a two-dimensional square array of point-to-point relative communication costs2
expressed as uint16_t values.3

PMIX_FABRIC_GROUPS "pmix.fab.grps" (string)4
A string delineating the group membership of nodes in the overall system, where each fabric5
group consists of the group number followed by a colon and a comma-delimited list of nodes6
in that group, with the groups delimited by semi-colons (e.g.,7
0:node000,node002,node004,node006;1:node001,node003,8
node005,node007)9

PMIX_FABRIC_DIMS "pmix.fab.dims" (uint32_t)10
Number of dimensions in the specified fabric plane/view. If no plane is specified in a11
request, then the dimensions of all planes in the overall system will be returned as a12
pmix_data_array_t containing an array of uint32_t values. Default is to provide13
dimensions in logical view.14

PMIX_FABRIC_PLANE "pmix.fab.plane" (string)15
ID string of a fabric plane (e.g., CIDR for Ethernet). When used as a modifier in a request16
for information, specifies the plane whose information is to be returned. When used directly17
as a key in a request, returns a pmix_data_array_t of string identifiers for all fabric18
planes in the overall system.19

PMIX_FABRIC_SHAPE "pmix.fab.shape" (pmix_data_array_t*)20
The size of each dimension in the specified fabric plane/view, returned in a21
pmix_data_array_t containing an array of uint32_t values. The size is defined as22
the number of elements present in that dimension - e.g., the number of devices in one23
dimension of a physical view of a fabric plane. If no plane is specified, then the shape of24
each plane in the overall system will be returned in a pmix_data_array_t array where25
each element is itself a two-element array containing the PMIX_FABRIC_PLANE followed26
by that plane’s fabric shape. Default is to provide the shape in logical view.27

PMIX_FABRIC_SHAPE_STRING "pmix.fab.shapestr" (string)28
Network shape expressed as a string (e.g., "10x12x2"). If no plane is specified, then the29
shape of each plane in the overall system will be returned in a pmix_data_array_t array30
where each element is itself a two-element array containing the PMIX_FABRIC_PLANE31
followed by that plane’s fabric shape string. Default is to provide the shape in logical view.32

While unusual due to scaling issues, implementations may include an array of33
PMIX_FABRIC_DEVICE elements describing the device information for each device in the34
overall system. Each element shall contain a pmix_data_array_t of pmix_info_t values35
describing the device. Each array may contain one or more of the following (ordering is arbitrary):36

PMIX_FABRIC_DEVICE_NAME "pmix.fabdev.nm" (string)37

270 PMIx Standard – Version 4.1 – October 2021

The operating system name associated with the device. This may be a logical fabric interface1
name (e.g. "eth0" or "eno1") or an absolute filename.2

PMIX_FABRIC_DEVICE_VENDOR "pmix.fabdev.vndr" (string)3
Indicates the name of the vendor that distributes the device.4

PMIX_DEVICE_ID "pmix.dev.id" (string)5
System-wide UUID or node-local OS name of a particular device.6

PMIX_HOSTNAME "pmix.hname" (char*)7
Name of the host, as returned by the gethostname utility or its equivalent.8

PMIX_FABRIC_DEVICE_DRIVER "pmix.fabdev.driver" (string)9
The name of the driver associated with the device.10

PMIX_FABRIC_DEVICE_FIRMWARE "pmix.fabdev.fmwr" (string)11
The device’s firmware version.12

PMIX_FABRIC_DEVICE_ADDRESS "pmix.fabdev.addr" (string)13
The primary link-level address associated with the device, such as a MAC address. If14
multiple addresses are available, only one will be reported.15

PMIX_FABRIC_DEVICE_MTU "pmix.fabdev.mtu" (size_t)16
The maximum transfer unit of link level frames or packets, in bytes.17

PMIX_FABRIC_DEVICE_SPEED "pmix.fabdev.speed" (size_t)18
The active link data rate, given in bits per second.19

PMIX_FABRIC_DEVICE_STATE "pmix.fabdev.state" (pmix_link_state_t)20
The last available physical port state for the specified device. Possible values are21
PMIX_LINK_STATE_UNKNOWN, PMIX_LINK_DOWN, and PMIX_LINK_UP, to indicate22
if the port state is unknown or not applicable (unknown), inactive (down), or active (up).23

PMIX_FABRIC_DEVICE_TYPE "pmix.fabdev.type" (string)24
Specifies the type of fabric interface currently active on the device, such as Ethernet or25
InfiniBand.26

PMIX_FABRIC_DEVICE_BUS_TYPE "pmix.fabdev.btyp" (string)27
The type of bus to which the device is attached (e.g., "PCI", "GEN-Z").28

PMIX_FABRIC_DEVICE_PCI_DEVID "pmix.fabdev.pcidevid" (string)29
A node-level unique identifier for a PCI device. Provided only if the device is located on a30
PCI bus. The identifier is constructed as a four-part tuple delimited by colons comprised of31
the PCI 16-bit domain, 8-bit bus, 8-bit device, and 8-bit function IDs, each expressed in32
zero-extended hexadecimal form. Thus, an example identifier might be "abc1:0f:23:01". The33
combination of node identifier (PMIX_HOSTNAME or PMIX_NODEID) and34
PMIX_FABRIC_DEVICE_PCI_DEVID shall be unique within the overall system.35

CHAPTER 14. FABRIC SUPPORT DEFINITIONS 271

14.2.10.1 Initialize the fabric structure1

Initialize the pmix_fabric_t fields.2
PMIx v4.0 C

PMIX_FABRIC_CONSTRUCT(m)3

C

IN m4
Pointer to the structure to be initialized (pointer to pmix_fabric_t)5

14.3 Fabric Support Attributes6

The following attribute is used by the PMIx server library supporting the system’s WLM to indicate7
that it wants access to the fabric support functions:8

PMIX_SERVER_SCHEDULER "pmix.srv.sched" (bool)9
Server is supporting system scheduler and desires access to appropriate WLM-supporting10
features. Indicates that the library is to be initialized for scheduler support.11

The following attributes may be returned in response to fabric-specific APIs or queries (e.g.,12
PMIx_Get or PMIx_Query_info). These attributes are not related to a specific data realm (as13
described in Section 6.1) - the PMIx_Get function shall therefore ignore the value in its proc14
process identifier argument when retrieving these values.15

PMIX_FABRIC_COST_MATRIX "pmix.fab.cm" (pointer)16
Pointer to a two-dimensional square array of point-to-point relative communication costs17
expressed as uint16_t values.18

PMIX_FABRIC_GROUPS "pmix.fab.grps" (string)19
A string delineating the group membership of nodes in the overall system, where each fabric20
group consists of the group number followed by a colon and a comma-delimited list of nodes21
in that group, with the groups delimited by semi-colons (e.g.,22
0:node000,node002,node004,node006;1:node001,node003,23
node005,node007)24

PMIX_FABRIC_PLANE "pmix.fab.plane" (string)25
ID string of a fabric plane (e.g., CIDR for Ethernet). When used as a modifier in a request26
for information, specifies the plane whose information is to be returned. When used directly27
as a key in a request, returns a pmix_data_array_t of string identifiers for all fabric28
planes in the overall system.29

PMIX_FABRIC_SWITCH "pmix.fab.switch" (string)30
ID string of a fabric switch. When used as a modifier in a request for information, specifies31
the switch whose information is to be returned. When used directly as a key in a request,32
returns a pmix_data_array_t of string identifiers for all fabric switches in the overall33
system.34

272 PMIx Standard – Version 4.1 – October 2021

The following attributes may be returned in response to queries (e.g., PMIx_Get or1
PMIx_Query_info). A qualifier (e.g., PMIX_FABRIC_INDEX) identifying the fabric whose2
value is being referenced must be provided for queries on systems supporting more than one fabric3
when values for the non-default fabric are requested. These attributes are not related to a specific4
data realm (as described in Section 6.1) - the PMIx_Get function shall therefore ignore the value5
in its proc process identifier argument when retrieving these values.6

PMIX_FABRIC_VENDOR "pmix.fab.vndr" (string)7
Name of the vendor (e.g., Amazon, Mellanox, HPE, Intel) for the specified fabric.8

PMIX_FABRIC_IDENTIFIER "pmix.fab.id" (string)9
An identifier for the specified fabric (e.g., MgmtEthernet, Slingshot-11, OmniPath-1).10

PMIX_FABRIC_INDEX "pmix.fab.idx" (size_t)11
The index of the fabric as returned in pmix_fabric_t.12

PMIX_FABRIC_NUM_DEVICES "pmix.fab.nverts" (size_t)13
Total number of fabric devices in the overall system - corresponds to the number of rows or14
columns in the cost matrix.15

PMIX_FABRIC_DIMS "pmix.fab.dims" (uint32_t)16
Number of dimensions in the specified fabric plane/view. If no plane is specified in a17
request, then the dimensions of all planes in the overall system will be returned as a18
pmix_data_array_t containing an array of uint32_t values. Default is to provide19
dimensions in logical view.20

PMIX_FABRIC_SHAPE "pmix.fab.shape" (pmix_data_array_t*)21
The size of each dimension in the specified fabric plane/view, returned in a22
pmix_data_array_t containing an array of uint32_t values. The size is defined as23
the number of elements present in that dimension - e.g., the number of devices in one24
dimension of a physical view of a fabric plane. If no plane is specified, then the shape of25
each plane in the overall system will be returned in a pmix_data_array_t array where26
each element is itself a two-element array containing the PMIX_FABRIC_PLANE followed27
by that plane’s fabric shape. Default is to provide the shape in logical view.28

PMIX_FABRIC_SHAPE_STRING "pmix.fab.shapestr" (string)29
Network shape expressed as a string (e.g., "10x12x2"). If no plane is specified, then the30
shape of each plane in the overall system will be returned in a pmix_data_array_t array31
where each element is itself a two-element array containing the PMIX_FABRIC_PLANE32
followed by that plane’s fabric shape string. Default is to provide the shape in logical view.33

The following attributes are related to the node realm (as described in Section 6.1.5) and are34
retrieved according to those rules.35

PMIX_FABRIC_DEVICES "pmix.fab.devs" (pmix_data_array_t)36
Array of pmix_info_t containing information for all devices on the specified node. Each37
element of the array will contain a PMIX_FABRIC_DEVICE entry, which in turn will38
contain an array of information on a given device.39

PMIX_FABRIC_COORDINATES "pmix.fab.coords" (pmix_data_array_t)40

CHAPTER 14. FABRIC SUPPORT DEFINITIONS 273

Array of pmix_geometry_t fabric coordinates for devices on the specified node. The1
array will contain the coordinates of all devices on the node, including values for all2
supported coordinate views. The information for devices on the local node shall be provided3
if the node is not specified in the request.4

PMIX_FABRIC_DEVICE "pmix.fabdev" (pmix_data_array_t)5
An array of pmix_info_t describing a particular fabric device using one or more of the6
attributes defined below. The first element in the array shall be the PMIX_DEVICE_ID of7
the device.8

PMIX_FABRIC_DEVICE_INDEX "pmix.fabdev.idx" (uint32_t)9
Index of the device within an associated communication cost matrix.10

PMIX_FABRIC_DEVICE_NAME "pmix.fabdev.nm" (string)11
The operating system name associated with the device. This may be a logical fabric interface12
name (e.g. "eth0" or "eno1") or an absolute filename.13

PMIX_FABRIC_DEVICE_VENDOR "pmix.fabdev.vndr" (string)14
Indicates the name of the vendor that distributes the device.15

PMIX_FABRIC_DEVICE_BUS_TYPE "pmix.fabdev.btyp" (string)16
The type of bus to which the device is attached (e.g., "PCI", "GEN-Z").17

PMIX_FABRIC_DEVICE_VENDORID "pmix.fabdev.vendid" (string)18
This is a vendor-provided identifier for the device or product.19

PMIX_FABRIC_DEVICE_DRIVER "pmix.fabdev.driver" (string)20
The name of the driver associated with the device.21

PMIX_FABRIC_DEVICE_FIRMWARE "pmix.fabdev.fmwr" (string)22
The device’s firmware version.23

PMIX_FABRIC_DEVICE_ADDRESS "pmix.fabdev.addr" (string)24
The primary link-level address associated with the device, such as a MAC address. If25
multiple addresses are available, only one will be reported.26

PMIX_FABRIC_DEVICE_COORDINATES "pmix.fab.coord" (pmix_geometry_t)27
The pmix_geometry_t fabric coordinates for the device, including values for all28
supported coordinate views.29

PMIX_FABRIC_DEVICE_MTU "pmix.fabdev.mtu" (size_t)30
The maximum transfer unit of link level frames or packets, in bytes.31

PMIX_FABRIC_DEVICE_SPEED "pmix.fabdev.speed" (size_t)32
The active link data rate, given in bits per second.33

PMIX_FABRIC_DEVICE_STATE "pmix.fabdev.state" (pmix_link_state_t)34
The last available physical port state for the specified device. Possible values are35
PMIX_LINK_STATE_UNKNOWN, PMIX_LINK_DOWN, and PMIX_LINK_UP, to indicate36
if the port state is unknown or not applicable (unknown), inactive (down), or active (up).37

PMIX_FABRIC_DEVICE_TYPE "pmix.fabdev.type" (string)38
Specifies the type of fabric interface currently active on the device, such as Ethernet or39
InfiniBand.40

PMIX_FABRIC_DEVICE_PCI_DEVID "pmix.fabdev.pcidevid" (string)41
A node-level unique identifier for a PCI device. Provided only if the device is located on a42
PCI bus. The identifier is constructed as a four-part tuple delimited by colons comprised of43

274 PMIx Standard – Version 4.1 – October 2021

the PCI 16-bit domain, 8-bit bus, 8-bit device, and 8-bit function IDs, each expressed in1
zero-extended hexadecimal form. Thus, an example identifier might be "abc1:0f:23:01". The2
combination of node identifier (PMIX_HOSTNAME or PMIX_NODEID) and3
PMIX_FABRIC_DEVICE_PCI_DEVID shall be unique within the overall system.4

The following attributes are related to the process realm (as described in Section 6.1.4) and are5
retrieved according to those rules.6

PMIX_FABRIC_ENDPT "pmix.fab.endpt" (pmix_data_array_t)7
Fabric endpoints for a specified process. As multiple endpoints may be assigned to a given8
process (e.g., in the case where multiple devices are associated with a package to which the9
process is bound), the returned values will be provided in a pmix_data_array_t of10
pmix_endpoint_t elements.11

The following attributes are related to the job realm (as described in Section 6.1.2) and are retrieved12
according to those rules. Note that distances to fabric devices are retrieved using the13
PMIX_DEVICE_DISTANCES key with the appropriate pmix_device_type_t qualifier.14

PMIX_SWITCH_PEERS "pmix.speers" (pmix_data_array_t)15
Peer ranks that share the same switch as the process specified in the call to PMIx_Get.16
Returns a pmix_data_array_t array of pmix_info_t results, each element17
containing the PMIX_SWITCH_PEERS key with a three-element pmix_data_array_t18
array of pmix_info_t containing the PMIX_DEVICE_ID of the local fabric device, the19
PMIX_FABRIC_SWITCH identifying the switch to which it is connected, and a20
comma-delimited string of peer ranks sharing the switch to which that device is connected.21

14.4 Fabric Support Functions22

The following APIs allow the WLM to request specific services from the fabric subsystem via the23
PMIx library.24

Advice to PMIx server hosts

Due to their high cost in terms of execution, memory consumption, and interactions with other25
SMS components (e.g., a fabric manager), it is strongly advised that the underlying implementation26
of these APIs be restricted to a single PMIx server in a system that is supporting the SMS27
component responsible for the scheduling of allocations (i.e., the system scheduler). The28
PMIX_SERVER_SCHEDULER attribute can be used for this purpose to control the execution path.29
Clients, tools, and other servers utilizing these functions are advised to have their requests30
forwarded to the server supporting the scheduler using the pmix_server_fabric_fn_t31
server module function, as needed.32

CHAPTER 14. FABRIC SUPPORT DEFINITIONS 275

14.4.1 PMIx_Fabric_register1

Summary2
Register for access to fabric-related information.3

Format4 PMIx v4.0 C
pmix_status_t5
PMIx_Fabric_register(pmix_fabric_t *fabric,6

const pmix_info_t directives[],7
size_t ndirs);8

C

INOUT fabric9
address of a pmix_fabric_t (backed by storage). User may populate the "name" field at10
will - PMIx does not utilize this field (handle)11

IN directives12
an optional array of values indicating desired behaviors and/or fabric to be accessed. If NULL,13
then the highest priority available fabric will be used (array of handles)14

IN ndirs15
Number of elements in the directives array (integer)16

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.17

Required Attributes

The following directives are required to be supported by all PMIx libraries to aid users in18
identifying the fabric whose data is being sought:19

PMIX_FABRIC_PLANE "pmix.fab.plane" (string)20
ID string of a fabric plane (e.g., CIDR for Ethernet). When used as a modifier in a request21
for information, specifies the plane whose information is to be returned. When used directly22
as a key in a request, returns a pmix_data_array_t of string identifiers for all fabric23
planes in the overall system.24

PMIX_FABRIC_IDENTIFIER "pmix.fab.id" (string)25
An identifier for the specified fabric (e.g., MgmtEthernet, Slingshot-11, OmniPath-1).26

PMIX_FABRIC_VENDOR "pmix.fab.vndr" (string)27
Name of the vendor (e.g., Amazon, Mellanox, HPE, Intel) for the specified fabric.28

276 PMIx Standard – Version 4.1 – October 2021

Description1
Register for access to fabric-related information, including the communication cost matrix. This2
call must be made prior to requesting information from a fabric. The caller may request access to a3
particular fabric using the vendor, type, or identifier, or to a specific fabric plane via the4
PMIX_FABRIC_PLANE attribute - otherwise, information for the default fabric will be returned.5
Upon successful completion of the call, information will have been filled into the fields of the6
provided fabric structure.7

For performance reasons, the PMIx library does not provide thread protection for accessing the8
information in the pmix_fabric_t structure. Instead, the PMIx implementation shall provide9
two methods for coordinating updates to the provided fabric information:10

• Users may periodically poll for updates using the PMIx_Fabric_update API11

• Users may register for PMIX_FABRIC_UPDATE_PENDING events indicating that an update to12
the cost matrix is pending. When received, users are required to terminate or pause any actions13
involving access to the cost matrix before returning from the event. Completion of the14
PMIX_FABRIC_UPDATE_PENDING event handler indicates to the PMIx library that the fabric15
object’s entries are available for updating. This may include releasing and re-allocating memory16
as the number of vertices may have changed (e.g., due to addition or removal of one or more17
devices). When the update has been completed, the PMIx library will generate a18
PMIX_FABRIC_UPDATED event indicating that it is safe to begin using the updated fabric19
object(s).20

There is no requirement that the caller exclusively use either one of these options. For example, the21
user may choose to both register for fabric update events, but poll for an update prior to some22
critical operation.23

14.4.2 PMIx_Fabric_register_nb24

Summary25
Register for access to fabric-related information.26

Format27 PMIx v4.0 C
pmix_status_t28
PMIx_Fabric_register_nb(pmix_fabric_t *fabric,29

const pmix_info_t directives[],30
size_t ndirs,31
pmix_op_cbfunc_t cbfunc, void *cbdata);32

C

INOUT fabric33
address of a pmix_fabric_t (backed by storage). User may populate the "name" field at34
will - PMIx does not utilize this field (handle)35

CHAPTER 14. FABRIC SUPPORT DEFINITIONS 277

IN directives1
an optional array of values indicating desired behaviors and/or fabric to be accessed. If NULL,2
then the highest priority available fabric will be used (array of handles)3

IN ndirs4
Number of elements in the directives array (integer)5

IN cbfunc6
Callback function pmix_op_cbfunc_t (function reference)7

IN cbdata8
Data to be passed to the callback function (memory reference)9

Returns one of the following:10

• PMIX_SUCCESS indicating that the request has been accepted for processing and the provided11
callback function will be executed upon completion of the operation. Note that the library must12
not invoke the callback function prior to returning from the API.13

• a non-zero PMIx error constant indicating a reason for the request to have been rejected. In this14
case, the provided callback function will not be executed15

Description16
Non-blocking form of PMIx_Fabric_register. The caller is not allowed to access the17
provided pmix_fabric_t until the callback function has been executed, at which time the fabric18
information will have been loaded into the provided structure.19

14.4.3 PMIx_Fabric_update20

Summary21
Update fabric-related information.22

Format23 PMIx v4.0 C
pmix_status_t24
PMIx_Fabric_update(pmix_fabric_t *fabric);25

C

INOUT fabric26
address of a pmix_fabric_t (backed by storage) (handle)27

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.28

Description29
Update fabric-related information. This call can be made at any time to request an update of the30
fabric information contained in the provided pmix_fabric_t object. The caller is not allowed to31
access the provided pmix_fabric_t until the call has returned. Upon successful return, the32
information fields in the fabric structure will have been updated.33

278 PMIx Standard – Version 4.1 – October 2021

14.4.4 PMIx_Fabric_update_nb1

Summary2
Update fabric-related information.3

Format4 PMIx v4.0 C
pmix_status_t5
PMIx_Fabric_update_nb(pmix_fabric_t *fabric,6

pmix_op_cbfunc_t cbfunc, void *cbdata);7

C
INOUT fabric8

address of a pmix_fabric_t (handle)9
IN cbfunc10

Callback function pmix_op_cbfunc_t (function reference)11
IN cbdata12

Data to be passed to the callback function (memory reference)13

Returns one of the following:14

• PMIX_SUCCESS indicating that the request has been accepted for processing and the provided15
callback function will be executed upon completion of the operation. Note that the library must16
not invoke the callback function prior to returning from the API.17

• a non-zero PMIx error constant indicating a reason for the request to have been rejected. In this18
case, the provided callback function will not be executed19

Description20
Non-blocking form of PMIx_Fabric_update. The caller is not allowed to access the provided21
pmix_fabric_t until the callback function has been executed, at which time the fields in the22
provided fabric structure will have been updated.23

14.4.5 PMIx_Fabric_deregister24

Summary25
Deregister a fabric object.26

Format27 PMIx v4.0 C
pmix_status_t28
PMIx_Fabric_deregister(pmix_fabric_t *fabric);29

C
IN fabric30

address of a pmix_fabric_t (handle)31

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.32

CHAPTER 14. FABRIC SUPPORT DEFINITIONS 279

Description1
Deregister a fabric object, providing an opportunity for the PMIx library to cleanup any information2
(e.g., cost matrix) associated with it. Contents of the provided pmix_fabric_t will be3
invalidated upon function return.4

14.4.6 PMIx_Fabric_deregister_nb5

Summary6
Deregister a fabric object.7

Format8 PMIx v4.0 C
pmix_status_t PMIx_Fabric_deregister_nb(pmix_fabric_t *fabric,9

pmix_op_cbfunc_t cbfunc,10
void *cbdata);11

C

IN fabric12
address of a pmix_fabric_t (handle)13

IN cbfunc14
Callback function pmix_op_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS indicating that the request has been accepted for processing and the provided19
callback function will be executed upon completion of the operation. Note that the library must20
not invoke the callback function prior to returning from the API.21

• a non-zero PMIx error constant indicating a reason for the request to have been rejected. In this22
case, the provided callback function will not be executed23

Description24
Non-blocking form of PMIx_Fabric_deregister. Provided fabric must not be accessed until25
after callback function has been executed.26

280 PMIx Standard – Version 4.1 – October 2021

CHAPTER 15

Security

PMIx utilizes a multi-layered approach toward security that differs for client versus tool processes.1
By definition, client processes must be preregistered with the PMIx server library via the2
PMIx_server_register_client API before they are spawned. This API requires that the3
host pass the expected effective UID/GID of the client process.4

When the client attempts to connect to the PMIx server, the server shall use available standard OS5
methods to determine the effective UID/GID of the process requesting the connection. PMIx6
implementations shall not rely on any values reported by the client process itself. The effective7
UID/GID reported by the OS is compared to the values provided by the host during registration - if8
the values fail to match, the PMIx server is required to drop the connection request. This ensures9
that the PMIx server does not allow connection from a client that doesn’t at least meet some10
minimal security requirement.11

Once the requesting client passes the initial test, the PMIx server can, at the choice of the12
implementor, perform additional security checks. This may involve a variety of methods such as13
exchange of a system-provided key or credential. At the conclusion of that process, the PMIx server14
reports the client connection request to the host via the15
pmix_server_client_connected2_fn_t interface, if provided. The host may perform16
any additional checks and operations before responding with either PMIX_SUCCESS to indicate17
that the connection is approved, or a PMIx error constant indicating that the connection request is18
refused. In this latter case, the PMIx server is required to drop the connection.19

Tools started by the host environment are classed as a subgroup of client processes and follow the20
client process procedure. However, tools that are not started by the host environment must be21
handled differently as registration information is not available prior to the connection request. In22
these cases, the PMIx server library is required to use available standard OS methods to get the23
effective UID/GID of the tool and report them upwards as part of invoking the24
pmix_server_tool_connection_fn_t interface, deferring initial security screening to the25
host. Host environments willing to accept tool connections must therefore both explicitly enable26
them via the PMIX_SERVER_TOOL_SUPPORT attribute, thereby confirming acceptance of the27
authentication and authorization burden, and provide the28
pmix_server_tool_connection_fn_t server module function pointer.29

15.1 Obtaining Credentials30

Applications and tools often interact with the host environment in ways that require security beyond31
just verifying the user’s identity - e.g., access to that user’s relevant authorizations. This is32

281

particularly important when tools connect directly to a system-level PMIx server that may be1
operating at a privileged level. A variety of system management software packages provide2
authorization services, but the lack of standardized interfaces makes portability problematic.3

This section defines two PMIx client-side APIs for this purpose. These are most likely to be used4
by user-space applications/tools, but are not restricted to that realm.5

15.1.1 PMIx_Get_credential6

Summary7
Request a credential from the PMIx server library or the host environment.8

Format9 PMIx v3.0 C
pmix_status_t10
PMIx_Get_credential(const pmix_info_t info[], size_t ninfo,11

pmix_byte_object_t *credential);12

C

IN info13
Array of pmix_info_t structures (array of handles)14

IN ninfo15
Number of elements in the info array (size_t)16

IN credential17
Address of a pmix_byte_object_t within which to return credential (handle)18

Returns one of the following:19

• PMIX_SUCCESS, indicating that the credential has been returned in the provided20
pmix_byte_object_t21

• a PMIx error constant indicating either an error in the input or that the request is unsupported22

Required Attributes

There are no required attributes for this API. Note that implementations may choose to internally23
execute integration for some security environments (e.g., directly contacting a munge server).24

Implementations that support the operation but cannot directly process the client’s request must25
pass any attributes that are provided by the client to the host environment for processing. In26
addition, the following attributes are required to be included in the info array passed from the PMIx27
library to the host environment:28

PMIX_USERID "pmix.euid" (uint32_t)29
Effective user ID of the connecting process.30

PMIX_GRPID "pmix.egid" (uint32_t)31
Effective group ID of the connecting process.32

282 PMIx Standard – Version 4.1 – October 2021

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Request a credential from the PMIx server library or the host environment. The credential is7
returned as a pmix_byte_object_t to support potential binary formats - it is therefore opaque8
to the caller. No information as to the source of the credential is provided.9

15.1.2 PMIx_Get_credential_nb10

Summary11
Request a credential from the PMIx server library or the host environment.12

Format13 PMIx v3.0 C
pmix_status_t14
PMIx_Get_credential_nb(const pmix_info_t info[], size_t ninfo,15

pmix_credential_cbfunc_t cbfunc,16
void *cbdata);17

C

IN info18
Array of pmix_info_t structures (array of handles)19

IN ninfo20
Number of elements in the info array (size_t)21

IN cbfunc22
Callback function to return credential (pmix_credential_cbfunc_t function23
reference)24

IN cbdata25
Data to be passed to the callback function (memory reference)26

Returns one of the following:27

• PMIX_SUCCESS, indicating that the request has been communicated to the local PMIx server -28
result will be returned in the provided cbfunc29

• a PMIx error constant indicating either an error in the input or that the request is unsupported -30
the cbfunc will not be called31

CHAPTER 15. SECURITY 283

Required Attributes

There are no required attributes for this API. Note that implementations may choose to internally1
execute integration for some security environments (e.g., directly contacting a munge server).2

Implementations that support the operation but cannot directly process the client’s request must3
pass any attributes that are provided by the client to the host environment for processing. In4
addition, the following attributes are required to be included in the info array passed from the PMIx5
library to the host environment:6

PMIX_USERID "pmix.euid" (uint32_t)7
Effective user ID of the connecting process.8

PMIX_GRPID "pmix.egid" (uint32_t)9
Effective group ID of the connecting process.10

Optional Attributes

The following attributes are optional for host environments that support this operation:11

PMIX_TIMEOUT "pmix.timeout" (int)12
Time in seconds before the specified operation should time out (zero indicating infinite) and13
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions14
caused by multiple layers (client, server, and host) simultaneously timing the operation.15

Description16
Request a credential from the PMIx server library or the host environment. This version of the API17
is generally preferred in scenarios where the host environment may have to contact a remote18
credential service. Thus, provision is made for the system to return additional information (e.g., the19
identity of the issuing agent) outside of the credential itself and visible to the application.20

15.1.3 Credential Attributes21

The following attributes are defined to support credential operations:22

PMIX_CRED_TYPE "pmix.sec.ctype" (char*)23
When passed in PMIx_Get_credential, a prioritized, comma-delimited list of desired24
credential types for use in environments where multiple authentication mechanisms may be25
available. When returned in a callback function, a string identifier of the credential type.26

PMIX_CRYPTO_KEY "pmix.sec.key" (pmix_byte_object_t)27
Blob containing crypto key.28

284 PMIx Standard – Version 4.1 – October 2021

15.2 Validating Credentials1

Given a credential, PMIx provides two methods by which a caller can request that the system2
validate it, returning any additional information (e.g., authorizations) conveyed within the3
credential.4

15.2.1 PMIx_Validate_credential5

Summary6
Request validation of a credential by the PMIx server library or the host environment.7

Format8 PMIx v3.0 C
pmix_status_t9
PMIx_Validate_credential(const pmix_byte_object_t *cred,10

const pmix_info_t info[], size_t ninfo,11
pmix_info_t **results, size_t *nresults);12

C

IN cred13
Pointer to pmix_byte_object_t containing the credential (handle)14

IN info15
Array of pmix_info_t structures (array of handles)16

IN ninfo17
Number of elements in the info array (size_t)18

INOUT results19
Address where a pointer to an array of pmix_info_t containing the results of the request20
can be returned (memory reference)21

INOUT nresults22
Address where the number of elements in results can be returned (handle)23

Returns one of the following:24

• PMIX_SUCCESS, indicating that the request was processed and returned success (i.e., the25
credential was both valid and any information it contained was successfully processed). Details26
of the result will be returned in the results array27

• a PMIx error constant indicating either an error in the parsing of the credential or that the request28
was refused29

CHAPTER 15. SECURITY 285

Required Attributes

There are no required attributes for this API. Note that implementations may choose to internally1
execute integration for some security environments (e.g., directly contacting a munge server).2

Implementations that support the operation but cannot directly process the client’s request must3
pass any attributes that are provided by the client to the host environment for processing. In4
addition, the following attributes are required to be included in the info array passed from the PMIx5
library to the host environment:6

PMIX_USERID "pmix.euid" (uint32_t)7
Effective user ID of the connecting process.8

PMIX_GRPID "pmix.egid" (uint32_t)9
Effective group ID of the connecting process.10

Optional Attributes

The following attributes are optional for host environments that support this operation:11

PMIX_TIMEOUT "pmix.timeout" (int)12
Time in seconds before the specified operation should time out (zero indicating infinite) and13
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions14
caused by multiple layers (client, server, and host) simultaneously timing the operation.15

Description16
Request validation of a credential by the PMIx server library or the host environment.17

15.2.2 PMIx_Validate_credential_nb18

Summary19
Request validation of a credential by the PMIx server library or the host environment. Provision is20
made for the system to return additional information regarding possible authorization limitations21
beyond simple authentication.22

286 PMIx Standard – Version 4.1 – October 2021

Format1 C
pmix_status_t2
PMIx_Validate_credential_nb(const pmix_byte_object_t *cred,3

const pmix_info_t info[], size_t ninfo,4
pmix_validation_cbfunc_t cbfunc,5
void *cbdata);6

C

IN cred7
Pointer to pmix_byte_object_t containing the credential (handle)8

IN info9
Array of pmix_info_t structures (array of handles)10

IN ninfo11
Number of elements in the info array (size_t)12

IN cbfunc13
Callback function to return result (pmix_validation_cbfunc_t function reference)14

IN cbdata15
Data to be passed to the callback function (memory reference)16

Returns one of the following:17

• PMIX_SUCCESS, indicating that the request has been communicated to the local PMIx server -18
result will be returned in the provided cbfunc19

• a PMIx error constant indicating either an error in the input or that the request is unsupported -20
the cbfunc will not be called21

Upon completion of processing the callback function will be executed. Note that the callback22
function must not be executed prior to return from the API.23

Required Attributes

There are no required attributes for this API. Note that implementations may choose to internally24
execute integration for some security environments (e.g., directly contacting a munge server).25

Implementations that support the operation but cannot directly process the client’s request must26
pass any attributes that are provided by the client to the host environment for processing. In27
addition, the following attributes are required to be included in the info array passed from the PMIx28
library to the host environment:29

PMIX_USERID "pmix.euid" (uint32_t)30
Effective user ID of the connecting process.31

PMIX_GRPID "pmix.egid" (uint32_t)32
Effective group ID of the connecting process.33

CHAPTER 15. SECURITY 287

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Request validation of a credential by the PMIx server library or the host environment. This version7
of the API is generally preferred in scenarios where the host environment may have to contact a8
remote credential service. Provision is made for the system to return additional information (e.g.,9
possible authorization limitations) beyond simple authentication.10

288 PMIx Standard – Version 4.1 – October 2021

CHAPTER 16

Server-Specific Interfaces

The process that hosts the PMIx server library interacts with that library in two distinct manners.1
First, PMIx provides a set of APIs by which the host can request specific services from its library.2
This includes:3

• collecting inventory to support scheduling algorithms,4
• providing subsystems with an opportunity to precondition their resources for optimized5
application support,6

• generating regular expressions,7
• registering information to be passed to client processes, and8
• requesting information on behalf of a remote process.9

Note that the host always has access to all PMIx client APIs - the functions listed below are in10
addition to those available to a PMIx client.11

Second, the host can provide a set of callback functions by which the PMIx server library can pass12
requests upward for servicing by the host. These include notifications of client connection and13
finalize, as well as requests by clients for information and/or services that the PMIx server library14
does not itself provide.15

16.1 Server Initialization and Finalization16

Initialization and finalization routines for PMIx servers.17

16.1.1 PMIx_server_init18

Summary19
Initialize the PMIx server.20

Format21 PMIx v1.0 C
pmix_status_t22
PMIx_server_init(pmix_server_module_t *module,23

pmix_info_t info[], size_t ninfo);24

289

C

INOUT module1
pmix_server_module_t structure (handle)2

IN info3
Array of pmix_info_t structures (array of handles)4

IN ninfo5
Number of elements in the info array (size_t)6

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.7

Required Attributes

The following attributes are required to be supported by all PMIx libraries:8

PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)9
Name of the namespace to use for this PMIx server.10

PMIX_SERVER_RANK "pmix.srv.rank" (pmix_rank_t)11
Rank of this PMIx server.12

PMIX_SERVER_TMPDIR "pmix.srvr.tmpdir" (char*)13
Top-level temporary directory for all client processes connected to this server, and where the14
PMIx server will place its tool rendezvous point and contact information.15

PMIX_SYSTEM_TMPDIR "pmix.sys.tmpdir" (char*)16
Temporary directory for this system, and where a PMIx server that declares itself to be a17
system-level server will place a tool rendezvous point and contact information.18

PMIX_SERVER_TOOL_SUPPORT "pmix.srvr.tool" (bool)19
The host RM wants to declare itself as willing to accept tool connection requests.20

PMIX_SERVER_SYSTEM_SUPPORT "pmix.srvr.sys" (bool)21
The host RM wants to declare itself as being the local system server for PMIx connection22
requests.23

PMIX_SERVER_SESSION_SUPPORT "pmix.srvr.sess" (bool)24
The host RM wants to declare itself as being the local session server for PMIx connection25
requests.26

PMIX_SERVER_GATEWAY "pmix.srv.gway" (bool)27
Server is acting as a gateway for PMIx requests that cannot be serviced on backend nodes28
(e.g., logging to email).29

PMIX_SERVER_SCHEDULER "pmix.srv.sched" (bool)30
Server is supporting system scheduler and desires access to appropriate WLM-supporting31
features. Indicates that the library is to be initialized for scheduler support.32

290 PMIx Standard – Version 4.1 – October 2021

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:1

PMIX_USOCK_DISABLE "pmix.usock.disable" (bool)2
Disable legacy UNIX socket (usock) support. If the library supports Unix socket3
connections, this attribute may be supported for disabling it.4

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)5
POSIX mode_t (9 bits valid). If the library supports socket connections, this attribute may6
be supported for setting the socket mode.7

PMIX_SINGLE_LISTENER "pmix.sing.listnr" (bool)8
Use only one rendezvous socket, letting priorities and/or environment parameters select the9
active transport.10

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)11
If provided, directs that the TCP URI be reported and indicates the desired method of12
reporting: ’-’ for stdout, ’+’ for stderr, or filename. If the library supports TCP socket13
connections, this attribute may be supported for reporting the URI.14

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)15
Comma-delimited list of devices and/or CIDR notation to include when establishing the16
TCP connection. If the library supports TCP socket connections, this attribute may be17
supported for specifying the interfaces to be used.18

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)19
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the20
TCP connection. If the library supports TCP socket connections, this attribute may be21
supported for specifying the interfaces that are not to be used.22

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)23
The IPv4 port to be used.. If the library supports IPV4 connections, this attribute may be24
supported for specifying the port to be used.25

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)26
The IPv6 port to be used. If the library supports IPV6 connections, this attribute may be27
supported for specifying the port to be used.28

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)29
Set to true to disable IPv4 family of addresses. If the library supports IPV4 connections,30
this attribute may be supported for disabling it.31

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)32
Set to true to disable IPv6 family of addresses. If the library supports IPV6 connections,33
this attribute may be supported for disabling it.34

PMIX_SERVER_REMOTE_CONNECTIONS "pmix.srvr.remote" (bool)35

CHAPTER 16. SERVER-SPECIFIC INTERFACES 291

Allow connections from remote tools. Forces the PMIx server to not exclusively use1
loopback device. If the library supports connections from remote tools, this attribute may2
be supported for enabling or disabling it.3

PMIX_EXTERNAL_PROGRESS "pmix.evext" (bool)4
The host shall progress the PMIx library via calls to PMIx_Progress5

PMIX_EVENT_BASE "pmix.evbase" (void*)6
Pointer to an event_base to use in place of the internal progress thread. All PMIx library7
events are to be assigned to the provided event base. The event base must be compatible with8
the event library used by the PMIx implementation - e.g., either both the host and PMIx9
library must use libevent, or both must use libev. Cross-matches are unlikely to work and10
should be avoided - it is the responsibility of the host to ensure that the PMIx11
implementation supports (and was built with) the appropriate event library.12

PMIX_TOPOLOGY2 "pmix.topo2" (pmix_topology_t)13
Provide a pointer to an implementation-specific description of the local node topology.14

PMIX_SERVER_SHARE_TOPOLOGY "pmix.srvr.share" (bool)15
The PMIx server is to share its copy of the local node topology (whether given to it or16
self-discovered) with any clients. The PMIx server will perform the necessary actions to17
scalably expose the description to the local clients. This includes creating any required18
shared memory backing stores and/ or XML representations, plus ensuring that all necessary19
key-value pairs for clients to access the description are included in the job-level information20
provided to each client. All required files are to be installed under the effective21
PMIX_SERVER_TMPDIR directory. The PMIx server library is responsible for cleaning up22
any artifacts (e.g., shared memory backing files or cached key-value pairs) at library finalize.23

PMIX_SERVER_ENABLE_MONITORING "pmix.srv.monitor" (bool)24
Enable PMIx internal monitoring by the PMIx server.25

PMIX_HOMOGENEOUS_SYSTEM "pmix.homo" (bool)26
The nodes comprising the session are homogeneous - i.e., they each contain the same27
number of identical packages, fabric interfaces, GPUs, and other devices.28

Description29
Initialize the PMIx server support library, and provide a pointer to a pmix_server_module_t30
structure containing the caller’s callback functions. The array of pmix_info_t structs is used to31
pass additional info that may be required by the server when initializing. For example, it may32
include the PMIX_SERVER_TOOL_SUPPORT attribute, thereby indicating that the daemon is33
willing to accept connection requests from tools.34

292 PMIx Standard – Version 4.1 – October 2021

Advice to PMIx server hosts

Providing a value of NULL for the module argument is permitted, as is passing an empty module1
structure. Doing so indicates that the host environment will not provide support for multi-node2
operations such as PMIx_Fence, but does intend to support local clients access to information.3

16.1.2 PMIx_server_finalize4

Summary5
Finalize the PMIx server library.6

Format7 PMIx v1.0 C
pmix_status_t8
PMIx_server_finalize(void);9

C

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.10

Description11
Finalize the PMIx server support library, terminating all connections to attached tools and any local12
clients. All memory usage is released.13

16.1.3 Server Initialization Attributes14

These attributes are used to direct the configuration and operation of the PMIx server library by15
passing them into PMIx_server_init.16

PMIX_TOPOLOGY2 "pmix.topo2" (pmix_topology_t)17
Provide a pointer to an implementation-specific description of the local node topology.18

PMIX_SERVER_SHARE_TOPOLOGY "pmix.srvr.share" (bool)19
The PMIx server is to share its copy of the local node topology (whether given to it or20
self-discovered) with any clients.21

PMIX_USOCK_DISABLE "pmix.usock.disable" (bool)22
Disable legacy UNIX socket (usock) support.23

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)24
POSIX mode_t (9 bits valid).25

PMIX_SINGLE_LISTENER "pmix.sing.listnr" (bool)26
Use only one rendezvous socket, letting priorities and/or environment parameters select the27
active transport.28

PMIX_SERVER_TOOL_SUPPORT "pmix.srvr.tool" (bool)29
The host RM wants to declare itself as willing to accept tool connection requests.30

PMIX_SERVER_REMOTE_CONNECTIONS "pmix.srvr.remote" (bool)31

CHAPTER 16. SERVER-SPECIFIC INTERFACES 293

Allow connections from remote tools. Forces the PMIx server to not exclusively use1
loopback device.2

PMIX_SERVER_SYSTEM_SUPPORT "pmix.srvr.sys" (bool)3
The host RM wants to declare itself as being the local system server for PMIx connection4
requests.5

PMIX_SERVER_SESSION_SUPPORT "pmix.srvr.sess" (bool)6
The host RM wants to declare itself as being the local session server for PMIx connection7
requests.8

PMIX_SERVER_START_TIME "pmix.srvr.strtime" (char*)9
Time when the server started - i.e., when the server created it’s rendezvous file (given in10
ctime string format).11

PMIX_SERVER_TMPDIR "pmix.srvr.tmpdir" (char*)12
Top-level temporary directory for all client processes connected to this server, and where the13
PMIx server will place its tool rendezvous point and contact information.14

PMIX_SYSTEM_TMPDIR "pmix.sys.tmpdir" (char*)15
Temporary directory for this system, and where a PMIx server that declares itself to be a16
system-level server will place a tool rendezvous point and contact information.17

PMIX_SERVER_ENABLE_MONITORING "pmix.srv.monitor" (bool)18
Enable PMIx internal monitoring by the PMIx server.19

PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)20
Name of the namespace to use for this PMIx server.21

PMIX_SERVER_RANK "pmix.srv.rank" (pmix_rank_t)22
Rank of this PMIx server.23

PMIX_SERVER_GATEWAY "pmix.srv.gway" (bool)24
Server is acting as a gateway for PMIx requests that cannot be serviced on backend nodes25
(e.g., logging to email).26

PMIX_SERVER_SCHEDULER "pmix.srv.sched" (bool)27
Server is supporting system scheduler and desires access to appropriate WLM-supporting28
features. Indicates that the library is to be initialized for scheduler support.29

PMIX_EXTERNAL_PROGRESS "pmix.evext" (bool)30
The host shall progress the PMIx library via calls to PMIx_Progress31

PMIX_HOMOGENEOUS_SYSTEM "pmix.homo" (bool)32
The nodes comprising the session are homogeneous - i.e., they each contain the same33
number of identical packages, fabric interfaces, GPUs, and other devices.34

16.2 Server Support Functions35

The following APIs allow the RM daemon that hosts the PMIx server library to request specific36
services from the PMIx library.37

16.2.1 PMIx_generate_regex38

Summary39
Generate a compressed representation of the input string.40

294 PMIx Standard – Version 4.1 – October 2021

Format1 PMIx v1.0 C
pmix_status_t2
PMIx_generate_regex(const char *input, char **output);3

C

IN input4
String to process (string)5

OUT output6
Compressed representation of input (array of bytes)7

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.8

Description9
Given a comma-separated list of input values, generate a reduced size representation of the input10
that can be passed down to the PMIx server library’s PMIx_server_register_nspace API11
for parsing. The order of the individual values in the input string is preserved across the operation.12
The caller is responsible for releasing the returned data.13

The precise compressed representations will be implementation specific. The regular expression14
itself is not required to be a printable string nor to obey typical string constraints (e.g., include a15
NULL terminator byte). However, all PMIx implementations are required to include a16
colon-delimited NULL-terminated string at the beginning of the output representation that can be17
printed for diagnostic purposes and identifies the method used to generate the representation. The18
following identifiers are reserved by the PMIx Standard:19

• "raw:\0" - indicates that the expression following the identifier is simply the20
comma-delimited input string (no processing was performed).21

• "pmix:\0" - a PMIx-unique regular expression represented as a NULL-terminated string22
following the identifier.23

• "blob:\0" - a PMIx-unique regular expression that is not represented as a NULL-terminated24
string following the identifier. Additional implementation-specific metadata may follow the25
identifier along with the data itself. For example, a compressed binary array format based on the26
zlib compression package, with the size encoded in the space immediately following the27
identifier.28

Communicating the resulting output should be done by first packing the returned expression using29
the PMIx_Data_pack, declaring the input to be of type PMIX_REGEX, and then obtaining the30
resulting blob to be communicated using the PMIX_DATA_BUFFER_UNLOAD macro. The31
reciprocal method can be used on the remote end prior to passing the regex into32
PMIx_server_register_nspace. The pack/unpack routines will ensure proper handling of33
the data based on the regex prefix.34

CHAPTER 16. SERVER-SPECIFIC INTERFACES 295

16.2.2 PMIx_generate_ppn1

Summary2
Generate a compressed representation of the input identifying the processes on each node.3

Format4 PMIx v1.0 C
pmix_status_t5
PMIx_generate_ppn(const char *input, char **ppn);6

C

IN input7
String to process (string)8

OUT ppn9
Compressed representation of input (array of bytes)10

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.11

Description12
The input shall consist of a semicolon-separated list of ranges representing the ranks of processes13
on each node of the job - e.g., "1-4;2-5;8,10,11,12;6,7,9". Each field of the input must14
correspond to the node name provided at that position in the input to PMIx_generate_regex.15
Thus, in the example, ranks 1-4 would be located on the first node of the comma-separated list of16
names provided to PMIx_generate_regex, and ranks 2-5 would be on the second name in the17
list.18

Rules governing the format of the returned regular expression are the same as those specified for19
PMIx_generate_regex, as detailed here.20

16.2.3 PMIx_server_register_nspace21

Summary22
Setup the data about a particular namespace.23

Format24 PMIx v1.0 C
pmix_status_t25
PMIx_server_register_nspace(const pmix_nspace_t nspace,26

int nlocalprocs,27
pmix_info_t info[], size_t ninfo,28
pmix_op_cbfunc_t cbfunc,29
void *cbdata);30

296 PMIx Standard – Version 4.1 – October 2021

C

IN nspace1
Character array of maximum size PMIX_MAX_NSLEN containing the namespace identifier2
(string)3

IN nlocalprocs4
number of local processes (integer)5

IN info6
Array of info structures (array of handles)7

IN ninfo8
Number of elements in the info array (integer)9

IN cbfunc10
Callback function pmix_op_cbfunc_t to be executed upon completion of the operation.11
A NULL function reference indicates that the function is to be executed as a blocking12
operation (function reference)13

IN cbdata14
Data to be passed to the callback function (memory reference)15

Returns one of the following:16

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result17
will be returned in the provided cbfunc. Note that the library must not invoke the callback18
function prior to returning from the API.19

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and20
returned success - the cbfunc will not be called21

• a PMIx error constant indicating either an error in the input or that the request was immediately22
processed and failed - the cbfunc will not be called23

Required Attributes

The following attributes are required to be supported by all PMIx libraries:24

PMIX_REGISTER_NODATA "pmix.reg.nodata" (bool)25
Registration is for this namespace only, do not copy job data.26

PMIX_SESSION_INFO_ARRAY "pmix.ssn.arr" (pmix_data_array_t)27
Provide an array of pmix_info_t containing session-realm information. The28
PMIX_SESSION_ID attribute is required to be included in the array.29

PMIX_JOB_INFO_ARRAY "pmix.job.arr" (pmix_data_array_t)30
Provide an array of pmix_info_t containing job-realm information. The31
PMIX_SESSION_ID attribute of the session containing the job is required to be included in32
the array whenever the PMIx server library may host multiple sessions (e.g., when executing33
with a host RM daemon). As information is registered one job (aka namespace) at a time via34
the PMIx_server_register_nspace API, there is no requirement that the array35
contain either the PMIX_NSPACE or PMIX_JOBID attributes when used in that context36

CHAPTER 16. SERVER-SPECIFIC INTERFACES 297

(though either or both of them may be included). At least one of the job identifiers must be1
provided in all other contexts where the job being referenced is ambiguous.2

PMIX_APP_INFO_ARRAY "pmix.app.arr" (pmix_data_array_t)3
Provide an array of pmix_info_t containing application-realm information. The4
PMIX_NSPACE or PMIX_JOBID attributes of the job containing the application, plus its5
PMIX_APPNUM attribute, must to be included in the array when the array is not included as6
part of a call to PMIx_server_register_nspace - i.e., when the job containing the7
application is ambiguous. The job identification is otherwise optional.8

PMIX_PROC_INFO_ARRAY "pmix.pdata" (pmix_data_array_t)9
Provide an array of pmix_info_t containing process-realm information. The10
PMIX_RANK and PMIX_NSPACE attributes, or the PMIX_PROCID attribute, are required11
to be included in the array when the array is not included as part of a call to12
PMIx_server_register_nspace - i.e., when the job containing the process is13
ambiguous. All three may be included if desired. When the array is included in some14
broader structure that identifies the job, then only the PMIX_RANK or the PMIX_PROCID15
attribute must be included (the others are optional).16

PMIX_NODE_INFO_ARRAY "pmix.node.arr" (pmix_data_array_t)17
Provide an array of pmix_info_t containing node-realm information. At a minimum,18
either the PMIX_NODEID or PMIX_HOSTNAME attribute is required to be included in the19
array, though both may be included.20

21

Host environments are required to provide a wide range of session-, job-, application-, node-, and22
process-realm information, and may choose to provide a similarly wide range of optional23
information. The information is broadly separated into categories based on the data realm24
definitions explained in Section 6.1, and retrieved according to the rules detailed in Section 6.2.25

Session-realm information may be passed as individual pmix_info_t entries, or as part of a26
pmix_data_array_t using the PMIX_SESSION_INFO_ARRAY attribute. The list of data27
referenced in this way shall include:28

• PMIX_UNIV_SIZE "pmix.univ.size" (uint32_t)29
Maximum number of process that can be simultaneously executing in a session. Note that30
this attribute is equivalent to the PMIX_MAX_PROCS attribute for the session realm - it is31
included in the PMIx Standard for historical reasons.32

• PMIX_MAX_PROCS "pmix.max.size" (uint32_t)33
Maximum number of processes that can be executed in the specified realm. Typically, this34
is a constraint imposed by a scheduler or by user settings in a hostfile or other resource35
description. Defaults to the job realm. Must be provided if PMIX_UNIV_SIZE is not36
given. Requires use of the PMIX_SESSION_INFO attribute to avoid ambiguity when37
retrieving it.38

• PMIX_SESSION_ID "pmix.session.id" (uint32_t)39

298 PMIx Standard – Version 4.1 – October 2021

Session identifier assigned by the scheduler.1

plus the following optional information:2

• PMIX_CLUSTER_ID "pmix.clid" (char*)3
A string name for the cluster this allocation is on. As this information is not related to the4
namespace, it is best passed using the PMIx_server_register_resources API.5

• PMIX_ALLOCATED_NODELIST "pmix.alist" (char*)6
Comma-delimited list or regular expression of all nodes in the specified realm regardless7
of whether or not they currently host processes. Defaults to the job realm.8

• PMIX_RM_NAME "pmix.rm.name" (char*)9
String name of the RM. As this information is not related to the namespace, it is best10
passed using the PMIx_server_register_resources API.11

• PMIX_RM_VERSION "pmix.rm.version" (char*)12
RM version string. As this information is not related to the namespace, it is best passed13
using the PMIx_server_register_resources API.14

• PMIX_SERVER_HOSTNAME "pmix.srvr.host" (char*)15
Host where target PMIx server is located. As this information is not related to the16
namespace, it is best passed using the PMIx_server_register_resources API.17

Job-realm information may be passed as individual pmix_info_t entries, or as part of a18
pmix_data_array_t using the PMIX_JOB_INFO_ARRAY attribute. The list of data19
referenced in this way shall include:20

• PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)21
Name of the namespace to use for this PMIx server. Identifies the namespace of the PMIx22
server itself23

• PMIX_SERVER_RANK "pmix.srv.rank" (pmix_rank_t)24
Rank of this PMIx server. Identifies the rank of the PMIx server itself.25

• PMIX_NSPACE "pmix.nspace" (char*)26
Namespace of the job - may be a numerical value expressed as a string, but is often an27
alphanumeric string carrying information solely of use to the system. Required to be28
unique within the scope of the host environment. Identifies the namespace of the job29
being registered.30

• PMIX_JOBID "pmix.jobid" (char*)31
Job identifier assigned by the scheduler to the specified job - may be identical to the32
namespace, but is often a numerical value expressed as a string (e.g., "12345.3").33

• PMIX_JOB_SIZE "pmix.job.size" (uint32_t)34
Total number of processes in the specified job across all contained applications. Note that35
this value can be different from PMIX_MAX_PROCS. For example, users may choose to36
subdivide an allocation (running several jobs in parallel within it), and dynamic37

CHAPTER 16. SERVER-SPECIFIC INTERFACES 299

programming models may support adding and removing processes from a running job1
on-the-fly. In the latter case, PMIx events may be used to notify processes within the job2
that the job size has changed.3

• PMIX_MAX_PROCS "pmix.max.size" (uint32_t)4
Maximum number of processes that can be executed in the specified realm. Typically, this5
is a constraint imposed by a scheduler or by user settings in a hostfile or other resource6
description. Defaults to the job realm. Retrieval of this attribute defaults to the job level7
unless an appropriate specification is given (e.g., PMIX_SESSION_INFO).8

• PMIX_NODE_MAP "pmix.nmap" (char*)9
Regular expression of nodes currently hosting processes in the specified realm - see10
16.2.3.2 for an explanation of its generation. Defaults to the job realm.11

• PMIX_PROC_MAP "pmix.pmap" (char*)12
Regular expression describing processes on each node in the specified realm - see 16.2.3.213
for an explanation of its generation. Defaults to the job realm.14

plus the following optional information:15

• PMIX_NPROC_OFFSET "pmix.offset" (pmix_rank_t)16
Starting global rank of the specified job.17

• PMIX_JOB_NUM_APPS "pmix.job.napps" (uint32_t)18
Number of applications in the specified job. This is a required attribute if more than one19
application is included in the job.20

• PMIX_MAPBY "pmix.mapby" (char*)21
Process mapping policy - when accessed using PMIx_Get, use the22
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the23
provided namespace. Supported values are launcher specific.24

• PMIX_RANKBY "pmix.rankby" (char*)25
Process ranking policy - when accessed using PMIx_Get, use the26
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for27
the provided namespace. Supported values are launcher specific.28

• PMIX_BINDTO "pmix.bindto" (char*)29
Process binding policy - when accessed using PMIx_Get, use the30
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the31
provided namespace. Supported values are launcher specific.32

• PMIX_HOSTNAME_KEEP_FQDN "pmix.fqdn" (bool)33
FQDNs are being retained by the PMIx library.34

• PMIX_ANL_MAP "pmix.anlmap" (char*)35
Process map equivalent to PMIX_PROC_MAP expressed in Argonne National36
Laboratory’s PMI-1/PMI-2 notation. Defaults to the job realm.37

300 PMIx Standard – Version 4.1 – October 2021

• PMIX_TDIR_RMCLEAN "pmix.tdir.rmclean" (bool)1
Resource Manager will cleanup assigned temporary directory trees.2

• PMIX_CRYPTO_KEY "pmix.sec.key" (pmix_byte_object_t)3
Blob containing crypto key.4

If more than one application is included in the namespace, then the host environment is also5
required to supply data consisting of the following items for each application in the job, passed as a6
pmix_data_array_t using the PMIX_APP_INFO_ARRAY attribute:7

• PMIX_APPNUM "pmix.appnum" (uint32_t)8
The application number within the job in which the specified process is a member. This9
attribute must appear at the beginning of the array.10

• PMIX_APP_SIZE "pmix.app.size" (uint32_t)11
Number of processes in the specified application, regardless of their execution state - i.e.,12
this number may include processes that either failed to start or have already terminated.13

• PMIX_MAX_PROCS "pmix.max.size" (uint32_t)14
Maximum number of processes that can be executed in the specified realm. Typically, this15
is a constraint imposed by a scheduler or by user settings in a hostfile or other resource16
description. Defaults to the job realm. Requires use of the PMIX_APP_INFO attribute17
to avoid ambiguity when retrieving it.18

• PMIX_APPLDR "pmix.aldr" (pmix_rank_t)19
Lowest rank in the specified application.20

• PMIX_WDIR "pmix.wdir" (char*)21
Working directory for spawned processes. This attribute is required for all registrations,22
but may be provided as an individual pmix_info_t entry if only one application is23
included in the namespace.24

• PMIX_APP_ARGV "pmix.app.argv" (char*)25
Consolidated argv passed to the spawn command for the given application (e.g., "./myapp26
arg1 arg2 arg3"). This attribute is required for all registrations, but may be provided as an27
individual pmix_info_t entry if only one application is included in the namespace.28

plus the following optional information:29

• PMIX_PSET_NAMES "pmix.pset.nms" (pmix_data_array_t*)30
Returns an array of char* string names of the process sets in which the given process is31
a member.32

• PMIX_APP_MAP_TYPE "pmix.apmap.type" (char*)33
Type of mapping used to layout the application (e.g., cyclic). This attribute may be34
provided as an individual pmix_info_t entry if only one application is included in the35
namespace.36

• PMIX_APP_MAP_REGEX "pmix.apmap.regex" (char*)37

CHAPTER 16. SERVER-SPECIFIC INTERFACES 301

Regular expression describing the result of the process mapping. This attribute may be1
provided as an individual pmix_info_t entry if only one application is included in the2
namespace.3

The data may also include attributes provided by the host environment that identify the4
programming model (as specified by the user) being executed within the application. The PMIx5
server library may utilize this information to customize the environment to fit that model (e.g.,6
adding environmental variables specified by the corresponding standard for that model):7

• PMIX_PROGRAMMING_MODEL "pmix.pgm.model" (char*)8
Programming model being initialized (e.g., “MPI” or “OpenMP”).9

• PMIX_MODEL_LIBRARY_NAME "pmix.mdl.name" (char*)10
Programming model implementation ID (e.g., “OpenMPI” or “MPICH”).11

• PMIX_MODEL_LIBRARY_VERSION "pmix.mld.vrs" (char*)12
Programming model version string (e.g., “2.1.1”).13

Node-realm information may be passed as individual pmix_info_t entries if only one node will14
host processes from the job being registered, or as part of a pmix_data_array_t using the15
PMIX_NODE_INFO_ARRAY attribute when multiple nodes are involved in the job. The list of data16
referenced in this way shall include:17

• PMIX_NODEID "pmix.nodeid" (uint32_t)18
Node identifier expressed as the node’s index (beginning at zero) in an array of nodes19
within the active session. The value must be unique and directly correlate to the20
PMIX_HOSTNAME of the node - i.e., users can interchangeably reference the same21
location using either the PMIX_HOSTNAME or corresponding PMIX_NODEID.22

• PMIX_HOSTNAME "pmix.hname" (char*)23
Name of the host, as returned by the gethostname utility or its equivalent. As this24
information is not related to the namespace, it can be passed using the25
PMIx_server_register_resources API. However, either it or the26
PMIX_NODEID must be included in the array to properly identify the node.27

• PMIX_HOSTNAME_ALIASES "pmix.alias" (char*)28
Comma-delimited list of names by which the target node is known. As this information is29
not related to the namespace, it is best passed using the30
PMIx_server_register_resources API.31

• PMIX_LOCAL_SIZE "pmix.local.size" (uint32_t)32
Number of processes in the specified job or application realm on the caller’s node.33
Defaults to job realm unless the PMIX_APP_INFO and the PMIX_APPNUM qualifiers are34
given.35

• PMIX_NODE_SIZE "pmix.node.size" (uint32_t)36
Number of processes across all jobs that are executing upon the node.37

• PMIX_LOCALLDR "pmix.lldr" (pmix_rank_t)38

302 PMIx Standard – Version 4.1 – October 2021

Lowest rank within the specified job on the node (defaults to current node in absence of1
PMIX_HOSTNAME or PMIX_NODEID qualifier).2

• PMIX_LOCAL_PEERS "pmix.lpeers" (char*)3
Comma-delimited list of ranks that are executing on the local node within the specified4
namespace – shortcut for PMIx_Resolve_peers for the local node.5

plus the following information for the server’s own node:6

• PMIX_TMPDIR "pmix.tmpdir" (char*)7
Full path to the top-level temporary directory assigned to the session.8

• PMIX_NSDIR "pmix.nsdir" (char*)9
Full path to the temporary directory assigned to the specified job, under PMIX_TMPDIR.10

• PMIX_LOCAL_PROCS "pmix.lprocs" (pmix_proc_t array)11
Array of pmix_proc_t of all processes executing on the local node – shortcut for12
PMIx_Resolve_peers for the local node and a NULL namespace argument. The13
process identifier is ignored for this attribute.14

The data may also include the following optional information for the server’s own node:15

• PMIX_LOCAL_CPUSETS "pmix.lcpus" (pmix_data_array_t)16
A pmix_data_array_t array of string representations of the PU binding bitmaps17
applied to each local peer on the caller’s node upon launch. Each string shall begin with18
the name of the library that generated it (e.g., "hwloc") followed by a colon and the bitmap19
string itself. The array shall be in the same order as the processes returned by20
PMIX_LOCAL_PEERS for that namespace.21

• PMIX_AVAIL_PHYS_MEMORY "pmix.pmem" (uint64_t)22
Total available physical memory on a node. As this information is not related to the23
namespace, it can be passed using the PMIx_server_register_resources API.24

and the following optional information for other nodes:25

• PMIX_MAX_PROCS "pmix.max.size" (uint32_t)26
Maximum number of processes that can be executed in the specified realm. Typically, this27
is a constraint imposed by a scheduler or by user settings in a hostfile or other resource28
description. Defaults to the job realm. Requires use of the PMIX_NODE_INFO attribute29
to avoid ambiguity when retrieving it.30

Process-realm information shall include the following data for each process in the job, passed as a31
pmix_data_array_t using the PMIX_PROC_INFO_ARRAY attribute:32

• PMIX_RANK "pmix.rank" (pmix_rank_t)33
Process rank within the job, starting from zero.34

• PMIX_APPNUM "pmix.appnum" (uint32_t)35
The application number within the job in which the specified process is a member. This36
attribute may be omitted if only one application is present in the namespace.37

CHAPTER 16. SERVER-SPECIFIC INTERFACES 303

• PMIX_APP_RANK "pmix.apprank" (pmix_rank_t)1
Rank of the specified process within its application. This attribute may be omitted if only2
one application is present in the namespace.3

• PMIX_GLOBAL_RANK "pmix.grank" (pmix_rank_t)4
Rank of the specified process spanning across all jobs in this session, starting with zero.5
Note that no ordering of the jobs is implied when computing this value. As jobs can start6
and end at random times, this is defined as a continually growing number - i.e., it is not7
dynamically adjusted as individual jobs and processes are started or terminated.8

• PMIX_LOCAL_RANK "pmix.lrank" (uint16_t)9
Rank of the specified process on its node - refers to the numerical location (starting from10
zero) of the process on its node when counting only those processes from the same job11
that share the node, ordered by their overall rank within that job.12

• PMIX_NODE_RANK "pmix.nrank" (uint16_t)13
Rank of the specified process on its node spanning all jobs- refers to the numerical location14
(starting from zero) of the process on its node when counting all processes (regardless of15
job) that share the node, ordered by their overall rank within the job. The value represents16
a snapshot in time when the specified process was started on its node and is not17
dynamically adjusted as processes from other jobs are started or terminated on the node.18

• PMIX_NODEID "pmix.nodeid" (uint32_t)19
Node identifier expressed as the node’s index (beginning at zero) in an array of nodes20
within the active session. The value must be unique and directly correlate to the21
PMIX_HOSTNAME of the node - i.e., users can interchangeably reference the same22
location using either the PMIX_HOSTNAME or corresponding PMIX_NODEID.23

• PMIX_REINCARNATION "pmix.reinc" (uint32_t)24
Number of times this process has been re-instantiated - i.e, a value of zero indicates that25
the process has never been restarted. 526

• PMIX_SPAWNED "pmix.spawned" (bool)27
true if this process resulted from a call to PMIx_Spawn. Lack of inclusion (i.e., a return28
status of PMIX_ERR_NOT_FOUND) corresponds to a value of false for this attribute.29

plus the following information for processes that are local to the server:30

• PMIX_LOCALITY_STRING "pmix.locstr" (char*)31
String describing a process’s bound location - referenced using the process’s rank. The32
string is prefixed by the implementation that created it (e.g., "hwloc") followed by a colon.33
The remainder of the string represents the corresponding locality as expressed by the34
underlying implementation. The entire string must be passed to35
PMIx_Get_relative_locality for processing. Note that hosts are only required to36
provide locality strings for local client processes - thus, a call to PMIx_Get for the37
locality string of a process that returns PMIX_ERR_NOT_FOUND indicates that the38
process is not executing on the same node.39

304 PMIx Standard – Version 4.1 – October 2021

• PMIX_PROCDIR "pmix.pdir" (char*)1
Full path to the subdirectory under PMIX_NSDIR assigned to the specified process.2

• PMIX_PACKAGE_RANK "pmix.pkgrank" (uint16_t)3
Rank of the specified process on the package where this process resides - refers to the4
numerical location (starting from zero) of the process on its package when counting only5
those processes from the same job that share the package, ordered by their overall rank6
within that job. Note that processes that are not bound to PUs within a single specific7
package cannot have a package rank.8

and the following optional information - note that some of this information can be derived from9
information already provided by other attributes, but it may be included here for ease of retrieval by10
users:11

• PMIX_HOSTNAME "pmix.hname" (char*)12
Name of the host, as returned by the gethostname utility or its equivalent.13

• PMIX_CPUSET "pmix.cpuset" (char*)14
A string representation of the PU binding bitmap applied to the process upon launch. The15
string shall begin with the name of the library that generated it (e.g., "hwloc") followed by16
a colon and the bitmap string itself.17

• PMIX_CPUSET_BITMAP "pmix.bitmap" (pmix_cpuset_t*)18
Bitmap applied to the process upon launch.19

• PMIX_DEVICE_DISTANCES "pmix.dev.dist" (pmix_data_array_t)20
Return an array of pmix_device_distance_t containing the minimum and21
maximum distances of the given process location to all devices of the specified type on the22
local node.23

24

Attributes not directly provided by the host environment may be derived by the PMIx server library25
from other required information and included in the data made available to the server library’s26
clients.27

Description28
Pass job-related information to the PMIx server library for distribution to local client processes.29

CHAPTER 16. SERVER-SPECIFIC INTERFACES 305

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting any local application1
process within the given namespace.2

The PMIx server must register all namespaces that will participate in collective operations with3
local processes. This means that the server must register a namespace even if it will not host any4
local processes from within that namespace if any local process of another namespace might at5
some point perform an operation involving one or more processes from the new namespace. This is6
necessary so that the collective operation can identify the participants and know when it is locally7
complete.8

The caller must also provide the number of local processes that will be launched within this9
namespace. This is required for the PMIx server library to correctly handle collectives as a10
collective operation call can occur before all the local processes have been started.11

A NULL cbfunc reference indicates that the function is to be executed as a blocking operation.12

Advice to users

The number of local processes for any given namespace is generally fixed at the time of application13
launch. Calls to PMIx_Spawn result in processes launched in their own namespace, not that of14
their parent. However, it is possible for processes to migrate to another node via a call to15
PMIx_Job_control_nb, thus resulting in a change to the number of local processes on both16
the initial node and the node to which the process moved. It is therefore critical that applications17
not migrate processes without first ensuring that PMIx-based collective operations are not in18
progress, and that no such operations be initiated until process migration has completed.19

306 PMIx Standard – Version 4.1 – October 2021

16.2.3.1 Namespace registration attributes1

The following attributes are defined specifically for use with the2
PMIx_server_register_nspace API: PMIX_REGISTER_NODATA3
"pmix.reg.nodata" (bool)4

Registration is for this namespace only, do not copy job data.5

The following attributes are used to assemble information according to its data realm (session, job,6
application, node, or process as defined in Section 6.1) for registration where ambiguity may exist -7
see 16.2.3.2 for examples of their use.8

PMIX_SESSION_INFO_ARRAY "pmix.ssn.arr" (pmix_data_array_t)9
Provide an array of pmix_info_t containing session-realm information. The10
PMIX_SESSION_ID attribute is required to be included in the array.11

PMIX_JOB_INFO_ARRAY "pmix.job.arr" (pmix_data_array_t)12
Provide an array of pmix_info_t containing job-realm information. The13
PMIX_SESSION_ID attribute of the session containing the job is required to be included in14
the array whenever the PMIx server library may host multiple sessions (e.g., when executing15
with a host RM daemon). As information is registered one job (aka namespace) at a time via16
the PMIx_server_register_nspace API, there is no requirement that the array17
contain either the PMIX_NSPACE or PMIX_JOBID attributes when used in that context18
(though either or both of them may be included). At least one of the job identifiers must be19
provided in all other contexts where the job being referenced is ambiguous.20

PMIX_APP_INFO_ARRAY "pmix.app.arr" (pmix_data_array_t)21
Provide an array of pmix_info_t containing application-realm information. The22
PMIX_NSPACE or PMIX_JOBID attributes of the job containing the application, plus its23
PMIX_APPNUM attribute, must to be included in the array when the array is not included as24
part of a call to PMIx_server_register_nspace - i.e., when the job containing the25
application is ambiguous. The job identification is otherwise optional.26

PMIX_PROC_INFO_ARRAY "pmix.pdata" (pmix_data_array_t)27
Provide an array of pmix_info_t containing process-realm information. The28
PMIX_RANK and PMIX_NSPACE attributes, or the PMIX_PROCID attribute, are required29
to be included in the array when the array is not included as part of a call to30
PMIx_server_register_nspace - i.e., when the job containing the process is31
ambiguous. All three may be included if desired. When the array is included in some32
broader structure that identifies the job, then only the PMIX_RANK or the PMIX_PROCID33
attribute must be included (the others are optional).34

PMIX_NODE_INFO_ARRAY "pmix.node.arr" (pmix_data_array_t)35
Provide an array of pmix_info_t containing node-realm information. At a minimum,36
either the PMIX_NODEID or PMIX_HOSTNAME attribute is required to be included in the37
array, though both may be included.38

Note that these assemblages can be used hierarchically:39

• a PMIX_JOB_INFO_ARRAY might contain multiple PMIX_APP_INFO_ARRAY elements,40
each describing values for a specific application within the job.41

CHAPTER 16. SERVER-SPECIFIC INTERFACES 307

• a PMIX_JOB_INFO_ARRAY could contain a PMIX_NODE_INFO_ARRAY for each node1
hosting processes from that job, each array describing job-level values for that node.2

• a PMIX_SESSION_INFO_ARRAY might contain multiple PMIX_JOB_INFO_ARRAY3
elements, each describing a job executing within the session. Each job array could, in turn,4
contain both application and node arrays, thus providing a complete picture of the active5
operations within the allocation.6

Advice to PMIx library implementers

PMIx implementations must be capable of properly parsing and storing any hierarchical depth of7
information arrays. The resulting stored values are must to be accessible via both PMIx_Get and8
PMIx_Query_info_nb APIs, assuming appropriate directives are provided by the caller.9

16.2.3.2 Assembling the registration information10

The following description is not intended to represent the actual layout of information in a given11
PMIx library. Instead, it is describes how information provided in the info parameter of the12
PMIx_server_register_nspace shall be organized for proper processing by a PMIx server13
library. The ordering of the various information elements is arbitrary - they are presented in a14
top-down hierarchical form solely for clarity in reading.15

Advice to PMIx server hosts

Creating the info array of data requires knowing in advance the number of elements required for the16
array. This can be difficult to compute and somewhat fragile in practice. One method for resolving17
the problem is to create a linked list of objects, each containing a single pmix_info_t structure.18
Allocation and manipulation of the list can then be accomplished using existing standard methods.19
Upon completion, the final info array can be allocated based on the number of elements on the list,20
and then the values in the list object pmix_info_t structures transferred to the corresponding21
array element utilizing the PMIX_INFO_XFER macro.22

A common building block used in several areas is the construction of a regular expression23
identifying the nodes involved in that area - e.g., the nodes in a session or job. PMIx provides24
several tools to facilitate this operation, beginning by constructing an argv-like array of node25
names. This array is then passed to the PMIx_generate_regex function to create a regular26
expression parseable by the PMIx server library, as shown below:27

308 PMIx Standard – Version 4.1 – October 2021

C
char **nodes = NULL;1
char *nodelist;2
char *regex;3
size_t n;4
pmix_status_t rc;5
pmix_info_t info;6

7
/* loop over an array of nodes, adding each8
* name to the array */9
for (n=0; n < num_nodes; n++) {10

/* filter the nodes to ignore those not included11
* in the target range (session, job, etc.). In12
* this example, all nodes are accepted */13

PMIX_ARGV_APPEND(&nodes, node[n]->name);14
}15

16
/* join into a comma-delimited string */17
nodelist = PMIX_ARGV_JOIN(nodes, ’,’);18

19
/* release the array */20
PMIX_ARGV_FREE(nodes);21

22
/* generate regex */23
rc = PMIx_generate_regex(nodelist, ®ex);24

25
/* release list */26
free(nodelist);27

28
/* pass the regex as the value to the PMIX_NODE_MAP key */29
PMIX_INFO_LOAD(&info, PMIX_NODE_MAP, regex, PMIX_REGEX);30
/* release the regex */31
free(regex);32

C

Changing the filter criteria allows the construction of node maps for any level of information. A33
description of the returned regular expression is provided here.34

A similar method is used to construct the map of processes on each node from the namespace being35
registered. This may be done for each information level of interest (e.g., to identify the process map36
for the entire job or for each application in the job) by changing the search criteria. An example is37
shown below for the case of creating the process map for a job:38

CHAPTER 16. SERVER-SPECIFIC INTERFACES 309

C
char **ndppn;1
char rank[30];2
char **ppnarray = NULL;3
char *ppn;4
char *localranks;5
char *regex;6
size_t n, m;7
pmix_status_t rc;8
pmix_info_t info;9

10
/* loop over an array of nodes */11
for (n=0; n < num_nodes; n++) {12

/* for each node, construct an array of ranks on that node */13
ndppn = NULL;14
for (m=0; m < node[n]->num_procs; m++) {15

/* ignore processes that are not part of the target job */16
if (!PMIX_CHECK_NSPACE(targetjob,node[n]->proc[m].nspace)) {17

continue;18
}19
snprintf(rank, 30, "%d", node[n]->proc[m].rank);20
PMIX_ARGV_APPEND(&ndppn, rank);21

}22
/* convert the array into a comma-delimited string of ranks */23
localranks = PMIX_ARGV_JOIN(ndppn, ’,’);24
/* release the local array */25
PMIX_ARGV_FREE(ndppn);26
/* add this node’s contribution to the overall array */27
PMIX_ARGV_APPEND(&ppnarray, localranks);28
/* release the local list */29
free(localranks);30

}31
32

/* join into a semicolon-delimited string */33
ppn = PMIX_ARGV_JOIN(ppnarray, ’;’);34

35
/* release the array */36
PMIX_ARGV_FREE(ppnarray);37

38
/* generate ppn regex */39
rc = PMIx_generate_ppn(ppn, ®ex);40

41
/* release list */42

310 PMIx Standard – Version 4.1 – October 2021

free(ppn);1
2

/* pass the regex as the value to the PMIX_PROC_MAP key */3
PMIX_INFO_LOAD(&info, PMIX_PROC_MAP, regex, PMIX_REGEX);4
/* release the regex */5
free(regex);6

C

Note that the PMIX_NODE_MAP and PMIX_PROC_MAP attributes are linked in that the order of7
entries in the process map must match the ordering of nodes in the node map - i.e., there is no8
provision in the PMIx process map regular expression generator/parser pair supporting an9
out-of-order node or a node that has no corresponding process map entry (e.g., a node with no10
processes on it). Armed with these tools, the registration info array can be constructed as follows:11

• Session-level information includes all session-specific values. In many cases, only two values12
(PMIX_SESSION_ID and PMIX_UNIV_SIZE) are included in the registration array. Since13
both of these values are session-specific, they can be specified independently - i.e., in their own14
pmix_info_t elements of the info array. Alternatively, they can be provided as a15
pmix_data_array_t array of pmix_info_t using the PMIX_SESSION_INFO_ARRAY16
attribute and identifed by including the PMIX_SESSION_ID attribute in the array - this is17
required in cases where non-specific attributes (e.g., PMIX_NUM_NODES or18
PMIX_NODE_MAP) are passed to describe aspects of the session. Note that the node map can19
include nodes not used by the job being registered as no corresponding process map is specified.20

The info array at this point might look like (where the labels identify the corresponding attribute21
- e.g., “Session ID” corresponds to the PMIX_SESSION_ID attribute):22

Figure 16.1.: Session-level information elements

• Job-level information includes all job-specific values such as PMIX_JOB_SIZE,23
PMIX_JOB_NUM_APPS, and PMIX_JOBID. Since each invocation of24
PMIx_server_register_nspace describes a single job, job-specific values can be25
specified independently - i.e., in their own pmix_info_t elements of the info array.26
Alternatively, they can be provided as a pmix_data_array_t array of pmix_info_t27
identified by the PMIX_JOB_INFO_ARRAY attribute - this is required in cases where28
non-specific attributes (e.g., PMIX_NODE_MAP) are passed to describe aspects of the job. Note29

CHAPTER 16. SERVER-SPECIFIC INTERFACES 311

that since the invocation only involves a single namespace, there is no need to include the1
PMIX_NSPACE attribute in the array.2

Upon conclusion of this step, the info array might look like:3

Figure 16.2.: Job-level information elements

Note that in this example, PMIX_NUM_NODES is not required as that information is contained in4
the PMIX_NODE_MAP attribute. Similarly, PMIX_JOB_SIZE is not technically required as that5
information is contained in the PMIX_PROC_MAP when combined with the corresponding node6
map - however, there is no issue with including the job size as a separate entry.7

The example also illustrates the hierarchical use of the PMIX_NODE_INFO_ARRAY attribute.8
In this case, we have chosen to pass several job-related values for each node - since those values9
are non-unique across the job, they must be passed in a node-info container. Note that the choice10
of what information to pass into the PMIx server library versus what information to derive from11
other values at time of request is left to the host environment. PMIx implementors in turn may, if12
they choose, pre-parse registration data to create expanded views (thus enabling faster response13
to requests at the expense of memory footprint) or to compress views into tighter representations14
(thus trading minimized footprint for longer response times).15

• Application-level information includes all application-specific values such as PMIX_APP_SIZE16

312 PMIx Standard – Version 4.1 – October 2021

and PMIX_APPLDR. If the job contains only a single application, then the application-specific1
values can be specified independently - i.e., in their own pmix_info_t elements of the info2
array - or as a pmix_data_array_t array of pmix_info_t using the3
PMIX_APP_INFO_ARRAY attribute and identifed by including the PMIX_APPNUM attribute in4
the array. Use of the array format is must in cases where non-specific attributes (e.g.,5
PMIX_NODE_MAP) are passed to describe aspects of the application.6

However, in the case of a job consisting of multiple applications, all application-specific values7
for each application must be provided using the PMIX_APP_INFO_ARRAY format, each8
identified by its PMIX_APPNUM value.9

Upon conclusion of this step, the info array might look like that shown in 16.3, assuming there10
are two applications in the job being registered:11

Figure 16.3.: Application-level information elements

• Process-level information includes an entry for each process in the job being registered, each12
entry marked with the PMIX_PROC_INFO_ARRAY attribute. The rank of the process must be13
the first entry in the array - this provides efficiency when storing the data. Upon conclusion of14
this step, the info array might look like the diagram in 16.4:15

• For purposes of this example, node-level information only includes values describing the local16
node - i.e., it does not include information about other nodes in the job or session. In many cases,17
the values included in this level are unique to it and can be specified independently - i.e., in their18
own pmix_info_t elements of the info array. Alternatively, they can be provided as a19

CHAPTER 16. SERVER-SPECIFIC INTERFACES 313

Figure 16.4.: Process-level information elements

pmix_data_array_t array of pmix_info_t using the PMIX_NODE_INFO_ARRAY1
attribute - this is required in cases where non-specific attributes are passed to describe aspects of2
the node, or where values for multiple nodes are being provided.3

The node-level information requires two elements that must be constructed in a manner similar to4
that used for the node map. The PMIX_LOCAL_PEERS value is computed based on the5
processes on the local node, filtered to select those from the job being registered, as shown below6
using the tools provided by PMIx:7

314 PMIx Standard – Version 4.1 – October 2021

C
char **ndppn = NULL;1
char rank[30];2
char *localranks;3
size_t m;4
pmix_info_t info;5

6
for (m=0; m < mynode->num_procs; m++) {7

/* ignore processes that are not part of the target job */8
if (!PMIX_CHECK_NSPACE(targetjob,mynode->proc[m].nspace)) {9

continue;10
}11
snprintf(rank, 30, "%d", mynode->proc[m].rank);12
PMIX_ARGV_APPEND(&ndppn, rank);13

}14
/* convert the array into a comma-delimited string of ranks */15
localranks = PMIX_ARGV_JOIN(ndppn, ’,’);16
/* release the local array */17
PMIX_ARGV_FREE(ndppn);18

19
/* pass the string as the value to the PMIX_LOCAL_PEERS key */20
PMIX_INFO_LOAD(&info, PMIX_LOCAL_PEERS, localranks, PMIX_STRING);21

22
/* release the list */23
free(localranks);24

C

The PMIX_LOCAL_CPUSETS value is constructed in a similar manner. In the provided25
example, it is assumed that an Hardware Locality (HWLOC) cpuset representation (a26
comma-delimited string of processor IDs) of the processors assigned to each process has27
previously been generated and stored on the process description. Thus, the value can be28
constructed as shown below:29

C
char **ndcpus = NULL;30
char *localcpus;31
size_t m;32
pmix_info_t info;33

34
for (m=0; m < mynode->num_procs; m++) {35

/* ignore processes that are not part of the target job */36
if (!PMIX_CHECK_NSPACE(targetjob,mynode->proc[m].nspace)) {37

continue;38

CHAPTER 16. SERVER-SPECIFIC INTERFACES 315

}1
PMIX_ARGV_APPEND(&ndcpus, mynode->proc[m].cpuset);2

}3
/* convert the array into a colon-delimited string */4
localcpus = PMIX_ARGV_JOIN(ndcpus, ’:’);5
/* release the local array */6
PMIX_ARGV_FREE(ndcpus);7

8
/* pass the string as the value to the PMIX_LOCAL_CPUSETS key */9
PMIX_INFO_LOAD(&info, PMIX_LOCAL_CPUSETS, localcpus, PMIX_STRING);10

11
/* release the list */12
free(localcpus);13

C

Note that for efficiency, these two values can be computed at the same time.14

The final info array might therefore look like the diagram in 16.5:15

Figure 16.5.: Final information array

316 PMIx Standard – Version 4.1 – October 2021

16.2.4 PMIx_server_deregister_nspace1

Summary2
Deregister a namespace.3

Format4 PMIx v1.0 C
void PMIx_server_deregister_nspace(const pmix_nspace_t nspace,5

pmix_op_cbfunc_t cbfunc, void *cbdata);6

C

IN nspace7
Namespace (string)8

IN cbfunc9
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the10
function is to be executed as a blocking operation. (function reference)11

IN cbdata12
Data to be passed to the callback function (memory reference)13

Description14
Deregister the specified nspace and purge all objects relating to it, including any client information15
from that namespace. This is intended to support persistent PMIx servers by providing an16
opportunity for the host RM to tell the PMIx server library to release all memory for a completed17
job. Note that the library must not invoke the callback function prior to returning from the API, and18
that a NULL cbfunc reference indicates that the function is to be executed as a blocking operation.19

16.2.5 PMIx_server_register_resources20

Summary21
Register non-namespace related information with the local PMIx server library.22

Format23 PMIx v4.0 C
pmix_status_t24
PMIx_server_register_resources(pmix_info_t info[], size_t ninfo,25

pmix_op_cbfunc_t cbfunc,26
void *cbdata);27

C

IN info28
Array of info structures (array of handles)29

IN ninfo30
Number of elements in the info array (integer)31

CHAPTER 16. SERVER-SPECIFIC INTERFACES 317

IN cbfunc1
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the2
function is to be executed as a blocking operation (function reference)3

IN cbdata4
Data to be passed to the callback function (memory reference)5

Description6
Pass information about resources not associated with a given namespace to the PMIx server library7
for distribution to local client processes. This includes information on fabric devices, GPUs, and8
other resources. All information provided through this API shall be made available to each job as9
part of its job-level information. Duplicate information provided with the10
PMIx_server_register_nspace API shall override any information provided by this11
function for that namespace, but only for that specific namespace.12

Advice to PMIx server hosts
Note that information passed in this manner could also have been included in a call to13
PMIx_server_register_nspace - e.g., as part of a PMIX_NODE_INFO_ARRAY array.14
This API is provided as a logical alternative for code clarity, especially where multiple jobs may be15
supported by a single PMIx server library instance, to avoid multiple registration of static resource16
information.17

A NULL cbfunc reference indicates that the function is to be executed as a blocking operation.18

16.2.6 PMIx_server_deregister_resources19

Summary20
Remove specified non-namespace related information from the local PMIx server library.21

Format22 PMIx v4.0 C
pmix_status_t23
PMIx_server_deregister_resources(pmix_info_t info[], size_t ninfo,24

pmix_op_cbfunc_t cbfunc,25
void *cbdata);26

C
IN info27

Array of info structures (array of handles)28
IN ninfo29

Number of elements in the info array (integer)30
IN cbfunc31

Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the32
function is to be executed as a blocking operation (function reference)33

IN cbdata34
Data to be passed to the callback function (memory reference)35

318 PMIx Standard – Version 4.1 – October 2021

Description1
Remove information about resources not associated with a given namespace from the PMIx server2
library. Only the key fields of the provided info array shall be used for the operation - the associated3
values shall be ignored except where they serve as qualifiers to the request. For example, to remove4
a specific fabric device from a given node, the info array might include a5
PMIX_NODE_INFO_ARRAY containing the PMIX_NODEID or PMIX_HOSTNAME identifying6
the node hosting the device, and the PMIX_FABRIC_DEVICE_NAME specifying the device to be7
removed. Alternatively, the device could be removed using only the PMIX_DEVICE_ID as this is8
unique across the overall system.9

Advice to PMIx server hosts

As information not related to namespaces is considered static, there is no requirement that the host10
environment deregister resources prior to finalizing the PMIx server library. The server library11
shall properly cleanup as part of its normal finalize operations. Deregistration of resources is only12
required, therefore, when the host environment determines that client processes should no longer13
have access to that information.14

A NULL cbfunc reference indicates that the function is to be executed as a blocking operation.15

16.2.7 PMIx_server_register_client16

Summary17
Register a client process with the PMIx server library.18

Format19 PMIx v1.0 C
pmix_status_t20
PMIx_server_register_client(const pmix_proc_t *proc,21

uid_t uid, gid_t gid,22
void *server_object,23
pmix_op_cbfunc_t cbfunc, void *cbdata);24

C

IN proc25
pmix_proc_t structure (handle)26

IN uid27
user id (integer)28

IN gid29
group id (integer)30

IN server_object31
(memory reference)32

CHAPTER 16. SERVER-SPECIFIC INTERFACES 319

IN cbfunc1
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the2
function is to be executed as a blocking operation (function reference)3

IN cbdata4
Data to be passed to the callback function (memory reference)5

Returns one of the following:6

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result7
will be returned in the provided cbfunc. Note that the library must not invoke the callback8
function prior to returning from the API.9

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and10
returned success - the cbfunc will not be called11

• a PMIx error constant indicating either an error in the input or that the request was immediately12
processed and failed - the cbfunc will not be called13

Description14
Register a client process with the PMIx server library.15

The host server can also, if it desires, provide an object it wishes to be returned when a server16
function is called that relates to a specific process. For example, the host server may have an object17
that tracks the specific client. Passing the object to the library allows the library to provide that18
object to the host server during subsequent calls related to that client, such as a19
pmix_server_client_connected2_fn_t function. This allows the host server to access20
the object without performing a lookup based on the client’s namespace and rank.21

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting the client process. The22
expected user ID and group ID of the child process allows the server library to properly authenticate23
clients as they connect by requiring the two values to match. Accordingly, the detected user and24
group ID’s of the connecting process are not included in the25
pmix_server_client_connected2_fn_t server module function.26

Advice to PMIx library implementers

For security purposes, the PMIx server library should check the user and group ID’s of a27
connecting process against those provided for the declared client process identifier via the28
PMIx_server_register_client prior to completing the connection.29

320 PMIx Standard – Version 4.1 – October 2021

16.2.8 PMIx_server_deregister_client1

Summary2
Deregister a client and purge all data relating to it.3

Format4 C
void5
PMIx_server_deregister_client(const pmix_proc_t *proc,6

pmix_op_cbfunc_t cbfunc, void *cbdata);7

C

IN proc8
pmix_proc_t structure (handle)9

IN cbfunc10
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the11
function is to be executed as a blocking operation (function reference)12

IN cbdata13
Data to be passed to the callback function (memory reference)14

Description15
The PMIx_server_deregister_nspace API will delete all client information for that16
namespace. The PMIx server library will automatically perform that operation upon disconnect of17
all local clients. This API is therefore intended primarily for use in exception cases, but can be18
called in non-exception cases if desired. Note that the library must not invoke the callback function19
prior to returning from the API.20

16.2.9 PMIx_server_setup_fork21

Summary22
Setup the environment of a child process to be forked by the host.23

Format24 PMIx v1.0 C
pmix_status_t25
PMIx_server_setup_fork(const pmix_proc_t *proc,26

char ***env);27

C

IN proc28
pmix_proc_t structure (handle)29

IN env30
Environment array (array of strings)31

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.32

CHAPTER 16. SERVER-SPECIFIC INTERFACES 321

Description1
Setup the environment of a child process to be forked by the host so it can correctly interact with2
the PMIx server.3

The PMIx client needs some setup information so it can properly connect back to the server. This4
function will set appropriate environmental variables for this purpose, and will also provide any5
environmental variables that were specified in the launch command (e.g., via PMIx_Spawn) plus6
other values (e.g., variables required to properly initialize the client’s fabric library).7

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting the client process.8

16.2.10 PMIx_server_dmodex_request9

Summary10
Define a function by which the host server can request modex data from the local PMIx server.11

Format12 PMIx v1.0 C
pmix_status_t13
PMIx_server_dmodex_request(const pmix_proc_t *proc,14

pmix_dmodex_response_fn_t cbfunc,15
void *cbdata);16

C

IN proc17
pmix_proc_t structure (handle)18

IN cbfunc19
Callback function pmix_dmodex_response_fn_t (function reference)20

IN cbdata21
Data to be passed to the callback function (memory reference)22

Returns one of the following:23

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result24
will be returned in the provided cbfunc. Note that the library must not invoke the callback25
function prior to returning from the API.26

• a PMIx error constant indicating an error in the input - the cbfunc will not be called27

322 PMIx Standard – Version 4.1 – October 2021

Description1
Define a function by which the host server can request modex data from the local PMIx server.2
Traditional wireup procedures revolve around the per-process posting of data (e.g., location and3
endpoint information) via the PMIx_Put and PMIx_Commit functions followed by a4
PMIx_Fence barrier that globally exchanges the posted information. However, the barrier5
operation represents a signficant time impact at large scale.6

PMIx supports an alternative wireup method known as Direct Modex that replaces the7
barrier-based exchange of all process-posted information with on-demand fetch of a peer’s data. In8
place of the barrier operation, data posted by each process is cached on the local PMIx server.9
When a process requests the information posted by a particular peer, it first checks the local cache10
to see if the data is already available. If not, then the request is passed to the local PMIx server,11
which subsequently requests that its RM host request the data from the RM daemon on the node12
where the specified peer process is located. Upon receiving the request, the RM daemon passes the13
request into its PMIx server library using the PMIx_server_dmodex_request function,14
receiving the response in the provided cbfunc once the indicated process has posted its information.15
The RM daemon then returns the data to the requesting daemon, who subsequently passes the data16
to its PMIx server library for transfer to the requesting client.17

Advice to users

While direct modex allows for faster launch times by eliminating the barrier operation, per-peer18
retrieval of posted information is less efficient. Optimizations can be implemented - e.g., by19
returning posted information from all processes on a node upon first request - but in general direct20
modex remains best suited for sparsely connected applications.21

16.2.10.1 Server Direct Modex Response Callback Function22

The PMIx_server_dmodex_request callback function.23

Summary24
Provide a function by which the local PMIx server library can return connection and other data25
posted by local application processes to the host resource manager.26

CHAPTER 16. SERVER-SPECIFIC INTERFACES 323

Format1 C
typedef void (*pmix_dmodex_response_fn_t)(2

pmix_status_t status,3
char *data, size_t sz,4
void *cbdata);5

C

IN status6
Returned status of the request (pmix_status_t)7

IN data8
Pointer to a data "blob" containing the requested information (handle)9

IN sz10
Number of bytes in the data blob (integer)11

IN cbdata12
Data passed into the initial call to PMIx_server_dmodex_request (memory reference)13

Description14
Define a function to be called by the PMIx server library for return of information posted by a local15
application process (via PMIx_Put with subsequent PMIx_Commit) in response to a request16
from the host RM. The returned data blob is owned by the PMIx server library and will be free’d17
upon return from the function.18

16.2.11 PMIx_server_setup_application19

Summary20
Provide a function by which a launcher can request application-specific setup data prior to launch of21
a job.22

Format23 PMIx v2.0 C
pmix_status_t24
PMIx_server_setup_application(const pmix_nspace_t nspace,25

pmix_info_t info[], size_t ninfo,26
pmix_setup_application_cbfunc_t cbfunc,27
void *cbdata);28

C

IN nspace29
namespace (string)30

IN info31
Array of info structures (array of handles)32

IN ninfo33
Number of elements in the info array (integer)34

324 PMIx Standard – Version 4.1 – October 2021

IN cbfunc1
Callback function pmix_setup_application_cbfunc_t (function reference)2

IN cbdata3
Data to be passed to the cbfunc callback function (memory reference)4

Returns one of the following:5

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result6
will be returned in the provided cbfunc. Note that the library must not invoke the callback7
function prior to returning from the API.8

• a PMIx error constant indicating either an error in the input - the cbfunc will not be called9

Required Attributes

PMIx libraries that support this operation are required to support the following:10

PMIX_SETUP_APP_ENVARS "pmix.setup.env" (bool)11
Harvest and include relevant environmental variables.12

PMIX_SETUP_APP_NONENVARS ""pmix.setup.nenv" (bool)13
Include all relevant data other than environmental variables.14

PMIX_SETUP_APP_ALL "pmix.setup.all" (bool)15
Include all relevant data.16

PMIX_ALLOC_FABRIC "pmix.alloc.net" (array)17
Array of pmix_info_t describing requested fabric resources. This must include at least:18
PMIX_ALLOC_FABRIC_ID, PMIX_ALLOC_FABRIC_TYPE, and19
PMIX_ALLOC_FABRIC_ENDPTS, plus whatever other descriptors are desired.20

PMIX_ALLOC_FABRIC_ID "pmix.alloc.netid" (char*)21
The key to be used when accessing this requested fabric allocation. The fabric allocation22
will be returned/stored as a pmix_data_array_t of pmix_info_t whose first23
element is composed of this key and the allocated resource description. The type of the24
included value depends upon the fabric support. For example, a TCP allocation might25
consist of a comma-delimited string of socket ranges such as "32000-32100,26
33005,38123-38146". Additional array entries will consist of any provided resource27
request directives, along with their assigned values. Examples include:28
PMIX_ALLOC_FABRIC_TYPE - the type of resources provided;29
PMIX_ALLOC_FABRIC_PLANE - if applicable, what plane the resources were assigned30
from; PMIX_ALLOC_FABRIC_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -31
the allocated bandwidth; PMIX_ALLOC_FABRIC_SEC_KEY - a security key for the32
requested fabric allocation. NOTE: the array contents may differ from those requested,33
especially if PMIX_INFO_REQD was not set in the request.34

PMIX_ALLOC_FABRIC_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)35
Request that the allocation include a fabric security key for the spawned job.36

CHAPTER 16. SERVER-SPECIFIC INTERFACES 325

PMIX_ALLOC_FABRIC_TYPE "pmix.alloc.nettype" (char*)1
Type of desired transport (e.g., “tcp”, “udp”) being requested in an allocation request.2

PMIX_ALLOC_FABRIC_PLANE "pmix.alloc.netplane" (char*)3
ID string for the fabric plane to be used for the requested allocation.4

PMIX_ALLOC_FABRIC_ENDPTS "pmix.alloc.endpts" (size_t)5
Number of endpoints to allocate per process in the job.6

PMIX_ALLOC_FABRIC_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)7
Number of endpoints to allocate per node for the job.8

PMIX_PROC_MAP "pmix.pmap" (char*)9
Regular expression describing processes on each node in the specified realm - see 16.2.3.210
for an explanation of its generation. Defaults to the job realm.11

PMIX_NODE_MAP "pmix.nmap" (char*)12
Regular expression of nodes currently hosting processes in the specified realm - see 16.2.3.213
for an explanation of its generation. Defaults to the job realm.14

Optional Attributes

PMIx libraries that support this operation may support the following:15

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)16
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation17
request.18

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)19
Fabric quality of service level for the job being requested in an allocation request.20

PMIX_SESSION_INFO "pmix.ssn.info" (bool)21
Return information regarding the session realm of the target process. In this context,22
indicates that the information provided in the PMIX_NODE_MAP is for the entire session and23
not just the indicated namespace. Thus, subsequent calls to this API may omit node-level24
information - e.g., the library may not need to include information on the devices on each25
node in a subsequent call.26

The following optional attributes may be provided by the host environment to identify the27
programming model (as specified by the user) being executed within the application. The PMIx28
server library may utilize this information to harvest/forward model-specific environmental29
variables, record the programming model associated with the application, etc.30

• PMIX_PROGRAMMING_MODEL "pmix.pgm.model" (char*)31
Programming model being initialized (e.g., “MPI” or “OpenMP”).32

• PMIX_MODEL_LIBRARY_NAME "pmix.mdl.name" (char*)33
Programming model implementation ID (e.g., “OpenMPI” or “MPICH”).34

326 PMIx Standard – Version 4.1 – October 2021

• PMIX_MODEL_LIBRARY_VERSION "pmix.mld.vrs" (char*)1
Programming model version string (e.g., “2.1.1”).2

Description3
Provide a function by which the RM can request application-specific setup data (e.g., environmental4
variables, fabric configuration and security credentials) from supporting PMIx server library5
subsystems prior to initiating launch of a job.6

This is defined as a non-blocking operation in case contributing subsystems need to perform some7
potentially time consuming action (e.g., query a remote service) before responding. The returned8
data must be distributed by the host environment and subsequently delivered to the local PMIx9
server on each node where application processes will execute, prior to initiating execution of those10
processes.11

Advice to PMIx server hosts

Host environments are required to execute this operation prior to launching a job. In addition to12
supported directives, the info array must include a description of the job using the13
PMIX_NODE_MAP and PMIX_PROC_MAP attributes.14

Note that the function can be called on a per-application basis if the PMIX_PROC_MAP and15
PMIX_NODE_MAP are provided only for the corresponding application (as opposed to the entire16
job) each time.17

Advice to PMIx library implementers

Support for harvesting of environmental variables and providing of local configuration information18
by the PMIx implementation is optional.19

16.2.11.1 Server Setup Application Callback Function20

The PMIx_server_setup_application callback function.21

Summary22
Provide a function by which the resource manager can receive application-specific environmental23
variables and other setup data prior to launch of an application.24

CHAPTER 16. SERVER-SPECIFIC INTERFACES 327

Format1 C
typedef void (*pmix_setup_application_cbfunc_t)(2

pmix_status_t status,3
pmix_info_t info[], size_t ninfo,4
void *provided_cbdata,5
pmix_op_cbfunc_t cbfunc, void *cbdata);6

C

IN status7
returned status of the request (pmix_status_t)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

IN provided_cbdata13
Data originally passed to call to PMIx_server_setup_application (memory14
reference)15

IN cbfunc16
pmix_op_cbfunc_t function to be called when processing completed (function reference)17

IN cbdata18
Data to be passed to the cbfunc callback function (memory reference)19

Description20
Define a function to be called by the PMIx server library for return of application-specific setup21
data in response to a request from the host RM. The returned info array is owned by the PMIx22
server library and will be free’d when the provided cbfunc is called.23

16.2.11.2 Server Setup Application Attributes24
PMIx v3.0 Attributes specifically defined for controlling contents of application setup data.25

PMIX_SETUP_APP_ENVARS "pmix.setup.env" (bool)26
Harvest and include relevant environmental variables.27

PMIX_SETUP_APP_NONENVARS ""pmix.setup.nenv" (bool)28
Include all relevant data other than environmental variables.29

PMIX_SETUP_APP_ALL "pmix.setup.all" (bool)30
Include all relevant data.31

16.2.12 PMIx_Register_attributes32

Summary33
Register host environment attribute support for a function.34

328 PMIx Standard – Version 4.1 – October 2021

Format1 C
pmix_status_t2
PMIx_Register_attributes(char *function,3

pmix_regattr_t attrs[],4
size_t nattrs);5

C

IN function6
String name of function (string)7

IN attrs8
Array of pmix_regattr_t describing the supported attributes (handle)9

IN nattrs10
Number of elements in attrs (size_t)11

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.12

Description13
The PMIx_Register_attributes function is used by the host environment to register with14
its PMIx server library the attributes it supports for each pmix_server_module_t function.15
The function is the string name of the server module function (e.g., "register_events",16
"validate_credential", or "allocate") whose attributes are being registered. See the17
pmix_regattr_t entry for a description of the attrs array elements.18

Note that the host environment can also query the library (using the PMIx_Query_info_nb19
API) for its attribute support both at the server, client, and tool levels once the host has executed20
PMIx_server_init since the server will internally register those values.21

Advice to PMIx server hosts

Host environments are strongly encouraged to register all supported attributes immediately after22
initializing the library to ensure that user requests are correctly serviced.23

CHAPTER 16. SERVER-SPECIFIC INTERFACES 329

Advice to PMIx library implementers

PMIx implementations are required to register all internally supported attributes for each API1
during initialization of the library (i.e., when the process calls their respective PMIx init function).2
Specifically, the implementation must not register supported attributes upon first call to a given API3
as this would prevent users from discovering supported attributes prior to first use of an API.4

It is the implementation’s responsibility to associate registered attributes for a given5
pmix_server_module_t function with their corresponding user-facing API. Supported6
attributes must be reported to users in terms of their support for user-facing APIs, broken down by7
the level (see Section 5.4.6) at which the attribute is supported.8

Note that attributes can/will be registered on an API for each level. It is required that the9
implementation support user queries for supported attributes on a per-level basis. Duplicate10
registrations at the same level for a function shall return an error - however, duplicate registrations11
at different levels shall be independently tracked.12

16.2.12.1 Attribute registration constants13

Constants supporting attribute registration.14

PMIX_ERR_REPEAT_ATTR_REGISTRATION The attributes for an identical function have15
already been registered at the specified level (host, server, or client).16

16.2.12.2 Attribute registration structure17

The pmix_regattr_t structure is used to register attribute support for a PMIx function.18
PMIx v4.0 C

typedef struct pmix_regattr {19
char *name;20
pmix_key_t *string;21
pmix_data_type_t type;22
pmix_info_t *info;23
size_t ninfo;24
char **description;25

} pmix_regattr_t;;26

C

Note that in this structure:27

• the name is the actual name of the attribute - e.g., "PMIX_MAX_PROCS"28

• the string is the literal string value of the attribute - e.g., "pmix.max.size" for the29
PMIX_MAX_PROCS attribute30

• type must be a PMIx data type identifying the type of data associated with this attribute.31

330 PMIx Standard – Version 4.1 – October 2021

• the info array contains machine-usable information regarding the range of accepted values. This1
may include entries for PMIX_MIN_VALUE, PMIX_MAX_VALUE, PMIX_ENUM_VALUE, or a2
combination of them. For example, an attribute that supports all positive integers might delineate3
it by including a pmix_info_t with a key of PMIX_MIN_VALUE, type of PMIX_INT, and4
value of zero. The lack of an entry for PMIX_MAX_VALUE indicates that there is no ceiling to5
the range of accepted values.6

• ninfo indicates the number of elements in the info array7

• The description field consists of a NULL-terminated array of strings describing the attribute,8
optionally including a human-readable description of the range of accepted values - e.g., "ALL9
POSITIVE INTEGERS", or a comma-delimited list of enum value names. No correlation10
between the number of entries in the description and the number of elements in the info array is11
implied or required.12

The attribute name and string fields must be NULL-terminated strings composed of standard13
alphanumeric values supported by common utilities such as strcmp.14

Although not strictly required, both PMIx library implementers and host environments are strongly15
encouraged to provide both human-readable and machine-parsable descriptions of supported16
attributes when registering them.17

16.2.12.3 Attribute registration structure descriptive attributes18

The following attributes relate to the nature of the values being reported in the pmix_regattr_t19
structures.20

PMIX_MAX_VALUE "pmix.descr.maxval" (varies)21
Used in pmix_regattr_t to describe the maximum valid value for the associated22
attribute.23

PMIX_MIN_VALUE "pmix.descr.minval" (varies)24
Used in pmix_regattr_t to describe the minimum valid value for the associated25
attribute.26

PMIX_ENUM_VALUE "pmix.descr.enum" (char*)27
Used in pmix_regattr_t to describe accepted values for the associated attribute.28
Numerical values shall be presented in a form convertible to the attribute’s declared data29
type. Named values (i.e., values defined by constant names via a typical C-language enum30
declaration) must be provided as their numerical equivalent.31

16.2.12.4 Attribute registration structure support macros32

The following macros are provided to support the pmix_regattr_t structure.33

Initialize the regattr structure34
Initialize the pmix_regattr_t fields35

PMIx v4.0

CHAPTER 16. SERVER-SPECIFIC INTERFACES 331

C
PMIX_REGATTR_CONSTRUCT(m)1

C

IN m2
Pointer to the structure to be initialized (pointer to pmix_regattr_t)3

Destruct the regattr structure4
Destruct the pmix_regattr_t fields, releasing all strings.5

PMIx v4.0 C
PMIX_REGATTR_DESTRUCT(m)6

C

IN m7
Pointer to the structure to be destructed (pointer to pmix_regattr_t)8

Create a regattr array9
Allocate and initialize an array of pmix_regattr_t structures.10

PMIx v4.0 C
PMIX_REGATTR_CREATE(m, n)11

C

INOUT m12
Address where the pointer to the array of pmix_regattr_t structures shall be stored13
(handle)14

IN n15
Number of structures to be allocated (size_t)16

Free a regattr array17
Release an array of pmix_regattr_t structures.18

PMIx v4.0 C
PMIX_REGATTR_FREE(m, n)19

C

INOUT m20
Pointer to the array of pmix_regattr_t structures (handle)21

IN n22
Number of structures in the array (size_t)23

332 PMIx Standard – Version 4.1 – October 2021

Load a regattr structure1
Load values into a pmix_regattr_t structure. The macro can be called multiple times to add as2
many strings as desired to the same structure by passing the same address and a NULL key to the3
macro. Note that the t type value must be given each time.4

C
PMIX_REGATTR_LOAD(a, n, k, t, ni, v)5

C

IN a6
Pointer to the structure to be loaded (pointer to pmix_proc_t)7

IN n8
String name of the attribute (string)9

IN k10
Key value to be loaded (pmix_key_t)11

IN t12
Type of data associated with the provided key (pmix_data_type_t)13

IN ni14
Number of pmix_info_t elements to be allocated in info (size_t)15

IN v16
One-line description to be loaded (more can be added separately) (string)17

Transfer a regattr to another regattr18
Non-destructively transfer the contents of a pmix_regattr_t structure to another one.19

PMIx v4.0 C
PMIX_REGATTR_XFER(m, n)20

C

INOUT m21
Pointer to the destination pmix_regattr_t structure (handle)22

IN m23
Pointer to the source pmix_regattr_t structure (handle)24

16.2.13 PMIx_server_setup_local_support25

Summary26
Provide a function by which the local PMIx server can perform any application-specific operations27
prior to spawning local clients of a given application.28

CHAPTER 16. SERVER-SPECIFIC INTERFACES 333

Format1 C
pmix_status_t2
PMIx_server_setup_local_support(const pmix_nspace_t nspace,3

pmix_info_t info[], size_t ninfo,4
pmix_op_cbfunc_t cbfunc,5
void *cbdata);6

C

IN nspace7
Namespace (string)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (size_t)12

IN cbfunc13
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the14
function is to be executed as a blocking operation (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the library must not invoke the callback20
function prior to returning from the API.21

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and22
returned success - the cbfunc will not be called23

• a PMIx error constant indicating either an error in the input or that the request was immediately24
processed and failed - the cbfunc will not be called25

Description26
Provide a function by which the local PMIx server can perform any application-specific operations27
prior to spawning local clients of a given application. For example, a fabric library might need to28
setup the local driver for “instant on” addressing. The data provided in the info array is the data29
returned to the host RM by the callback function executed as a result of a call to30
PMIx_server_setup_application.31

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting any local application32
processes from the specified namespace if information was obtained from a call to33
PMIx_server_setup_application.34

334 PMIx Standard – Version 4.1 – October 2021

Host environments must register the nspace using PMIx_server_register_nspace prior to1
calling this API to ensure that all namespace-related information required to support this function is2
available to the library. This eliminates the need to include any of the registration information in the3
info array passed to this API.4

16.2.14 PMIx_server_IOF_deliver5

Summary6
Provide a function by which the host environment can pass forwarded Input/Output (IO) to the7
PMIx server library for distribution to its clients.8

Format9 PMIx v3.0 C
pmix_status_t10
PMIx_server_IOF_deliver(const pmix_proc_t *source,11

pmix_iof_channel_t channel,12
const pmix_byte_object_t *bo,13
const pmix_info_t info[], size_t ninfo,14
pmix_op_cbfunc_t cbfunc, void *cbdata);15

C

IN source16
Pointer to pmix_proc_t identifying source of the IO (handle)17

IN channel18
IO channel of the data (pmix_iof_channel_t)19

IN bo20
Pointer to pmix_byte_object_t containing the payload to be delivered (handle)21

IN info22
Array of pmix_info_t metadata describing the data (array of handles)23

IN ninfo24
Number of elements in the info array (size_t)25

IN cbfunc26
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the27
function is to be executed as a blocking operation (function reference)28

IN cbdata29
Data to be passed to the callback function (memory reference)30

Returns one of the following:31

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result32
will be returned in the provided cbfunc. Note that the library must not invoke the callback33
function prior to returning from the API.34

CHAPTER 16. SERVER-SPECIFIC INTERFACES 335

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and1
returned success - the cbfunc will not be called2

• a PMIx error constant indicating either an error in the input or that the request was immediately3
processed and failed - the cbfunc will not be called4

Description5
Provide a function by which the host environment can pass forwarded IO to the PMIx server library6
for distribution to its clients. The PMIx server library is responsible for determining which of its7
clients have actually registered for the provided data and delivering it. The cbfunc callback function8
will be called once the PMIx server library no longer requires access to the provided data.9

16.2.15 PMIx_server_collect_inventory10

Summary11
Collect inventory of resources on a node.12

Format13 PMIx v3.0 C
pmix_status_t14
PMIx_server_collect_inventory(const pmix_info_t directives[],15

size_t ndirs,16
pmix_info_cbfunc_t cbfunc,17
void *cbdata);18

C

IN directives19
Array of pmix_info_t directing the request (array of handles)20

IN ndirs21
Number of elements in the directives array (size_t)22

IN cbfunc23
Callback function to return collected data (pmix_info_cbfunc_t function reference)24

IN cbdata25
Data to be passed to the callback function (memory reference)26

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant. In the event27
the function returns an error, the cbfunc will not be called.28

336 PMIx Standard – Version 4.1 – October 2021

Description1
Provide a function by which the host environment can request its PMIx server library collect an2
inventory of local resources. Supported resources depends upon the PMIx implementation, but may3
include the local node topology and fabric interfaces.4

Advice to PMIx server hosts

This is a non-blocking API as it may involve somewhat lengthy operations to obtain the requested5
information. Inventory collection is expected to be a rare event – at system startup and upon6
command from a system administrator. Inventory updates are expected to initiate a smaller7
operation involving only the changed information. For example, replacement of a node would8
generate an event to notify the scheduler with an inventory update without invoking a global9
inventory operation.10

16.2.16 PMIx_server_deliver_inventory11

Summary12
Pass collected inventory to the PMIx server library for storage.13

Format14 PMIx v3.0 C
pmix_status_t15
PMIx_server_deliver_inventory(const pmix_info_t info[],16

size_t ninfo,17
const pmix_info_t directives[],18
size_t ndirs,19
pmix_op_cbfunc_t cbfunc,20
void *cbdata);21

C

IN info22
Array of pmix_info_t containing the inventory (array of handles)23

IN ninfo24
Number of elements in the info array (size_t)25

IN directives26
Array of pmix_info_t directing the request (array of handles)27

IN ndirs28
Number of elements in the directives array (size_t)29

IN cbfunc30
Callback function pmix_op_cbfunc_t. A NULL function reference indicates that the31
function is to be executed as a blocking operation (function reference)32

IN cbdata33
Data to be passed to the callback function (memory reference)34

CHAPTER 16. SERVER-SPECIFIC INTERFACES 337

Returns one of the following:1

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result2
will be returned in the provided cbfunc. Note that the library must not invoke the callback3
function prior to returning from the API.4

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and5
returned success - the cbfunc will not be called6

• a PMIx error constant indicating either an error in the input or that the request was immediately7
processed and failed - the cbfunc will not be called8

Description9
Provide a function by which the host environment can pass inventory information obtained from a10
node (as a result of a call to PMIx_server_collect_inventory) to the PMIx server library11
for storage. Inventory data is subsequently used by the PMIx server library for allocations in12
response to PMIx_server_setup_application, and may be available to the library’s host13
via the PMIx_Get API (depending upon PMIx implementation). The cbfunc callback function14
will be called once the PMIx server library no longer requires access to the provided data.15

16.2.17 PMIx_server_generate_locality_string16

Summary17
Generate a PMIx locality string from a given cpuset.18

Format19 PMIx v4.0 C
pmix_status_t20
PMIx_server_generate_locality_string(const pmix_cpuset_t *cpuset,21

char **locality);22

C

IN cpuset23
Pointer to a pmix_cpuset_t containing the bitmap of assigned PUs (handle)24

OUT locality25
String representation of the PMIx locality corresponding to the input bitmap (char*)26

Returns either PMIX_SUCCESS indicating that the returned string contains the locality, or an27
appropriate PMIx error constant.28

338 PMIx Standard – Version 4.1 – October 2021

Description1
Provide a function by which the host environment can generate a PMIx locality string for inclusion2
in the call to PMIx_server_register_nspace. This function shall only be called for local3
client processes, with the returned locality included in the job-level information (via the4
PMIX_LOCALITY_STRING attribute) provided to local clients. Local clients can use these5
strings as input to determine the relative locality of their local peers via the6
PMIx_Get_relative_locality API.7

The function is required to return a string prefixed by the source field of the provided cpuset8
followed by a colon. The remainder of the string shall represent the corresponding locality as9
expressed by the underlying implementation.10

16.2.18 PMIx_server_generate_cpuset_string11

Summary12
Generate a PMIx string representation of the provided cpuset.13

Format14 PMIx v4.0 C
pmix_status_t15
PMIx_server_generate_cpuset_string(const pmix_cpuset_t *cpuset,16

char **cpuset_string);17

C

IN cpuset18
Pointer to a pmix_cpuset_t containing the bitmap of assigned PUs (handle)19

OUT cpuset_string20
String representation of the input bitmap (char*)21

Returns either PMIX_SUCCESS indicating that the returned string contains the representation, or22
an appropriate PMIx error constant.23

Description24
Provide a function by which the host environment can generate a string representation of the cpuset25
bitmap for inclusion in the call to PMIx_server_register_nspace. This function shall only26
be called for local client processes, with the returned string included in the job-level information27
(via the PMIX_CPUSET attribute) provided to local clients. Local clients can use these strings as28
input to obtain their PU bindings via the PMIx_Parse_cpuset_string API.29

The function is required to return a string prefixed by the source field of the provided cpuset30
followed by a colon. The remainder of the string shall represent the PUs to which the process is31
bound as expressed by the underlying implementation.32

CHAPTER 16. SERVER-SPECIFIC INTERFACES 339

16.2.18.1 Cpuset Structure1

The pmix_cpuset_t structure contains a character string identifying the source of the bitmap2
(e.g., "hwloc") and a pointer to the corresponding implementation-specific structure (e.g.,3
hwloc_cpuset_t).4

C
typedef struct pmix_cpuset {5

char *source;6
void *bitmap;7

} pmix_cpuset_t;8

C

16.2.18.2 Cpuset support macros9

The following macros support the pmix_cpuset_t structure.10

Initialize the cpuset structure11
Initialize the pmix_cpuset_t fields.12

PMIx v4.0 C
PMIX_CPUSET_CONSTRUCT(m)13

C
IN m14

Pointer to the structure to be initialized (pointer to pmix_cpuset_t)15

Destruct the cpuset structure16
Destruct the pmix_cpuset_t fields.17

PMIx v4.0 C
PMIX_CPUSET_DESTRUCT(m)18

C
IN m19

Pointer to the structure to be destructed (pointer to pmix_cpuset_t)20

Create a cpuset array21
Allocate and initialize a pmix_cpuset_t array.22

PMIx v4.0 C
PMIX_CPUSET_CREATE(m, n)23

C
INOUT m24

Address where the pointer to the array of pmix_cpuset_t structures shall be stored25
(handle)26

IN n27
Number of structures to be allocated (size_t)28

340 PMIx Standard – Version 4.1 – October 2021

Release a cpuset array1
Deconstruct and free a pmix_cpuset_t array.2

PMIx v4.0 C
PMIX_CPUSET_FREE(m, n)3

C
INOUT m4

Address the array of pmix_cpuset_t structures to be released (handle)5
IN n6

Number of structures in the array (size_t)7

16.2.19 PMIx_server_define_process_set8

Summary9
Define a PMIx process set.10

Format11 PMIx v4.0 C
pmix_status_t12
PMIx_server_define_process_set(const pmix_proc_t members[],13

size_t nmembers,14
char *pset_name);15

C
IN members16

Pointer to an array of pmix_proc_t containing the identifiers of the processes in the17
process set (handle)18

IN nmembers19
Number of elements in members (integer)20

IN pset_name21
String name of the process set being defined (char*)22

Returns either PMIX_SUCCESS or an appropriate PMIx error constant.23

Description24
Provide a function by which the host environment can create a process set. The PMIx server shall25
alert all local clients of the new process set (including process set name and membership) via the26
PMIX_PROCESS_SET_DEFINE event.27

Advice to PMIx server hosts
The host environment is responsible for ensuring:28

• consistent knowledge of process set membership across all involved PMIx servers; and29

• that process set names do not conflict with system-assigned namespaces within the scope of the30
set31

CHAPTER 16. SERVER-SPECIFIC INTERFACES 341

16.2.20 PMIx_server_delete_process_set1

Summary2
Delete a PMIx process set name3

Format4 PMIx v4.0 C
pmix_status_t5
PMIx_server_delete_process_set(char *pset_name);6

C

IN pset_name7
String name of the process set being deleted (char*)8

Returns either PMIX_SUCCESS or an appropriate PMIx error constant.9

Description10
Provide a function by which the host environment can delete a process set name. The PMIx server11
shall alert all local clients of the process set name being deleted via the12
PMIX_PROCESS_SET_DELETE event. Deletion of the name has no impact on the member13
processes.14

Advice to PMIx server hosts

The host environment is responsible for ensuring consistent knowledge of process set membership15
across all involved PMIx servers.16

16.3 Server Function Pointers17

PMIx utilizes a "function-shipping" approach to support for implementing the server-side of the18
protocol. This method allows RMs to implement the server without being burdened with PMIx19
internal details. When a request is received from the client, the corresponding server function will20
be called with the information.21

Any functions not supported by the RM can be indicated by a NULL for the function pointer. PMIx22
implementations are required to return a PMIX_ERR_NOT_SUPPORTED status to all calls to23
functions that require host environment support and are not backed by a corresponding server24
module entry. Host environments may, if they choose, include a function pointer for operations they25
have not yet implemented and simply return PMIX_ERR_NOT_SUPPORTED.26

Functions that accept directives (i.e., arrays of pmix_info_t structures) must check any provided27
directives for those marked as required via the PMIX_INFO_REQD flag. PMIx client and server28
libraries are required to mark any such directives with the PMIX_INFO_REQD_PROCESSED flag29
should they have handled the request. Any required directive that has not been marked therefore30
becomes the responsibility of the host environment. If a required directive that hasn’t been31

342 PMIx Standard – Version 4.1 – October 2021

processed by a lower level cannot be supported by the host, then the1
PMIX_ERR_NOT_SUPPORTED error constant must be returned. If the directive can be processed2
by the host, then the host shall do so and mark the attribute with the3
PMIX_INFO_REQD_PROCESSED flag.4

The host RM will provide the function pointers in a pmix_server_module_t structure passed5
to PMIx_server_init. The module structure and associated function references are defined in6
this section.7

Advice to PMIx server hosts

For performance purposes, the host server is required to return as quickly as possible from all8
functions. Execution of the function is thus to be done asynchronously so as to allow the PMIx9
server support library to handle multiple client requests as quickly and scalably as possible.10

All data passed to the host server functions is “owned” by the PMIX server support library and11
must not be free’d. Data returned by the host server via callback function is owned by the host12
server, which is free to release it upon return from the callback13

16.3.1 pmix_server_module_t Module14

Summary15
List of function pointers that a PMIx server passes to PMIx_server_init during startup.16

Format17
C

typedef struct pmix_server_module_4_0_0_t {18
/* v1x interfaces */19
pmix_server_client_connected_fn_t client_connected; // DEPRECATED20
pmix_server_client_finalized_fn_t client_finalized;21
pmix_server_abort_fn_t abort;22
pmix_server_fencenb_fn_t fence_nb;23
pmix_server_dmodex_req_fn_t direct_modex;24
pmix_server_publish_fn_t publish;25
pmix_server_lookup_fn_t lookup;26
pmix_server_unpublish_fn_t unpublish;27
pmix_server_spawn_fn_t spawn;28
pmix_server_connect_fn_t connect;29
pmix_server_disconnect_fn_t disconnect;30
pmix_server_register_events_fn_t register_events;31
pmix_server_deregister_events_fn_t deregister_events;32
pmix_server_listener_fn_t listener;33
/* v2x interfaces */34
pmix_server_notify_event_fn_t notify_event;35

CHAPTER 16. SERVER-SPECIFIC INTERFACES 343

pmix_server_query_fn_t query;1
pmix_server_tool_connection_fn_t tool_connected;2
pmix_server_log_fn_t log;3
pmix_server_alloc_fn_t allocate;4
pmix_server_job_control_fn_t job_control;5
pmix_server_monitor_fn_t monitor;6
/* v3x interfaces */7
pmix_server_get_cred_fn_t get_credential;8
pmix_server_validate_cred_fn_t validate_credential;9
pmix_server_iof_fn_t iof_pull;10
pmix_server_stdin_fn_t push_stdin;11
/* v4x interfaces */12
pmix_server_grp_fn_t group;13
pmix_server_fabric_fn_t fabric;14
pmix_server_client_connected2_fn_t client_connected2;15

} pmix_server_module_t;16

C
Advice to PMIx server hosts

Note that some PMIx implementations require the use of C99-style designated initializers to clearly17
correlate each provided function pointer with the correct member of the18
pmix_server_module_t structure as the location/ordering of struct members may change over19
time.20

16.3.2 pmix_server_client_connected_fn_t21

Summary22
Notify the host server that a client connected to this server. This function module entry has been23
DEPRECATED in favor of pmix_server_client_connected2_fn_t.24

344 PMIx Standard – Version 4.1 – October 2021

Format1 C
typedef pmix_status_t (*pmix_server_client_connected_fn_t)(2

const pmix_proc_t *proc,3
void* server_object,4
pmix_op_cbfunc_t cbfunc,5
void *cbdata);6

C

IN proc7
pmix_proc_t structure (handle)8

IN server_object9
object reference (memory reference)10

IN cbfunc11
Callback function pmix_op_cbfunc_t (function reference)12

IN cbdata13
Data to be passed to the callback function (memory reference)14

Returns one of the following:15

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result16
will be returned in the provided cbfunc. Note that the host must not invoke the callback function17
prior to returning from the API.18

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and19
returned success - the cbfunc will not be called20

• a PMIx error constant indicating either an error in the input or that the request was immediately21
processed and failed - the cbfunc will not be called22

Description23
This function module entry has been DEPRECATED in favor of24
pmix_server_client_connected2_fn_t. If both functions are provided, the PMIx25
library will ignore this function module entry in favor of its replacement.26

16.3.3 pmix_server_client_connected2_fn_t27

Summary28
Notify the host server that a client connected to this server - this version of the original function29
definition has been extended to include an array of pmix_info_t, thereby allowing the PMIx30
server library to pass additional information identifying the client to the host environment.31

CHAPTER 16. SERVER-SPECIFIC INTERFACES 345

Format1 C
typedef pmix_status_t (*pmix_server_client_connected2_fn_t)(2

const pmix_proc_t *proc,3
void* server_object,4
pmix_info_t info[], size_t ninfo,5
pmix_op_cbfunc_t cbfunc,6
void *cbdata)7

C

IN proc8
pmix_proc_t structure (handle)9

IN server_object10
object reference (memory reference)11

IN info12
Array of info structures (array of handles)13

IN ninfo14
Number of elements in the info array (integer)15

IN cbfunc16
Callback function pmix_op_cbfunc_t (function reference)17

IN cbdata18
Data to be passed to the callback function (memory reference)19

Returns one of the following:20

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result21
will be returned in the provided cbfunc. Note that the host must not invoke the callback function22
prior to returning from the API.23

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and24
returned success - the cbfunc will not be called25

• a PMIx error constant indicating either an error in the input or that the request was immediately26
processed and failed - the cbfunc will not be called. The PMIx server library is to immediately27
terminate the connection.28

Description29
Notify the host environment that a client has called PMIx_Init. Note that the client will be in a30
blocked state until the host server executes the callback function, thus allowing the PMIx server31
support library to release the client. The server_object parameter will be the value of the32
server_object parameter passed to PMIx_server_register_client by the host server when33
registering the connecting client. A host server can choose to not be notified when clients connect34
by setting pmix_server_client_connected2_fn_t to NULL.35

It is possible that only a subset of the clients in a namespace call PMIx_Init. The server’s36
pmix_server_client_connected2_fn_t implementation should therefore not depend on37

346 PMIx Standard – Version 4.1 – October 2021

being called once per rank in a namespace or delay calling the callback function until all ranks have1
connected. However, the host may rely on the pmix_server_client_connected2_fn_t2
function module entry being called for a given rank prior to any other function module entries3
being executed on behalf of that rank.4

16.3.4 pmix_server_client_finalized_fn_t5

Summary6
Notify the host environment that a client called PMIx_Finalize.7

Format8 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_client_finalized_fn_t)(9

const pmix_proc_t *proc,10
void* server_object,11
pmix_op_cbfunc_t cbfunc,12
void *cbdata);13

C

IN proc14
pmix_proc_t structure (handle)15

IN server_object16
object reference (memory reference)17

IN cbfunc18
Callback function pmix_op_cbfunc_t (function reference)19

IN cbdata20
Data to be passed to the callback function (memory reference)21

Returns one of the following:22

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result23
will be returned in the provided cbfunc. Note that the host must not invoke the callback function24
prior to returning from the API.25

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and26
returned success - the cbfunc will not be called27

• a PMIx error constant indicating either an error in the input or that the request was immediately28
processed and failed - the cbfunc will not be called29

CHAPTER 16. SERVER-SPECIFIC INTERFACES 347

Description1
Notify the host environment that a client called PMIx_Finalize. Note that the client will be in a2
blocked state until the host server executes the callback function, thus allowing the PMIx server3
support library to release the client. The server_object parameter will be the value of the4
server_object parameter passed to PMIx_server_register_client by the host server when5
registering the connecting client. If provided, an implementation of6
pmix_server_client_finalized_fn_t is only required to call the callback function7
designated. A host server can choose to not be notified when clients finalize by setting8
pmix_server_client_finalized_fn_t to NULL.9

Note that the host server is only being informed that the client has called PMIx_Finalize. The10
client might not have exited. If a client exits without calling PMIx_Finalize, the server support11
library will not call the pmix_server_client_finalized_fn_t implementation.12

Advice to PMIx server hosts

This operation is an opportunity for a host server to update the status of the tasks it manages. It is13
also a convenient and well defined time to release resources used to support that client.14

16.3.5 pmix_server_abort_fn_t15

Summary16
Notify the host environment that a local client called PMIx_Abort.17

Format18 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_abort_fn_t)(19

const pmix_proc_t *proc,20
void *server_object,21
int status,22
const char msg[],23
pmix_proc_t procs[],24
size_t nprocs,25
pmix_op_cbfunc_t cbfunc,26
void *cbdata);27

348 PMIx Standard – Version 4.1 – October 2021

C

IN proc1
pmix_proc_t structure identifying the process requesting the abort (handle)2

IN server_object3
object reference (memory reference)4

IN status5
exit status (integer)6

IN msg7
exit status message (string)8

IN procs9
Array of pmix_proc_t structures identifying the processes to be terminated (array of10
handles)11

IN nprocs12
Number of elements in the procs array (integer)13

IN cbfunc14
Callback function pmix_op_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the host must not invoke the callback function20
prior to returning from the API.21

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and22
returned success - the cbfunc will not be called23

• PMIX_ERR_PARAM_VALUE_NOT_SUPPORTED indicating that the host environment supports24
this API, but the request includes processes that the host environment cannot abort - e.g., if the25
request is to abort subsets of processes from a namespace, or processes outside of the caller’s26
own namespace, and the host environment does not permit such operations. In this case, none of27
the specified processes will be terminated - the cbfunc will not be called28

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the29
request, even though the function entry was provided in the server module - the cbfunc will not30
be called31

• a PMIx error constant indicating either an error in the input or that the request was immediately32
processed and failed - the cbfunc will not be called33

CHAPTER 16. SERVER-SPECIFIC INTERFACES 349

Description1
A local client called PMIx_Abort. Note that the client will be in a blocked state until the host2
server executes the callback function, thus allowing the PMIx server library to release the client.3
The array of procs indicates which processes are to be terminated. A NULL for the procs array4
indicates that all processes in the caller’s namespace are to be aborted, including itself - this is the5
equivalent of passing a pmix_proc_t array element containing the caller’s namespace and a rank6
value of PMIX_RANK_WILDCARD.7

16.3.6 pmix_server_fencenb_fn_t8

Summary9
At least one client called either PMIx_Fence or PMIx_Fence_nb.10

Format11 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_fencenb_fn_t)(12

const pmix_proc_t procs[],13
size_t nprocs,14
const pmix_info_t info[],15
size_t ninfo,16
char *data, size_t ndata,17
pmix_modex_cbfunc_t cbfunc,18
void *cbdata);19

C

IN procs20
Array of pmix_proc_t structures identifying operation participants(array of handles)21

IN nprocs22
Number of elements in the procs array (integer)23

IN info24
Array of info structures (array of handles)25

IN ninfo26
Number of elements in the info array (integer)27

IN data28
(string)29

IN ndata30
(integer)31

IN cbfunc32
Callback function pmix_modex_cbfunc_t (function reference)33

IN cbdata34
Data to be passed to the callback function (memory reference)35

Returns one of the following:36

350 PMIx Standard – Version 4.1 – October 2021

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result1
will be returned in the provided cbfunc. Note that the host must not invoke the callback function2
prior to returning from the API.3

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the4
request, even though the function entry was provided in the server module - the cbfunc will not5
be called6

• a PMIx error constant indicating either an error in the input or that the request was immediately7
processed and failed - the cbfunc will not be called8

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.9

The following attributes are required to be supported by all host environments:10

PMIX_COLLECT_DATA "pmix.collect" (bool)11
Collect all data posted by the participants using PMIx_Put that has been committed via12
PMIx_Commit, making the collection locally available to each participant at the end of the13
operation. By default, this will include all job-level information that was locally generated14
by PMIx servers unless excluded using the PMIX_COLLECT_GENERATED_JOB_INFO15
attribute.16

Optional Attributes

The following attributes are optional for host environments:17

PMIX_TIMEOUT "pmix.timeout" (int)18
Time in seconds before the specified operation should time out (zero indicating infinite) and19
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions20
caused by multiple layers (client, server, and host) simultaneously timing the operation.21

Advice to PMIx server hosts

Host environment are required to return PMIX_ERR_NOT_SUPPORTED if passed an attributed22
marked as PMIX_INFO_REQD that they do not support, even if support for that attribute is23
optional.24

CHAPTER 16. SERVER-SPECIFIC INTERFACES 351

Description1
All local clients in the provided array of procs called either PMIx_Fence or PMIx_Fence_nb.2
In either case, the host server will be called via a non-blocking function to execute the specified3
operation once all participating local processes have contributed. All processes in the specified4
procs array are required to participate in the PMIx_Fence/PMIx_Fence_nb operation. The5
callback is to be executed once every daemon hosting at least one participant has called the host6
server’s pmix_server_fencenb_fn_t function.7

The provided data is to be collectively shared with all PMIx servers involved in the fence operation,8
and returned in the modex cbfunc. A NULL data value indicates that the local processes had no data9
to contribute.10

The array of info structs is used to pass user-requested options to the server. This can include11
directives as to the algorithm to be used to execute the fence operation. The directives are optional12
unless the PMIX_INFO_REQD flag has been set - in such cases, the host RM is required to return13
an error if the directive cannot be met.14

Advice to PMIx library implementers

The PMIx server library is required to aggregate participation by local clients, passing the request15
to the host environment once all local participants have executed the API.16

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to17
identify the nodes containing participating processes, execute the collective across all participating18
nodes, and notify the local PMIx server library upon completion of the global collective. Data19
received from each node must be simply concatenated to form an aggregated unit, as shown in the20
following example:21

C
uint8_t *blob1, *blob2, *total;22
size_t sz_blob1, sz_blob2, sz_total;23

24
sz_total = sz_blob1 + sz_blob2;25
total = (uint8_t*)malloc(sz_total);26
memcpy(total, blob1, sz_blob1);27
memcpy(&total[sz_blob1], blob2, sz_blob2);28

C

Note that the ordering of the data blobs does not matter. The host is responsible for free’ing the29
data object passed to it by the PMIx server library.30

352 PMIx Standard – Version 4.1 – October 2021

16.3.6.1 Modex Callback Function1

Summary2
The pmix_modex_cbfunc_t is used by the pmix_server_fencenb_fn_t and3
pmix_server_dmodex_req_fn_t PMIx server operations to return modex Business Card4
Exchange (BCX) data.5

PMIx v1.0 C
typedef void (*pmix_modex_cbfunc_t)6

(pmix_status_t status,7
const char *data, size_t ndata,8
void *cbdata,9
pmix_release_cbfunc_t release_fn,10
void *release_cbdata);11

C

IN status12
Status associated with the operation (handle)13

IN data14
Data to be passed (pointer)15

IN ndata16
size of the data (size_t)17

IN cbdata18
Callback data passed to original API call (memory reference)19

IN release_fn20
Callback for releasing data (function pointer)21

IN release_cbdata22
Pointer to be passed to release_fn (memory reference)23

Description24
A callback function that is solely used by PMIx servers, and not clients, to return modex BCX data25
in response to “fence” and “get” operations. The returned blob contains the data collected from26
each server participating in the operation.27

16.3.7 pmix_server_dmodex_req_fn_t28

Summary29
Used by the PMIx server to request its local host contact the PMIx server on the remote node that30
hosts the specified process to obtain and return a direct modex blob for that process.31

CHAPTER 16. SERVER-SPECIFIC INTERFACES 353

Format1 C
typedef pmix_status_t (*pmix_server_dmodex_req_fn_t)(2

const pmix_proc_t *proc,3
const pmix_info_t info[],4
size_t ninfo,5
pmix_modex_cbfunc_t cbfunc,6
void *cbdata);7

C

IN proc8
pmix_proc_t structure identifying the process whose data is being requested (handle)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of elements in the info array (integer)13

IN cbfunc14
Callback function pmix_modex_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the host must not invoke the callback function20
prior to returning from the API.21

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the22
request, even though the function entry was provided in the server module - the cbfunc will not23
be called24

• a PMIx error constant indicating either an error in the input or that the request was immediately25
processed and failed - the cbfunc will not be called26

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.27

All host environments are required to support the following attributes:28

PMIX_REQUIRED_KEY "pmix.req.key" (char*)29
Identifies a key that must be included in the requested information. If the specified key is not30
already available, then the PMIx servers are required to delay response to the dmodex31
request until either the key becomes available or the request times out.32

354 PMIx Standard – Version 4.1 – October 2021

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Used by the PMIx server to request its local host contact the PMIx server on the remote node that7
hosts the specified proc to obtain and return any information that process posted via calls to8
PMIx_Put and PMIx_Commit.9

The array of info structs is used to pass user-requested options to the server. This can include a10
timeout to preclude an indefinite wait for data that may never become available. The directives are11
optional unless the mandatory flag has been set - in such cases, the host RM is required to return an12
error if the directive cannot be met.13

16.3.7.1 Dmodex attributes14

PMIX_REQUIRED_KEY "pmix.req.key" (char*)15
Identifies a key that must be included in the requested information. If the specified key is not16
already available, then the PMIx servers are required to delay response to the dmodex17
request until either the key becomes available or the request times out.18

16.3.8 pmix_server_publish_fn_t19

Summary20
Publish data per the PMIx API specification.21

Format22 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_publish_fn_t)(23

const pmix_proc_t *proc,24
const pmix_info_t info[],25
size_t ninfo,26
pmix_op_cbfunc_t cbfunc,27
void *cbdata);28

CHAPTER 16. SERVER-SPECIFIC INTERFACES 355

C

IN proc1
pmix_proc_t structure of the process publishing the data (handle)2

IN info3
Array of info structures (array of handles)4

IN ninfo5
Number of elements in the info array (integer)6

IN cbfunc7
Callback function pmix_op_cbfunc_t (function reference)8

IN cbdata9
Data to be passed to the callback function (memory reference)10

Returns one of the following:11

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result12
will be returned in the provided cbfunc. Note that the host must not invoke the callback function13
prior to returning from the API.14

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and15
returned success - the cbfunc will not be called16

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the17
request, even though the function entry was provided in the server module - the cbfunc will not18
be called19

• a PMIx error constant indicating either an error in the input or that the request was immediately20
processed and failed - the cbfunc will not be called21

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.22
In addition, the following attributes are required to be included in the passed info array:23

PMIX_USERID "pmix.euid" (uint32_t)24
Effective user ID of the connecting process.25

PMIX_GRPID "pmix.egid" (uint32_t)26
Effective group ID of the connecting process.27

28

Host environments that implement this entry point are required to support the following attributes:29

PMIX_RANGE "pmix.range" (pmix_data_range_t)30
Define constraints on the processes that can access the provided data. Only processes that31
meet the constraints are allowed to access it.32

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)33

356 PMIx Standard – Version 4.1 – October 2021

Declare how long the datastore shall retain the provided data. The datastore is to delete the1
data upon reaching the persistence criterion.2

Optional Attributes

The following attributes are optional for host environments that support this operation:3

PMIX_TIMEOUT "pmix.timeout" (int)4
Time in seconds before the specified operation should time out (zero indicating infinite) and5
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions6
caused by multiple layers (client, server, and host) simultaneously timing the operation.7

Description8
Publish data per the PMIx_Publish specification. The callback is to be executed upon9
completion of the operation. The default data range is left to the host environment, but expected to10
be PMIX_RANGE_SESSION, and the default persistence PMIX_PERSIST_SESSION or their11
equivalent. These values can be specified by including the respective attributed in the info array.12

The persistence indicates how long the server should retain the data.13

Advice to PMIx server hosts

The host environment is not required to guarantee support for any specific range - i.e., the14
environment does not need to return an error if the data store doesn’t support a specified range so15
long as it is covered by some internally defined range. However, the server must return an error (a)16
if the key is duplicative within the storage range, and (b) if the server does not allow overwriting of17
published info by the original publisher - it is left to the discretion of the host environment to allow18
info-key-based flags to modify this behavior.19

The PMIX_USERID and PMIX_GRPID of the publishing process will be provided to support20
authorization-based access to published information and must be returned on any subsequent21
lookup request.22

16.3.9 pmix_server_lookup_fn_t23

Summary24
Lookup published data.25

CHAPTER 16. SERVER-SPECIFIC INTERFACES 357

Format1 C
typedef pmix_status_t (*pmix_server_lookup_fn_t)(2

const pmix_proc_t *proc,3
char **keys,4
const pmix_info_t info[],5
size_t ninfo,6
pmix_lookup_cbfunc_t cbfunc,7
void *cbdata);8

C

IN proc9
pmix_proc_t structure of the process seeking the data (handle)10

IN keys11
(array of strings)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_lookup_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the27
request, even though the function entry was provided in the server module - the cbfunc will not28
be called29

• a PMIx error constant indicating either an error in the input or that the request was immediately30
processed and failed - the cbfunc will not be called31

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.32
In addition, the following attributes are required to be included in the passed info array:33

PMIX_USERID "pmix.euid" (uint32_t)34
Effective user ID of the connecting process.35

358 PMIx Standard – Version 4.1 – October 2021

PMIX_GRPID "pmix.egid" (uint32_t)1
Effective group ID of the connecting process.2

3

Host environments that implement this entry point are required to support the following attributes:4

PMIX_RANGE "pmix.range" (pmix_data_range_t)5
Define constraints on the processes that can access the provided data. Only processes that6
meet the constraints are allowed to access it.7

PMIX_WAIT "pmix.wait" (int)8
Caller requests that the PMIx server wait until at least the specified number of values are9
found (a value of zero indicates all and is the default).10

Optional Attributes

The following attributes are optional for host environments that support this operation:11

PMIX_TIMEOUT "pmix.timeout" (int)12
Time in seconds before the specified operation should time out (zero indicating infinite) and13
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions14
caused by multiple layers (client, server, and host) simultaneously timing the operation.15

Description16
Lookup published data. The host server will be passed a NULL-terminated array of string keys17
identifying the data being requested.18

The array of info structs is used to pass user-requested options to the server. The default data range19
is left to the host environment, but expected to be PMIX_RANGE_SESSION. This can include a20
wait flag to indicate that the server should wait for all data to become available before executing the21
callback function, or should immediately callback with whatever data is available. In addition, a22
timeout can be specified on the wait to preclude an indefinite wait for data that may never be23
published.24

Advice to PMIx server hosts

The PMIX_USERID and PMIX_GRPID of the requesting process will be provided to support25
authorization-based access to published information. The host environment is not required to26
guarantee support for any specific range - i.e., the environment does not need to return an error if27
the data store doesn’t support a specified range so long as it is covered by some internally defined28
range.29

CHAPTER 16. SERVER-SPECIFIC INTERFACES 359

16.3.10 pmix_server_unpublish_fn_t1

Summary2
Delete data from the data store.3

Format4 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_unpublish_fn_t)(5

const pmix_proc_t *proc,6
char **keys,7
const pmix_info_t info[],8
size_t ninfo,9
pmix_op_cbfunc_t cbfunc,10
void *cbdata);11

C

IN proc12
pmix_proc_t structure identifying the process making the request (handle)13

IN keys14
(array of strings)15

IN info16
Array of info structures (array of handles)17

IN ninfo18
Number of elements in the info array (integer)19

IN cbfunc20
Callback function pmix_op_cbfunc_t (function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

Returns one of the following:24

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result25
will be returned in the provided cbfunc. Note that the host must not invoke the callback function26
prior to returning from the API.27

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and28
returned success - the cbfunc will not be called29

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the30
request, even though the function entry was provided in the server module - the cbfunc will not31
be called32

• a PMIx error constant indicating either an error in the input or that the request was immediately33
processed and failed - the cbfunc will not be called34

360 PMIx Standard – Version 4.1 – October 2021

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.1
In addition, the following attributes are required to be included in the passed info array:2

PMIX_USERID "pmix.euid" (uint32_t)3
Effective user ID of the connecting process.4

PMIX_GRPID "pmix.egid" (uint32_t)5
Effective group ID of the connecting process.6

7

Host environments that implement this entry point are required to support the following attributes:8

PMIX_RANGE "pmix.range" (pmix_data_range_t)9
Define constraints on the processes that can access the provided data. Only processes that10
meet the constraints are allowed to access it.11

Optional Attributes

The following attributes are optional for host environments that support this operation:12

PMIX_TIMEOUT "pmix.timeout" (int)13
Time in seconds before the specified operation should time out (zero indicating infinite) and14
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions15
caused by multiple layers (client, server, and host) simultaneously timing the operation.16

Description17
Delete data from the data store. The host server will be passed a NULL-terminated array of string18
keys, plus potential directives such as the data range within which the keys should be deleted. The19
default data range is left to the host environment, but expected to be PMIX_RANGE_SESSION.20
The callback is to be executed upon completion of the delete procedure.21

Advice to PMIx server hosts

The PMIX_USERID and PMIX_GRPID of the requesting process will be provided to support22
authorization-based access to published information. The host environment is not required to23
guarantee support for any specific range - i.e., the environment does not need to return an error if24
the data store doesn’t support a specified range so long as it is covered by some internally defined25
range.26

CHAPTER 16. SERVER-SPECIFIC INTERFACES 361

16.3.11 pmix_server_spawn_fn_t1

Summary2
Spawn a set of applications/processes as per the PMIx_Spawn API.3

Format4 C
typedef pmix_status_t (*pmix_server_spawn_fn_t)(5

const pmix_proc_t *proc,6
const pmix_info_t job_info[],7
size_t ninfo,8
const pmix_app_t apps[],9
size_t napps,10
pmix_spawn_cbfunc_t cbfunc,11
void *cbdata);12

C
IN proc13

pmix_proc_t structure of the process making the request (handle)14
IN job_info15

Array of info structures (array of handles)16
IN ninfo17

Number of elements in the jobinfo array (integer)18
IN apps19

Array of pmix_app_t structures (array of handles)20
IN napps21

Number of elements in the apps array (integer)22
IN cbfunc23

Callback function pmix_spawn_cbfunc_t (function reference)24
IN cbdata25

Data to be passed to the callback function (memory reference)26

Returns one of the following:27

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result28
will be returned in the provided cbfunc. Note that the host must not invoke the callback function29
prior to returning from the API.30

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and31
returned success - the cbfunc will not be called32

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the33
request, even though the function entry was provided in the server module - the cbfunc will not34
be called35

• a PMIx error constant indicating either an error in the input or that the request was immediately36
processed and failed - the cbfunc will not be called37

362 PMIx Standard – Version 4.1 – October 2021

Required Attributes

PMIx server libraries are required to pass any provided attributes to the host environment for1
processing. In addition, the following attributes are required to be included in the passed info array:2

PMIX_USERID "pmix.euid" (uint32_t)3
Effective user ID of the connecting process.4

PMIX_GRPID "pmix.egid" (uint32_t)5
Effective group ID of the connecting process.6

PMIX_SPAWNED "pmix.spawned" (bool)7
true if this process resulted from a call to PMIx_Spawn. Lack of inclusion (i.e., a return8
status of PMIX_ERR_NOT_FOUND) corresponds to a value of false for this attribute.9

PMIX_PARENT_ID "pmix.parent" (pmix_proc_t)10
Process identifier of the parent process of the specified process - typically used to identify11
the application process that caused the job containing the specified process to be spawned12
(e.g., the process that called PMIx_Spawn).13

PMIX_REQUESTOR_IS_TOOL "pmix.req.tool" (bool)14
The requesting process is a PMIx tool.15

PMIX_REQUESTOR_IS_CLIENT "pmix.req.client" (bool)16
The requesting process is a PMIx client.17

18

Host environments that provide this module entry point are required to pass the PMIX_SPAWNED19
and PMIX_PARENT_ID attributes to all PMIx servers launching new child processes so those20
values can be returned to clients upon connection to the PMIx server. In addition, they are required21
to support the following attributes when present in either the job_info or the info array of an22
element of the apps array:23

PMIX_WDIR "pmix.wdir" (char*)24
Working directory for spawned processes.25

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)26
Set the current working directory to the session working directory assigned by the RM - can27
be assigned to the entire job (by including attribute in the job_info array) or on a28
per-application basis in the info array for each pmix_app_t.29

PMIX_PREFIX "pmix.prefix" (char*)30
Prefix to use for starting spawned processes - i.e., the directory where the executables can be31
found.32

PMIX_HOST "pmix.host" (char*)33
Comma-delimited list of hosts to use for spawned processes.34

PMIX_HOSTFILE "pmix.hostfile" (char*)35

CHAPTER 16. SERVER-SPECIFIC INTERFACES 363

Hostfile to use for spawned processes.1

Optional Attributes

The following attributes are optional for host environments that support this operation:2

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)3
Hostfile containing hosts to add to existing allocation.4

PMIX_ADD_HOST "pmix.addhost" (char*)5
Comma-delimited list of hosts to add to the allocation.6

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)7
Preload executables onto nodes prior to executing launch procedure.8

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)9
Comma-delimited list of files to pre-position on nodes prior to executing launch procedure.10

PMIX_PERSONALITY "pmix.pers" (char*)11
Name of personality corresponding to programming model used by application - supported12
values depend upon PMIx implementation.13

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)14
Display process mapping upon spawn.15

PMIX_PPR "pmix.ppr" (char*)16
Number of processes to spawn on each identified resource.17

PMIX_MAPBY "pmix.mapby" (char*)18
Process mapping policy - when accessed using PMIx_Get, use the19
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the20
provided namespace. Supported values are launcher specific.21

PMIX_RANKBY "pmix.rankby" (char*)22
Process ranking policy - when accessed using PMIx_Get, use the23
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for the24
provided namespace. Supported values are launcher specific.25

PMIX_BINDTO "pmix.bindto" (char*)26
Process binding policy - when accessed using PMIx_Get, use the27
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the28
provided namespace. Supported values are launcher specific.29

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)30
Spawned process rank that is to receive any forwarded stdin.31

PMIX_FWD_STDIN "pmix.fwd.stdin" (pmix_rank_t)32

364 PMIx Standard – Version 4.1 – October 2021

The requester intends to push information from its stdin to the indicated process. The1
local spawn agent should, therefore, ensure that the stdin channel to that process remains2
available. A rank of PMIX_RANK_WILDCARD indicates that all processes in the spawned3
job are potential recipients. The requester will issue a call to PMIx_IOF_push to initiate4
the actual forwarding of information to specified targets - this attribute simply requests that5
the IL retain the ability to forward the information to the designated targets.6

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)7
Requests that the ability to forward the stdout of the spawned processes be maintained.8
The requester will issue a call to PMIx_IOF_pull to specify the callback function and9
other options for delivery of the forwarded output.10

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)11
Requests that the ability to forward the stderr of the spawned processes be maintained.12
The requester will issue a call to PMIx_IOF_pull to specify the callback function and13
other options for delivery of the forwarded output.14

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)15
Included in the pmix_info_t array of a pmix_app_t, this attribute declares that the16
application consists of debugger daemons and shall be governed accordingly. If used as the17
sole pmix_app_t in a PMIx_Spawn request, then the PMIX_DEBUG_TARGET attribute18
must also be provided (in either the job_info or in the info array of the pmix_app_t) to19
identify the namespace to be debugged so that the launcher can determine where to place the20
spawned daemons. If neither PMIX_DEBUG_DAEMONS_PER_PROC nor21
PMIX_DEBUG_DAEMONS_PER_NODE is specified, then the launcher shall default to a22
placement policy of one daemon per process in the target job.23

PMIX_TAG_OUTPUT "pmix.tagout" (bool)24
Tag stdout/stderr with the identity of the source process - can be assigned to the entire25
job (by including attribute in the job_info array) or on a per-application basis in the info26
array for each pmix_app_t.27

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)28
Timestamp output - can be assigned to the entire job (by including attribute in the job_info29
array) or on a per-application basis in the info array for each pmix_app_t.30

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)31
Merge stdout and stderr streams - can be assigned to the entire job (by including32
attribute in the job_info array) or on a per-application basis in the info array for each33
pmix_app_t.34

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)35
Direct output (both stdout and stderr) into files of form "<filename>.rank" - can be36
assigned to the entire job (by including attribute in the job_info array) or on a per-application37
basis in the info array for each pmix_app_t.38

PMIX_INDEX_ARGV "pmix.indxargv" (bool)39

CHAPTER 16. SERVER-SPECIFIC INTERFACES 365

Mark the argv with the rank of the process.1

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)2
Number of PUs to assign to each rank - when accessed using PMIx_Get, use the3
PMIX_RANK_WILDCARD value for the rank to discover the PUs/process assigned to the4
provided namespace.5

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)6
Do not place processes on the head node.7

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)8
Do not oversubscribe the nodes - i.e., do not place more processes than allocated slots on a9
node.10

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)11
Report bindings of the individual processes.12

PMIX_CPU_LIST "pmix.cpulist" (char*)13
List of PUs to use for this job - when accessed using PMIx_Get, use the14
PMIX_RANK_WILDCARD value for the rank to discover the PU list used for the provided15
namespace.16

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)17
Application supports recoverable operations.18

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)19
Application is continuous, all failed processes should be immediately restarted.20

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)21
Maximum number of times to restart a process - when accessed using PMIx_Get, use the22
PMIX_RANK_WILDCARD value for the rank to discover the max restarts for the provided23
namespace.24

PMIX_TIMEOUT "pmix.timeout" (int)25
Time in seconds before the specified operation should time out (zero indicating infinite) and26
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions27
caused by multiple layers (client, server, and host) simultaneously timing the operation.28

Description29
Spawn a set of applications/processes as per the PMIx_Spawn API. Note that applications are not30
required to be MPI or any other programming model. Thus, the host server cannot make any31
assumptions as to their required support. The callback function is to be executed once all processes32
have been started. An error in starting any application or process in this request shall cause all33
applications and processes in the request to be terminated, and an error returned to the originating34
caller.35

Note that a timeout can be specified in the job_info array to indicate that failure to start the36
requested job within the given time should result in termination to avoid hangs.37

366 PMIx Standard – Version 4.1 – October 2021

16.3.11.1 Server spawn attributes1

PMIX_REQUESTOR_IS_TOOL "pmix.req.tool" (bool)2
The requesting process is a PMIx tool.3

PMIX_REQUESTOR_IS_CLIENT "pmix.req.client" (bool)4
The requesting process is a PMIx client.5

16.3.12 pmix_server_connect_fn_t6

Summary7
Record the specified processes as connected.8

Format9 PMIx v1.0 C
typedef pmix_status_t (*pmix_server_connect_fn_t)(10

const pmix_proc_t procs[],11
size_t nprocs,12
const pmix_info_t info[],13
size_t ninfo,14
pmix_op_cbfunc_t cbfunc,15
void *cbdata);16

C

IN procs17
Array of pmix_proc_t structures identifying participants (array of handles)18

IN nprocs19
Number of elements in the procs array (integer)20

IN info21
Array of info structures (array of handles)22

IN ninfo23
Number of elements in the info array (integer)24

IN cbfunc25
Callback function pmix_op_cbfunc_t (function reference)26

IN cbdata27
Data to be passed to the callback function (memory reference)28

Returns one of the following:29

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result30
will be returned in the provided cbfunc. Note that the host must not invoke the callback function31
prior to returning from the API.32

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and33
returned success - the cbfunc will not be called34

CHAPTER 16. SERVER-SPECIFIC INTERFACES 367

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the1
request, even though the function entry was provided in the server module - the cbfunc will not2
be called3

• a PMIx error constant indicating either an error in the input or that the request was immediately4
processed and failed - the cbfunc will not be called5

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.6

Optional Attributes

The following attributes are optional for host environments that support this operation:7

PMIX_TIMEOUT "pmix.timeout" (int)8
Time in seconds before the specified operation should time out (zero indicating infinite) and9
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions10
caused by multiple layers (client, server, and host) simultaneously timing the operation.11

Description12
Record the processes specified by the procs array as connected as per the PMIx definition. The13
callback is to be executed once every daemon hosting at least one participant has called the host14
server’s pmix_server_connect_fn_t function, and the host environment has completed any15
supporting operations required to meet the terms of the PMIx definition of connected processes.16

Advice to PMIx library implementers

The PMIx server library is required to aggregate participation by local clients, passing the request17
to the host environment once all local participants have executed the API.18

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to19
identify the nodes containing participating processes, execute the collective across all participating20
nodes, and notify the local PMIx server library upon completion of the global collective.21

16.3.13 pmix_server_disconnect_fn_t22

Summary23
Disconnect a previously connected set of processes.24

368 PMIx Standard – Version 4.1 – October 2021

Format1 C
typedef pmix_status_t (*pmix_server_disconnect_fn_t)(2

const pmix_proc_t procs[],3
size_t nprocs,4
const pmix_info_t info[],5
size_t ninfo,6
pmix_op_cbfunc_t cbfunc,7
void *cbdata);8

C

IN procs9
Array of pmix_proc_t structures identifying participants (array of handles)10

IN nprocs11
Number of elements in the procs array (integer)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the27
request, even though the function entry was provided in the server module - the cbfunc will not28
be called29

• a PMIx error constant indicating either an error in the input or that the request was immediately30
processed and failed - the cbfunc will not be called31

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.32

CHAPTER 16. SERVER-SPECIFIC INTERFACES 369

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (zero indicating infinite) and3
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions4
caused by multiple layers (client, server, and host) simultaneously timing the operation.5

Description6
Disconnect a previously connected set of processes. The callback is to be executed once every7
daemon hosting at least one participant has called the host server’s has called the8
pmix_server_disconnect_fn_t function, and the host environment has completed any9
required supporting operations.10

Advice to PMIx library implementers

The PMIx server library is required to aggregate participation by local clients, passing the request11
to the host environment once all local participants have executed the API.12

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to13
identify the nodes containing participating processes, execute the collective across all participating14
nodes, and notify the local PMIx server library upon completion of the global collective.15

A PMIX_ERR_INVALID_OPERATION error must be returned if the specified set of procs was16
not previously connected via a call to the pmix_server_connect_fn_t function.17

16.3.14 pmix_server_register_events_fn_t18

Summary19
Register to receive notifications for the specified events.20

370 PMIx Standard – Version 4.1 – October 2021

Format1 C
typedef pmix_status_t (*pmix_server_register_events_fn_t)(2

pmix_status_t *codes,3
size_t ncodes,4
const pmix_info_t info[],5
size_t ninfo,6
pmix_op_cbfunc_t cbfunc,7
void *cbdata);8

C

IN codes9
Array of pmix_status_t values (array of handles)10

IN ncodes11
Number of elements in the codes array (integer)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the27
request, even though the function entry was provided in the server module - the cbfunc will not28
be called29

• a PMIx error constant indicating either an error in the input or that the request was immediately30
processed and failed - the cbfunc will not be called31

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.32
In addition, the following attributes are required to be included in the passed info array:33

PMIX_USERID "pmix.euid" (uint32_t)34
Effective user ID of the connecting process.35

CHAPTER 16. SERVER-SPECIFIC INTERFACES 371

PMIX_GRPID "pmix.egid" (uint32_t)1
Effective group ID of the connecting process.2

Description3
Register to receive notifications for the specified status codes. The info array included in this API is4
reserved for possible future directives to further steer notification.5

Advice to PMIx library implementers

The PMIx server library must track all client registrations for subsequent notification. This module6
function shall only be called when:7

• the client has requested notification of an environmental code (i.e., a PMIx codes in the range8
between PMIX_EVENT_SYS_BASE and PMIX_EVENT_SYS_OTHER, inclusive) or codes that9
lies outside the defined PMIx range of constants; and10

• the PMIx server library has not previously requested notification of that code - i.e., the host11
environment is to be contacted only once a given unique code value12

Advice to PMIx server hosts

The host environment is required to pass to its PMIx server library all non-environmental events13
that directly relate to a registered namespace without the PMIx server library explicitly requesting14
them. Environmental events are to be translated to their nearest PMIx equivalent code as defined in15
the range between PMIX_EVENT_SYS_BASE and PMIX_EVENT_SYS_OTHER (inclusive).16

16.3.15 pmix_server_deregister_events_fn_t17

Summary18
Deregister to receive notifications for the specified events.19

372 PMIx Standard – Version 4.1 – October 2021

Format1 C
typedef pmix_status_t (*pmix_server_deregister_events_fn_t)(2

pmix_status_t *codes,3
size_t ncodes,4
pmix_op_cbfunc_t cbfunc,5
void *cbdata);6

C

IN codes7
Array of pmix_status_t values (array of handles)8

IN ncodes9
Number of elements in the codes array (integer)10

IN cbfunc11
Callback function pmix_op_cbfunc_t (function reference)12

IN cbdata13
Data to be passed to the callback function (memory reference)14

Returns one of the following:15

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result16
will be returned in the provided cbfunc. Note that the host must not invoke the callback function17
prior to returning from the API.18

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and19
returned success - the cbfunc will not be called20

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the21
request, even though the function entry was provided in the server module - the cbfunc will not22
be called23

• a PMIx error constant indicating either an error in the input or that the request was immediately24
processed and failed - the cbfunc will not be called25

Description26
Deregister to receive notifications for the specified events to which the PMIx server has previously27
registered.28

Advice to PMIx library implementers

The PMIx server library must track all client registrations. This module function shall only be29
called when:30

• the library is deregistering environmental codes (i.e., a PMIx codes in the range between31
PMIX_EVENT_SYS_BASE and PMIX_EVENT_SYS_OTHER, inclusive) or codes that lies32
outside the defined PMIx range of constants; and33

CHAPTER 16. SERVER-SPECIFIC INTERFACES 373

• no client (including the server library itself) remains registered for notifications on any included1
code - i.e., a code should be included in this call only when no registered notifications against it2
remain.3

16.3.16 pmix_server_notify_event_fn_t4

Summary5
Notify the specified processes of an event.6

Format7 PMIx v2.0 C
typedef pmix_status_t (*pmix_server_notify_event_fn_t)(8

pmix_status_t code,9
const pmix_proc_t *source,10
pmix_data_range_t range,11
pmix_info_t info[],12
size_t ninfo,13
pmix_op_cbfunc_t cbfunc,14
void *cbdata);15

C

IN code16
The pmix_status_t event code being referenced structure (handle)17

IN source18
pmix_proc_t of process that generated the event (handle)19

IN range20
pmix_data_range_t range over which the event is to be distributed (handle)21

IN info22
Optional array of pmix_info_t structures containing additional information on the event23
(array of handles)24

IN ninfo25
Number of elements in the info array (integer)26

IN cbfunc27
Callback function pmix_op_cbfunc_t (function reference)28

IN cbdata29
Data to be passed to the callback function (memory reference)30

Returns one of the following:31

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result32
will be returned in the provided cbfunc. Note that the host must not invoke the callback function33
prior to returning from the API.34

374 PMIx Standard – Version 4.1 – October 2021

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and1
returned success - the cbfunc will not be called2

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the3
request, even though the function entry was provided in the server module - the cbfunc will not4
be called5

• a PMIx error constant indicating either an error in the input or that the request was immediately6
processed and failed - the cbfunc will not be called7

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.8

Host environments that provide this module entry point are required to support the following9
attributes:10

PMIX_RANGE "pmix.range" (pmix_data_range_t)11
Define constraints on the processes that can access the provided data. Only processes that12
meet the constraints are allowed to access it.13

Description14
Notify the specified processes (described through a combination of range and attributes provided in15
the info array) of an event generated either by the PMIx server itself or by one of its local clients.16
The process generating the event is provided in the source parameter, and any further descriptive17
information is included in the info array.18

Note that the PMIx server library is not allowed to echo any event given to it by its host via the19
PMIx_Notify_event API back to the host through the20
pmix_server_notify_event_fn_t server module function.21

Advice to PMIx server hosts

The callback function is to be executed once the host environment no longer requires that the PMIx22
server library maintain the provided data structures. It does not necessarily indicate that the event23
has been delivered to any process, nor that the event has been distributed for delivery24

16.3.17 pmix_server_listener_fn_t25

Summary26
Register a socket the host server can monitor for connection requests.27

CHAPTER 16. SERVER-SPECIFIC INTERFACES 375

Format1 C
typedef pmix_status_t (*pmix_server_listener_fn_t)(2

int listening_sd,3
pmix_connection_cbfunc_t cbfunc,4
void *cbdata);5

C

IN incoming_sd6
(integer)7

IN cbfunc8
Callback function pmix_connection_cbfunc_t (function reference)9

IN cbdata10
(memory reference)11

Returns PMIX_SUCCESS indicating that the request is accepted, or a negative value corresponding12
to a PMIx error constant indicating that the request has been rejected.13

Description14
Register a socket the host environment can monitor for connection requests, harvest them, and then15
call the PMIx server library’s internal callback function for further processing. A listener thread is16
essential to efficiently harvesting connection requests from large numbers of local clients such as17
occur when running on large SMPs. The host server listener is required to call accept on the18
incoming connection request, and then pass the resulting socket to the provided cbfunc. A NULL19
for this function will cause the internal PMIx server to spawn its own listener thread.20

16.3.17.1 PMIx Client Connection Callback Function21

Summary22
Callback function for incoming connection request from a local client.23

Format24 PMIx v1.0 C
typedef void (*pmix_connection_cbfunc_t)(25

int incoming_sd, void *cbdata);26

C

IN incoming_sd27
(integer)28

IN cbdata29
(memory reference)30

Description31
Callback function for incoming connection requests from local clients - only used by host32
environments that wish to directly handle socket connection requests.33

376 PMIx Standard – Version 4.1 – October 2021

16.3.18 pmix_server_query_fn_t1

Summary2
Query information from the resource manager.3

Format4 PMIx v2.0 C
typedef pmix_status_t (*pmix_server_query_fn_t)(5

pmix_proc_t *proct,6
pmix_query_t *queries,7
size_t nqueries,8
pmix_info_cbfunc_t cbfunc,9
void *cbdata);10

C

IN proct11
pmix_proc_t structure of the requesting process (handle)12

IN queries13
Array of pmix_query_t structures (array of handles)14

IN nqueries15
Number of elements in the queries array (integer)16

IN cbfunc17
Callback function pmix_info_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the27
request, even though the function entry was provided in the server module - the cbfunc will not28
be called29

• a PMIx error constant indicating either an error in the input or that the request was immediately30
processed and failed - the cbfunc will not be called31

CHAPTER 16. SERVER-SPECIFIC INTERFACES 377

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.1
In addition, the following attributes are required to be included in the passed info array:2

PMIX_USERID "pmix.euid" (uint32_t)3
Effective user ID of the connecting process.4

PMIX_GRPID "pmix.egid" (uint32_t)5
Effective group ID of the connecting process.6

Optional Attributes

The following attributes are optional for host environments that support this operation:7

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)8
Request a comma-delimited list of active namespaces. NO QUALIFIERS.9

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)10
Status of a specified, currently executing job. REQUIRED QUALIFIER: PMIX_NSPACE11
indicating the namespace whose status is being queried.12

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)13
Request a comma-delimited list of scheduler queues. NO QUALIFIERS.14

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (char*)15
Returns status of a specified scheduler queue, expressed as a string. OPTIONAL16
QUALIFIERS: PMIX_ALLOC_QUEUE naming specific queue whose status is being17
requested.18

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)19
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each20
process in the specified namespace, ordered by process job rank. REQUIRED QUALIFIER:21
PMIX_NSPACE indicating the namespace whose process table is being queried.22

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)23
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each24
process in the specified namespace executing on the same node as the requester, ordered by25
process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the namespace26
whose local process table is being queried. OPTIONAL QUALIFIER: PMIX_HOSTNAME27
indicating the host whose local process table is being queried. By default, the query assumes28
that the host upon which the request was made is to be used.29

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)30
Return a comma-delimited list of supported spawn attributes. NO QUALIFIERS.31

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)32
Return a comma-delimited list of supported debug attributes. NO QUALIFIERS.33

378 PMIx Standard – Version 4.1 – October 2021

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)1
Return information on memory usage for the processes indicated in the qualifiers.2
OPTIONAL QUALIFIERS: PMIX_NSPACE and PMIX_RANK, or PMIX_PROCID of3
specific process(es) whose memory usage is being requested.4

PMIX_QUERY_LOCAL_ONLY "pmix.qry.local" (bool)5
Constrain the query to local information only. NO QUALIFIERS.6

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)7
Report only average values for sampled information. NO QUALIFIERS.8

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)9
Report minimum and maximum values. NO QUALIFIERS.10

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)11
String identifier of the allocation whose status is being requested. NO QUALIFIERS.12

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)13
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.14
OPTIONAL QUALIFIERS: PMIX_NSPACE of the namespace whose info is being15
requested (defaults to allocation containing the caller).16

Description17
Query information from the host environment. The query will include the namespace/rank of the18
process that is requesting the info, an array of pmix_query_t describing the request, and a19
callback function/data for the return.20

Advice to PMIx library implementers

The PMIx server library should not block in this function as the host environment may, depending21
upon the information being requested, require significant time to respond.22

16.3.19 pmix_server_tool_connection_fn_t23

Summary24
Register that a tool has connected to the server.25

CHAPTER 16. SERVER-SPECIFIC INTERFACES 379

Format1 C
typedef void (*pmix_server_tool_connection_fn_t)(2

pmix_info_t info[], size_t ninfo,3
pmix_tool_connection_cbfunc_t cbfunc,4
void *cbdata);5

C

IN info6
Array of pmix_info_t structures (array of handles)7

IN ninfo8
Number of elements in the info array (integer)9

IN cbfunc10
Callback function pmix_tool_connection_cbfunc_t (function reference)11

IN cbdata12
Data to be passed to the callback function (memory reference)13

Required Attributes

PMIx libraries are required to pass the following attributes in the info array:14

PMIX_USERID "pmix.euid" (uint32_t)15
Effective user ID of the connecting process.16

PMIX_GRPID "pmix.egid" (uint32_t)17
Effective group ID of the connecting process.18

PMIX_TOOL_NSPACE "pmix.tool.nspace" (char*)19
Name of the namespace to use for this tool. This must be included only if the tool already20
has an assigned namespace.21

PMIX_TOOL_RANK "pmix.tool.rank" (uint32_t)22
Rank of this tool. This must be included only if the tool already has an assigned rank.23

PMIX_CREDENTIAL "pmix.cred" (char*)24
Security credential assigned to the process.25

380 PMIx Standard – Version 4.1 – October 2021

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)2
Requests that the ability to forward the stdout of the spawned processes be maintained.3
The requester will issue a call to PMIx_IOF_pull to specify the callback function and4
other options for delivery of the forwarded output.5

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)6
Requests that the ability to forward the stderr of the spawned processes be maintained.7
The requester will issue a call to PMIx_IOF_pull to specify the callback function and8
other options for delivery of the forwarded output.9

PMIX_FWD_STDIN "pmix.fwd.stdin" (pmix_rank_t)10
The requester intends to push information from its stdin to the indicated process. The11
local spawn agent should, therefore, ensure that the stdin channel to that process remains12
available. A rank of PMIX_RANK_WILDCARD indicates that all processes in the spawned13
job are potential recipients. The requester will issue a call to PMIx_IOF_push to initiate14
the actual forwarding of information to specified targets - this attribute simply requests that15
the IL retain the ability to forward the information to the designated targets.16

PMIX_VERSION_INFO "pmix.version" (char*)17
PMIx version of the library being used by the connecting process.18

Description19
Register that a tool has connected to the server, possibly requesting that the tool be assigned a20
namespace/rank identifier for further interactions. The pmix_info_t array is used to pass21
qualifiers for the connection request, including the effective uid and gid of the calling tool for22
authentication purposes.23

If the tool already has an assigned process identifier, then this must be indicated in the info array.24
The host is responsible for checking that the provided namespace does not conflict with any25
currently known assignments, returning an appropriate error in the callback function if a conflict is26
found.27

The host environment is solely responsible for authenticating and authorizing the connection using28
whatever means it deems appropriate. If certificates or other authentication information are29
required, then the tool must provide them. The conclusion of those operations shall be30
communicated back to the PMIx server library via the callback function.31

Approval or rejection of the connection request shall be returned in the status parameter of the32
pmix_tool_connection_cbfunc_t. If the connection is refused, the PMIx server library33
must terminate the connection attempt. The host must not execute the callback function prior to34
returning from the API.35

CHAPTER 16. SERVER-SPECIFIC INTERFACES 381

16.3.19.1 Tool connection attributes1

Attributes associated with tool connections.2

PMIX_USERID "pmix.euid" (uint32_t)3
Effective user ID of the connecting process.4

PMIX_GRPID "pmix.egid" (uint32_t)5
Effective group ID of the connecting process.6

PMIX_VERSION_INFO "pmix.version" (char*)7
PMIx version of the library being used by the connecting process.8

16.3.19.2 PMIx Tool Connection Callback Function9

Summary10
Callback function for incoming tool connections.11

Format12 PMIx v2.0 C
typedef void (*pmix_tool_connection_cbfunc_t)(13

pmix_status_t status,14
pmix_proc_t *proc, void *cbdata);15

C

IN status16
pmix_status_t value (handle)17

IN proc18
pmix_proc_t structure containing the identifier assigned to the tool (handle)19

IN cbdata20
Data to be passed (memory reference)21

Description22
Callback function for incoming tool connections. The host environment shall provide a23
namespace/rank identifier for the connecting tool.24

Advice to PMIx server hosts

It is assumed that rank=0 will be the normal assignment, but allow for the future possibility of a25
parallel set of tools connecting, and thus each process requiring a unique rank.26

16.3.20 pmix_server_log_fn_t27

Summary28
Log data on behalf of a client.29

382 PMIx Standard – Version 4.1 – October 2021

Format1 C
typedef void (*pmix_server_log_fn_t)(2

const pmix_proc_t *client,3
const pmix_info_t data[], size_t ndata,4
const pmix_info_t directives[], size_t ndirs,5
pmix_op_cbfunc_t cbfunc, void *cbdata);6

C

IN client7
pmix_proc_t structure (handle)8

IN data9
Array of info structures (array of handles)10

IN ndata11
Number of elements in the data array (integer)12

IN directives13
Array of info structures (array of handles)14

IN ndirs15
Number of elements in the directives array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.21
In addition, the following attributes are required to be included in the passed info array:22

PMIX_USERID "pmix.euid" (uint32_t)23
Effective user ID of the connecting process.24

PMIX_GRPID "pmix.egid" (uint32_t)25
Effective group ID of the connecting process.26

27

Host environments that provide this module entry point are required to support the following28
attributes:29

PMIX_LOG_STDERR "pmix.log.stderr" (char*)30
Log string to stderr.31

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)32
Log string to stdout.33

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)34

CHAPTER 16. SERVER-SPECIFIC INTERFACES 383

Log data to syslog. Defaults to ERROR priority. Will log to global syslog if available,1
otherwise to local syslog.2

Optional Attributes

The following attributes are optional for host environments that support this operation:3

PMIX_LOG_MSG "pmix.log.msg" (pmix_byte_object_t)4
Message blob to be sent somewhere.5

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)6
Log via email based on pmix_info_t containing directives.7

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)8
Comma-delimited list of email addresses that are to receive the message.9

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)10
Subject line for email.11

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)12
Message to be included in email.13

Description14
Log data on behalf of a client. This function is not intended for output of computational results, but15
rather for reporting status and error messages. The host must not execute the callback function prior16
to returning from the API.17

16.3.21 pmix_server_alloc_fn_t18

Summary19
Request allocation operations on behalf of a client.20

384 PMIx Standard – Version 4.1 – October 2021

Format1 C
typedef pmix_status_t (*pmix_server_alloc_fn_t)(2

const pmix_proc_t *client,3
pmix_alloc_directive_t directive,4
const pmix_info_t data[],5
size_t ndata,6
pmix_info_cbfunc_t cbfunc,7
void *cbdata);8

C

IN client9
pmix_proc_t structure of process making request (handle)10

IN directive11
Specific action being requested (pmix_alloc_directive_t)12

IN data13
Array of info structures (array of handles)14

IN ndata15
Number of elements in the data array (integer)16

IN cbfunc17
Callback function pmix_info_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the27
request, even though the function entry was provided in the server module - the cbfunc will not28
be called29

• a PMIx error constant indicating either an error in the input or that the request was immediately30
processed and failed - the cbfunc will not be called31

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.32
In addition, the following attributes are required to be included in the passed info array:33

PMIX_USERID "pmix.euid" (uint32_t)34
Effective user ID of the connecting process.35

CHAPTER 16. SERVER-SPECIFIC INTERFACES 385

PMIX_GRPID "pmix.egid" (uint32_t)1
Effective group ID of the connecting process.2

3

Host environments that provide this module entry point are required to support the following4
attributes:5

PMIX_ALLOC_ID "pmix.alloc.id" (char*)6
A string identifier (provided by the host environment) for the resulting allocation which can7
later be used to reference the allocated resources in, for example, a call to PMIx_Spawn.8

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)9
The number of nodes being requested in an allocation request.10

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)11
Number of PUs being requested in an allocation request.12

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)13
Total session time (in seconds) being requested in an allocation request.14

Optional Attributes

The following attributes are optional for host environments that support this operation:15

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)16
Regular expression of the specific nodes being requested in an allocation request.17

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)18
Regular expression of the number of PUs for each node being requested in an allocation19
request.20

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)21
Regular expression of the specific PUs being requested in an allocation request.22

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)23
Number of Megabytes[base2] of memory (per process) being requested in an allocation24
request.25

PMIX_ALLOC_FABRIC "pmix.alloc.net" (array)26
Array of pmix_info_t describing requested fabric resources. This must include at least:27
PMIX_ALLOC_FABRIC_ID, PMIX_ALLOC_FABRIC_TYPE, and28
PMIX_ALLOC_FABRIC_ENDPTS, plus whatever other descriptors are desired.29

PMIX_ALLOC_FABRIC_ID "pmix.alloc.netid" (char*)30

386 PMIx Standard – Version 4.1 – October 2021

The key to be used when accessing this requested fabric allocation. The fabric allocation1
will be returned/stored as a pmix_data_array_t of pmix_info_t whose first2
element is composed of this key and the allocated resource description. The type of the3
included value depends upon the fabric support. For example, a TCP allocation might4
consist of a comma-delimited string of socket ranges such as "32000-32100,5
33005,38123-38146". Additional array entries will consist of any provided resource6
request directives, along with their assigned values. Examples include:7
PMIX_ALLOC_FABRIC_TYPE - the type of resources provided;8
PMIX_ALLOC_FABRIC_PLANE - if applicable, what plane the resources were assigned9
from; PMIX_ALLOC_FABRIC_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -10
the allocated bandwidth; PMIX_ALLOC_FABRIC_SEC_KEY - a security key for the11
requested fabric allocation. NOTE: the array contents may differ from those requested,12
especially if PMIX_INFO_REQD was not set in the request.13

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)14
Fabric bandwidth (in Megabits[base2]/sec) for the job being requested in an allocation15
request.16

PMIX_ALLOC_FABRIC_QOS "pmix.alloc.netqos" (char*)17
Fabric quality of service level for the job being requested in an allocation request.18

Description19
Request new allocation or modifications to an existing allocation on behalf of a client. Several20
broad categories are envisioned, including the ability to:21

• Request allocation of additional resources, including memory, bandwidth, and compute for an22
existing allocation. Any additional allocated resources will be considered as part of the current23
allocation, and thus will be released at the same time.24

• Request a new allocation of resources. Note that the new allocation will be disjoint from (i.e., not25
affiliated with) the allocation of the requestor - thus the termination of one allocation will not26
impact the other.27

• Extend the reservation on currently allocated resources, subject to scheduling availability and28
priorities.29

• Return no-longer-required resources to the scheduler. This includes the loan of resources back to30
the scheduler with a promise to return them upon subsequent request.31

The callback function provides a status to indicate whether or not the request was granted, and to32
provide some information as to the reason for any denial in the pmix_info_cbfunc_t array of33
pmix_info_t structures.34

16.3.22 pmix_server_job_control_fn_t35

Summary36
Execute a job control action on behalf of a client.37

CHAPTER 16. SERVER-SPECIFIC INTERFACES 387

Format1 C
typedef pmix_status_t (*pmix_server_job_control_fn_t)(2

const pmix_proc_t *requestor,3
const pmix_proc_t targets[],4
size_t ntargets,5
const pmix_info_t directives[],6
size_t ndirs,7
pmix_info_cbfunc_t cbfunc,8
void *cbdata);9

C

IN requestor10
pmix_proc_t structure of requesting process (handle)11

IN targets12
Array of proc structures (array of handles)13

IN ntargets14
Number of elements in the targets array (integer)15

IN directives16
Array of info structures (array of handles)17

IN ndirs18
Number of elements in the info array (integer)19

IN cbfunc20
Callback function pmix_info_cbfunc_t (function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

Returns one of the following:24

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result25
will be returned in the provided cbfunc. Note that the host must not invoke the callback function26
prior to returning from the API.27

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and28
returned success - the cbfunc will not be called29

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the30
request, even though the function entry was provided in the server module - the cbfunc will not31
be called32

• a PMIx error constant indicating either an error in the input or that the request was immediately33
processed and failed - the cbfunc will not be called34

388 PMIx Standard – Version 4.1 – October 2021

Required Attributes

PMIx libraries are required to pass any attributes provided by the client to the host environment for1
processing. In addition, the following attributes are required to be included in the passed info array:2

PMIX_USERID "pmix.euid" (uint32_t)3
Effective user ID of the connecting process.4

PMIX_GRPID "pmix.egid" (uint32_t)5
Effective group ID of the connecting process.6

7

Host environments that provide this module entry point are required to support the following8
attributes:9

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)10
Provide a string identifier for this request. The user can provide an identifier for the11
requested operation, thus allowing them to later request status of the operation or to12
terminate it. The host, therefore, shall track it with the request for future reference.13

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)14
Pause the specified processes.15

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)16
Resume (“un-pause”) the specified processes.17

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)18
Forcibly terminate the specified processes and cleanup.19

PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)20
Send given signal to specified processes.21

PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)22
Politely terminate the specified processes.23

Optional Attributes

The following attributes are optional for host environments that support this operation:24

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)25
Cancel the specified request - the provided request ID must match the26
PMIX_JOB_CTRL_ID provided to a previous call to PMIx_Job_control. An ID of27
NULL implies cancel all requests from this requestor.28

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)29
Restart the specified processes using the given checkpoint ID.30

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)31
Checkpoint the specified processes and assign the given ID to it.32

CHAPTER 16. SERVER-SPECIFIC INTERFACES 389

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)1
Use event notification to trigger a process checkpoint.2

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)3
Use the given signal to trigger a process checkpoint.4

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)5
Time in seconds to wait for a checkpoint to complete.6

PMIX_JOB_CTRL_CHECKPOINT_METHOD7
"pmix.jctrl.ckmethod" (pmix_data_array_t)8

Array of pmix_info_t declaring each method and value supported by this application.9

PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)10
Regular expression identifying nodes that are to be provisioned.11

PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)12
Name of the image that is to be provisioned.13

PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)14
Indicate that the job can be pre-empted.15

Description16
Execute a job control action on behalf of a client. The targets array identifies the processes to17
which the requested job control action is to be applied. A NULL value can be used to indicate all18
processes in the caller’s namespace. The use of PMIX_RANK_WILDCARD can also be used to19
indicate that all processes in the given namespace are to be included.20

The directives are provided as pmix_info_t structures in the directives array. The callback21
function provides a status to indicate whether or not the request was granted, and to provide some22
information as to the reason for any denial in the pmix_info_cbfunc_t array of23
pmix_info_t structures.24

16.3.23 pmix_server_monitor_fn_t25

Summary26
Request that a client be monitored for activity.27

390 PMIx Standard – Version 4.1 – October 2021

Format1 C
typedef pmix_status_t (*pmix_server_monitor_fn_t)(2

const pmix_proc_t *requestor,3
const pmix_info_t *monitor,4
pmix_status_t error,5
const pmix_info_t directives[],6
size_t ndirs,7
pmix_info_cbfunc_t cbfunc,8
void *cbdata);9

C

IN requestor10
pmix_proc_t structure of requesting process (handle)11

IN monitor12
pmix_info_t identifying the type of monitor being requested (handle)13

IN error14
Status code to use in generating event if alarm triggers (integer)15

IN directives16
Array of info structures (array of handles)17

IN ndirs18
Number of elements in the info array (integer)19

IN cbfunc20
Callback function pmix_info_cbfunc_t (function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

Returns one of the following:24

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result25
will be returned in the provided cbfunc. Note that the host must not invoke the callback function26
prior to returning from the API.27

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and28
returned success - the cbfunc will not be called29

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the30
request, even though the function entry was provided in the server module - the cbfunc will not31
be called32

• a PMIx error constant indicating either an error in the input or that the request was immediately33
processed and failed - the cbfunc will not be called34

This entry point is only called for monitoring requests that are not directly supported by the PMIx35
server library itself.36

CHAPTER 16. SERVER-SPECIFIC INTERFACES 391

Required Attributes

If supported by the PMIx server library, then the library must not pass any supported attributes to1
the host environment. Any attributes provided by the client that are not directly supported by the2
server library must be passed to the host environment if it provides this module entry. In addition,3
the following attributes are required to be included in the passed info array:4

PMIX_USERID "pmix.euid" (uint32_t)5
Effective user ID of the connecting process.6

PMIX_GRPID "pmix.egid" (uint32_t)7
Effective group ID of the connecting process.8

Host environments are not required to support any specific monitoring attributes.9

Optional Attributes

The following attributes may be implemented by a host environment.10

PMIX_MONITOR_ID "pmix.monitor.id" (char*)11
Provide a string identifier for this request.12

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)13
Identifier to be canceled (NULL means cancel all monitoring for this process).14

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)15
The application desires to control the response to a monitoring event - i.e., the application is16
requesting that the host environment not take immediate action in response to the event (e.g.,17
terminating the job).18

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)19
Register to have the PMIx server monitor the requestor for heartbeats.20

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)21
Time in seconds before declaring heartbeat missed.22

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)23
Number of heartbeats that can be missed before generating the event.24

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)25
Register to monitor file for signs of life.26

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)27
Monitor size of given file is growing to determine if the application is running.28

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)29
Monitor time since last access of given file to determine if the application is running.30

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)31
Monitor time since last modified of given file to determine if the application is running.32

392 PMIx Standard – Version 4.1 – October 2021

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)1
Time in seconds between checking the file.2

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)3
Number of file checks that can be missed before generating the event.4

Description5
Request that a client be monitored for activity.6

16.3.24 pmix_server_get_cred_fn_t7

Summary8
Request a credential from the host environment.9

Format10 PMIx v3.0 C
typedef pmix_status_t (*pmix_server_get_cred_fn_t)(11

const pmix_proc_t *proc,12
const pmix_info_t directives[],13
size_t ndirs,14
pmix_credential_cbfunc_t cbfunc,15
void *cbdata);16

C

IN proc17
pmix_proc_t structure of requesting process (handle)18

IN directives19
Array of info structures (array of handles)20

IN ndirs21
Number of elements in the info array (integer)22

IN cbfunc23
Callback function to return the credential (pmix_credential_cbfunc_t function24
reference)25

IN cbdata26
Data to be passed to the callback function (memory reference)27

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result28
will be returned in the provided cbfunc29

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the30
request, even though the function entry was provided in the server module - the cbfunc will not31
be called32

• a PMIx error constant indicating either an error in the input or that the request was immediately33
processed and failed - the cbfunc will not be called34

CHAPTER 16. SERVER-SPECIFIC INTERFACES 393

Required Attributes

If the PMIx library does not itself provide the requested credential, then it is required to pass any1
attributes provided by the client to the host environment for processing. In addition, it must include2
the following attributes in the passed info array:3

PMIX_USERID "pmix.euid" (uint32_t)4
Effective user ID of the connecting process.5

PMIX_GRPID "pmix.egid" (uint32_t)6
Effective group ID of the connecting process.7

Optional Attributes

The following attributes are optional for host environments that support this operation:8

PMIX_CRED_TYPE "pmix.sec.ctype" (char*)9
When passed in PMIx_Get_credential, a prioritized, comma-delimited list of desired10
credential types for use in environments where multiple authentication mechanisms may be11
available. When returned in a callback function, a string identifier of the credential type.12

PMIX_TIMEOUT "pmix.timeout" (int)13
Time in seconds before the specified operation should time out (zero indicating infinite) and14
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions15
caused by multiple layers (client, server, and host) simultaneously timing the operation.16

Description17
Request a credential from the host environment.18

16.3.24.1 Credential callback function19

Summary20
Callback function to return a requested security credential21

394 PMIx Standard – Version 4.1 – October 2021

Format1 C
typedef void (*pmix_credential_cbfunc_t)(2

pmix_status_t status,3
pmix_byte_object_t *credential,4
pmix_info_t info[], size_t ninfo,5
void *cbdata);6

C

IN status7
pmix_status_t value (handle)8

IN credential9
pmix_byte_object_t structure containing the security credential (handle)10

IN info11
Array of provided by the system to pass any additional information about the credential - e.g.,12
the identity of the issuing agent. (handle)13

IN ninfo14
Number of elements in info (size_t)15

IN cbdata16
Object passed in original request (memory reference)17

Description18
Define a callback function to return a requested security credential. Information provided by the19
issuing agent can subsequently be used by the application for a variety of purposes. Examples20
include:21

• checking identified authorizations to determine what requests/operations are feasible as a means22
to steering workflows23

• compare the credential type to that of the local SMS for compatibility24

Advice to users

The credential is opaque and therefore understandable only by a service compatible with the issuer.25
The info array is owned by the PMIx library and is not to be released or altered by the receiving26
party.27

16.3.25 pmix_server_validate_cred_fn_t28

Summary29
Request validation of a credential.30

CHAPTER 16. SERVER-SPECIFIC INTERFACES 395

Format1 C
typedef pmix_status_t (*pmix_server_validate_cred_fn_t)(2

const pmix_proc_t *proc,3
const pmix_byte_object_t *cred,4
const pmix_info_t directives[],5
size_t ndirs,6
pmix_validation_cbfunc_t cbfunc,7
void *cbdata);8

C

IN proc9
pmix_proc_t structure of requesting process (handle)10

IN cred11
Pointer to pmix_byte_object_t containing the credential (handle)12

IN directives13
Array of info structures (array of handles)14

IN ndirs15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function to return the result (pmix_validation_cbfunc_t function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc23

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and24
returned success - the cbfunc will not be called25

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the26
request, even though the function entry was provided in the server module - the cbfunc will not27
be called28

• a PMIx error constant indicating either an error in the input or that the request was immediately29
processed and failed - the cbfunc will not be called30

Required Attributes

If the PMIx library does not itself validate the credential, then it is required to pass any attributes31
provided by the client to the host environment for processing. In addition, it must include the32
following attributes in the passed info array:33

PMIX_USERID "pmix.euid" (uint32_t)34
Effective user ID of the connecting process.35

396 PMIx Standard – Version 4.1 – October 2021

PMIX_GRPID "pmix.egid" (uint32_t)1
Effective group ID of the connecting process.2

3

Host environments are not required to support any specific attributes.4

Optional Attributes

The following attributes are optional for host environments that support this operation:5

PMIX_TIMEOUT "pmix.timeout" (int)6
Time in seconds before the specified operation should time out (zero indicating infinite) and7
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions8
caused by multiple layers (client, server, and host) simultaneously timing the operation.9

Description10
Request validation of a credential obtained from the host environment via a prior call to the11
pmix_server_get_cred_fn_t module entry.12

16.3.26 Credential validation callback function13

Summary14
Callback function for security credential validation.15

CHAPTER 16. SERVER-SPECIFIC INTERFACES 397

Format1 C
typedef void (*pmix_validation_cbfunc_t)(2

pmix_status_t status,3
pmix_info_t info[], size_t ninfo,4
void *cbdata);5

C

IN status6
pmix_status_t value (handle)7

IN info8
Array of pmix_info_t provided by the system to pass any additional information about the9
authentication - e.g., the effective userid and group id of the certificate holder, and any related10
authorizations (handle)11

IN ninfo12
Number of elements in info (size_t)13

IN cbdata14
Object passed in original request (memory reference)15

The returned status shall be one of the following:16

• PMIX_SUCCESS, indicating that the request was processed and returned success (i.e., the17
credential was both valid and any information it contained was successfully processed). Details18
of the result will be returned in the info array19

• a PMIx error constant indicating either an error in the parsing of the credential or that the request20
was refused21

Description22
Define a validation callback function to indicate if a provided credential is valid, and any23
corresponding information regarding authorizations and other security matters.24

Advice to users

The precise contents of the array will depend on the host environment and its associated security25
system. At the minimum, it is expected (but not required) that the array will contain entries for the26
PMIX_USERID and PMIX_GRPID of the client described in the credential. The info array is27
owned by the PMIx library and is not to be released or altered by the receiving party.28

16.3.27 pmix_server_iof_fn_t29

Summary30
Request the specified IO channels be forwarded from the given array of processes.31

398 PMIx Standard – Version 4.1 – October 2021

Format1 C
typedef pmix_status_t (*pmix_server_iof_fn_t)(2

const pmix_proc_t procs[],3
size_t nprocs,4
const pmix_info_t directives[],5
size_t ndirs,6
pmix_iof_channel_t channels,7
pmix_op_cbfunc_t cbfunc, void *cbdata);8

C

IN procs9
Array pmix_proc_t identifiers whose IO is being requested (handle)10

IN nprocs11
Number of elements in procs (size_t)12

IN directives13
Array of pmix_info_t structures further defining the request (array of handles)14

IN ndirs15
Number of elements in the info array (integer)16

IN channels17
Bitmask identifying the channels to be forwarded (pmix_iof_channel_t)18

IN cbfunc19
Callback function pmix_op_cbfunc_t (function reference)20

IN cbdata21
Data to be passed to the callback function (memory reference)22

Returns one of the following:23

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result24
will be returned in the provided cbfunc. Note that the library must not invoke the callback25
function prior to returning from the API.26

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and27
returned success - the cbfunc will not be called28

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the29
request, even though the function entry was provided in the server module - the cbfunc will not30
be called31

• a PMIx error constant indicating either an error in the input or that the request was immediately32
processed and failed - the cbfunc will not be called33

Required Attributes

The following attributes are required to be included in the passed info array:34

PMIX_USERID "pmix.euid" (uint32_t)35

CHAPTER 16. SERVER-SPECIFIC INTERFACES 399

Effective user ID of the connecting process.1

PMIX_GRPID "pmix.egid" (uint32_t)2
Effective group ID of the connecting process.3

4

Host environments that provide this module entry point are required to support the following5
attributes:6

PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)7
The requested size of the PMIx server cache in bytes for each specified channel. By default,8
the server is allowed (but not required) to drop all bytes received beyond the max size.9

PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)10
In an overflow situation, the PMIx server is to drop the oldest bytes to make room in the11
cache.12

PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)13
In an overflow situation, the PMIx server is to drop any new bytes received until room14
becomes available in the cache (default).15

Optional Attributes

The following attributes may be supported by a host environment.16

PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)17
Requests that IO on the specified channel(s) be aggregated in the PMIx tool library until the18
specified number of bytes is collected to avoid being called every time a block of IO arrives.19
The PMIx tool library will execute the callback and reset the collection counter whenever the20
specified number of bytes becomes available. Any remaining buffered data will be flushed to21
the callback upon a call to deregister the respective channel.22

PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)23
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering24
size, this prevents IO from being held indefinitely while waiting for another payload to25
arrive.26

400 PMIx Standard – Version 4.1 – October 2021

Description1
Request the specified IO channels be forwarded from the given array of processes. An error shall be2
returned in the callback function if the requested service from any of the requested processes cannot3
be provided.4

Advice to PMIx library implementers

The forwarding of stdin is a push process - processes cannot request that it be pulled from some5
other source. Requests including the PMIX_FWD_STDIN_CHANNEL channel will return a6
PMIX_ERR_NOT_SUPPORTED error.7

16.3.27.1 IOF delivery function8

Summary9
Callback function for delivering forwarded IO to a process.10

Format11 PMIx v3.0 C
typedef void (*pmix_iof_cbfunc_t)(12

size_t iofhdlr, pmix_iof_channel_t channel,13
pmix_proc_t *source, char *payload,14
pmix_info_t info[], size_t ninfo);15

C

IN iofhdlr16
Registration number of the handler being invoked (size_t)17

IN channel18
bitmask identifying the channel the data arrived on (pmix_iof_channel_t)19

IN source20
Pointer to a pmix_proc_t identifying the namespace/rank of the process that generated the21
data (char*)22

IN payload23
Pointer to character array containing the data.24

IN info25
Array of pmix_info_t provided by the source containing metadata about the payload. This26
could include PMIX_IOF_COMPLETE (handle)27

IN ninfo28
Number of elements in info (size_t)29

CHAPTER 16. SERVER-SPECIFIC INTERFACES 401

Description1
Define a callback function for delivering forwarded IO to a process. This function will be called2
whenever data becomes available, or a specified buffering size and/or time has been met.3

Advice to users

Multiple strings may be included in a given payload, and the payload may not be NULL terminated.4
The user is responsible for releasing the payload memory. The info array is owned by the PMIx5
library and is not to be released or altered by the receiving party.6

16.3.28 pmix_server_stdin_fn_t7

Summary8
Pass standard input data to the host environment for transmission to specified recipients.9

Format10 PMIx v3.0 C
typedef pmix_status_t (*pmix_server_stdin_fn_t)(11

const pmix_proc_t *source,12
const pmix_proc_t targets[],13
size_t ntargets,14
const pmix_info_t directives[],15
size_t ndirs,16
const pmix_byte_object_t *bo,17
pmix_op_cbfunc_t cbfunc, void *cbdata);18

C

IN source19
pmix_proc_t structure of source process (handle)20

IN targets21
Array of pmix_proc_t target identifiers (handle)22

IN ntargets23
Number of elements in the targets array (integer)24

IN directives25
Array of info structures (array of handles)26

IN ndirs27
Number of elements in the info array (integer)28

IN bo29
Pointer to pmix_byte_object_t containing the payload (handle)30

IN cbfunc31
Callback function pmix_op_cbfunc_t (function reference)32

IN cbdata33
Data to be passed to the callback function (memory reference)34

402 PMIx Standard – Version 4.1 – October 2021

Returns one of the following:1

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result2
will be returned in the provided cbfunc. Note that the library must not invoke the callback3
function prior to returning from the API.4

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and5
returned success - the cbfunc will not be called6

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the7
request, even though the function entry was provided in the server module - the cbfunc will not8
be called9

• a PMIx error constant indicating either an error in the input or that the request was immediately10
processed and failed - the cbfunc will not be called11

Required Attributes

The following attributes are required to be included in the passed info array:12

PMIX_USERID "pmix.euid" (uint32_t)13
Effective user ID of the connecting process.14

PMIX_GRPID "pmix.egid" (uint32_t)15
Effective group ID of the connecting process.16

Description17
Passes stdin to the host environment for transmission to specified recipients. The host environment18
is responsible for forwarding the data to all locations that host the specified targets and delivering19
the payload to the PMIx server library connected to those clients.20

16.3.29 pmix_server_grp_fn_t21

Summary22
Request group operations (construct, destruct, etc.) on behalf of a set of processes.23

CHAPTER 16. SERVER-SPECIFIC INTERFACES 403

Format1 C
typedef pmix_status_t (*pmix_server_grp_fn_t)(2

pmix_group_operation_t op,3
char grp[],4
const pmix_proc_t procs[],5
size_t nprocs,6
const pmix_info_t directives[],7
size_t ndirs,8
pmix_info_cbfunc_t cbfunc,9
void *cbdata);10

C

IN op11
pmix_group_operation_t value indicating operation the host is requested to perform12
(integer)13

IN grp14
Character string identifying the group (string)15

IN procs16
Array of pmix_proc_t identifiers of participants (handle)17

IN nprocs18
Number of elements in the procs array (integer)19

IN directives20
Array of info structures (array of handles)21

IN ndirs22
Number of elements in the info array (integer)23

IN cbfunc24
Callback function pmix_info_cbfunc_t (function reference)25

IN cbdata26
Data to be passed to the callback function (memory reference)27

Returns one of the following:28

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result29
will be returned in the provided cbfunc. Note that the library must not invoke the callback30
function prior to returning from the API.31

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and32
returned success - the cbfunc will not be called33

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the34
request, even though the function entry was provided in the server module - the cbfunc will not35
be called36

• a PMIx error constant indicating either an error in the input or that the request was immediately37
processed and failed - the cbfunc will not be called38

404 PMIx Standard – Version 4.1 – October 2021

Optional Attributes

The following attributes may be supported by a host environment.1

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)2
Requests that the RM assign a new context identifier to the newly created group. The3
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range4
specified in the request. Thus, the value serves as a means of identifying the group within5
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.6

PMIX_GROUP_LOCAL_ONLY "pmix.grp.lcl" (bool)7
Group operation only involves local processes. PMIx implementations are required to8
automatically scan an array of group members for local vs remote processes - if only local9
processes are detected, the implementation need not execute a global collective for the10
operation unless a context ID has been requested from the host environment. This can result11
in significant time savings. This attribute can be used to optimize the operation by indicating12
whether or not only local processes are represented, thus allowing the implementation to13
bypass the scan.14

PMIX_GROUP_ENDPT_DATA "pmix.grp.endpt" (pmix_byte_object_t)15
Data collected during group construction to ensure communication between group members16
is supported upon completion of the operation.17

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)18
Participation is optional - do not return an error if any of the specified processes terminate19
without having joined. The default is false.20

PMIX_RANGE "pmix.range" (pmix_data_range_t)21
Define constraints on the processes that can access the provided data. Only processes that22
meet the constraints are allowed to access it.23

The following attributes may be included in the host’s response:24

PMIX_GROUP_ID "pmix.grp.id" (char*)25
User-provided group identifier - as the group identifier may be used in PMIx operations, the26
user is required to ensure that the provided ID is unique within the scope of the host27
environment (e.g., by including some user-specific or application-specific prefix or suffix to28
the string).29

PMIX_GROUP_MEMBERSHIP "pmix.grp.mbrs" (pmix_data_array_t*)30
Array pmix_proc_t identifiers identifying the members of the specified group.31

PMIX_GROUP_CONTEXT_ID "pmix.grp.ctxid" (size_t)32
Context identifier assigned to the group by the host RM.33

PMIX_GROUP_ENDPT_DATA "pmix.grp.endpt" (pmix_byte_object_t)34
Data collected during group construction to ensure communication between group members35
is supported upon completion of the operation.36

CHAPTER 16. SERVER-SPECIFIC INTERFACES 405

Description1
Perform the specified operation across the identified processes, plus any special actions included in2
the directives. Return the result of any special action requests in the callback function when the3
operation is completed. Actions may include a request (PMIX_GROUP_ASSIGN_CONTEXT_ID)4
that the host assign a unique numerical (size_t) ID to this group - if given, the PMIX_RANGE5
attribute will specify the range across which the ID must be unique (default to6
PMIX_RANGE_SESSION).7

16.3.29.1 Group Operation Constants8
PMIx v4.0 The pmix_group_operation_t structure is a uint8_t value for specifying group9

operations. All values were originally defined in version 4 of the standard unless otherwise marked.10

PMIX_GROUP_CONSTRUCT Construct a group composed of the specified processes - used by11
a PMIx server library to direct host operation.12

PMIX_GROUP_DESTRUCT Destruct the specified group - used by a PMIx server library to13
direct host operation.14

16.3.30 pmix_server_fabric_fn_t15

Summary16
Request fabric-related operations (e.g., information on a fabric) on behalf of a tool or other process.17

Format18 PMIx v4.0 C
typedef pmix_status_t (*pmix_server_fabric_fn_t)(19

const pmix_proc_t *requestor,20
pmix_fabric_operation_t op,21
const pmix_info_t directives[],22
size_t ndirs,23
pmix_info_cbfunc_t cbfunc,24
void *cbdata);25

C

IN requestor26
pmix_proc_t identifying the requestor (handle)27

IN op28
pmix_fabric_operation_t value indicating operation the host is requested to perform29
(integer)30

IN directives31
Array of info structures (array of handles)32

IN ndirs33
Number of elements in the info array (integer)34

406 PMIx Standard – Version 4.1 – October 2021

IN cbfunc1
Callback function pmix_info_cbfunc_t (function reference)2

IN cbdata3
Data to be passed to the callback function (memory reference)4

Returns one of the following:5

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result6
will be returned in the provided cbfunc. Note that the library must not invoke the callback7
function prior to returning from the API.8

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and9
returned success - the cbfunc will not be called10

• PMIX_ERR_NOT_SUPPORTED, indicating that the host environment does not support the11
request, even though the function entry was provided in the server module - the cbfunc will not12
be called13

• a PMIx error constant indicating either an error in the input or that the request was immediately14
processed and failed - the cbfunc will not be called15

Required Attributes

The following directives are required to be supported by all hosts to aid users in identifying the16
fabric and (if applicable) the device to whom the operation references:17

PMIX_FABRIC_VENDOR "pmix.fab.vndr" (string)18
Name of the vendor (e.g., Amazon, Mellanox, HPE, Intel) for the specified fabric.19

PMIX_FABRIC_IDENTIFIER "pmix.fab.id" (string)20
An identifier for the specified fabric (e.g., MgmtEthernet, Slingshot-11, OmniPath-1).21

PMIX_FABRIC_PLANE "pmix.fab.plane" (string)22
ID string of a fabric plane (e.g., CIDR for Ethernet). When used as a modifier in a request23
for information, specifies the plane whose information is to be returned. When used directly24
as a key in a request, returns a pmix_data_array_t of string identifiers for all fabric25
planes in the overall system.26

PMIX_FABRIC_DEVICE_INDEX "pmix.fabdev.idx" (uint32_t)27
Index of the device within an associated communication cost matrix.28

Description29
Perform the specified operation. Return the result of any requests in the callback function when the30
operation is completed. Operations may, for example, include a request for fabric information. See31
pmix_fabric_t for a list of expected information to be included in the response. Note that32
requests for device index are to be returned in the callback function’s array of pmix_info_t33
using the PMIX_FABRIC_DEVICE_INDEX attribute.34

CHAPTER 16. SERVER-SPECIFIC INTERFACES 407

CHAPTER 17

Tools and Debuggers

The term tool widely refers to programs executed by the user or system administrator on a1
command line. Tools frequently interact with either the SMS, user applications, or both to perform2
administrative and support functions. For example, a debugger tool might be used to remotely3
control the processes of a parallel application, monitoring their behavior on a step-by-step basis.4
Historically, such tools were custom-written for each specific host environment due to the5
customized and/or proprietary nature of the environment’s interfaces.6

The advent of PMIx offers the possibility for creating portable tools capable of interacting with7
multiple RMs without modification. Possible use-cases include:8

• querying the status of scheduling queues and estimated allocation time for various resource9
options10

• job submission and allocation requests11

• querying job status for executing applications12

• launching, monitoring, and debugging applications13

Enabling these capabilities requires some extensions to the PMIx Standard (both in terms of APIs14
and attributes), and utilization of client-side APIs for more tool-oriented purposes.15

This chapter defines specific APIs related to tools, provides tool developers with an overview of the16
support provided by PMIx, and serves to guide RM vendors regarding roles and responsibilities of17
RMs to support tools. As the number of tool-specific APIs and attributes is fairly small, the bulk of18
the chapter serves to provide a "theory of operation" for tools and debuggers. Description of the19
APIs themselves is therefore deferred to the Section 17.5 later in the chapter.20

17.1 Connection Mechanisms21

The key to supporting tools lies in providing mechanisms by which a tool can connect to a PMIx22
server. Application processes are able to connect because their local RM daemon provides them23
with the necessary contact information upon execution. A command-line tool, however, isn’t24
spawned by an RM daemon, and therefore lacks the information required for rendezvous with a25
PMIx server.26

Once a tool has started, it initializes PMIx as a tool (via PMIx_tool_init) if its access is27
restricted to PMIx-based informational services such as PMIx_Query_info. However, if the28

408

tool intends to start jobs, then it must include the PMIX_LAUNCHER attribute to inform the library1
of that intent so that the library can initialize and provide access to the corresponding support.2

Support for tools requires that the PMIx server be initialized with an appropriate attribute3
indicating that tool connections are to be allowed. Separate attributes are provided to "fine-tune"4
this permission by allowing the environment to independently enable (or disable) connections from5
tools executing on nodes other than the one hosting the server itself. The PMIx server library shall6
provide an opportunity for the host environment to authenticate and approve each connection7
request from a specific tool by calling the pmix_server_tool_connection_fn_t "hook"8
provided in the server module for that purpose. Servers in environments that do not provide this9
"hook" shall automatically reject all tool connection requests.10

Tools can connect to any local or remote PMIx server provided they are either explicitly given the11
required connection information, or are able to discover it via one of several defined rendezvous12
protocols. Connection discovery centers around the existence of rendezvous files containing the13
necessary connection information, as illustrated in Fig. 17.1.14

Figure 17.1.: Tool rendezvous files

The contents of each rendezvous file are specific to a given PMIx implementation, but should at15
least contain the namespace and rank of the server along with its connection URI. Note that tools16
linked to one PMIx implementation are therefore unlikely to successfully connect to PMIx server17
libraries from another implementation.18

The top of the directory tree is defined by either the PMIX_SYSTEM_TMPDIR attribute (if given)19
or the TMPDIR environmental variable. PMIx servers that are designated as system servers by20
including the PMIX_SERVER_SYSTEM_SUPPORT attribute when calling21
PMIx_server_init will create a rendezvous file in this top-level directory. The filename will22
be of the form pmix.sys.hostname, where hostname is the string returned by the gethostname23
system call. Note that only one PMIx server on a node can be designated as the system server.24

Non-system PMIx servers will create a set of three rendezvous files in the directory defined by25
either the PMIX_SERVER_TMPDIR attribute or the TMPDIR environmental variable:26

CHAPTER 17. TOOLS AND DEBUGGERS 409

• pmix.host.tool.nspace where host is the string returned by the gethostname system call and1
nspace is the namespace of the server.2

• pmix.host.tool.pid where host is the string returned by the gethostname system call and pid is3
the PID of the server.4

• pmix.host.tool where host is the string returned by the gethostname system call. Note that5
servers which are not given a namespace-specific PMIX_SERVER_TMPDIR attribute may not6
generate this file due to conflicts should multiple servers be present on the node.7

The files are identical and may be implemented as symlinks to a single instance. The individual file8
names are composed so as to aid the search process should a tool wish to connect to a server9
identified by its namespace or PID.10

Servers will additionally provide a rendezvous file in any given location if the path (either absolute11
or relative) and filename is specified either during PMIx_server_init using the12
PMIX_LAUNCHER_RENDEZVOUS_FILE attribute, or by the PMIX_LAUNCHER_RNDZ_FILE13
environmental variable prior to executing the process containing the server. This latter mechanism14
may be the preferred mechanism for tools such as debuggers that need to fork/exec a launcher (e.g.,15
"mpiexec") and then rendezvous with it. This is described in more detail in Section 17.2.2.16

Rendezvous file ownerships are set to the UID and GID of the server that created them, with17
permissions set according to the desires of the implementation and/or system administrator policy.18
All connection attempts are first governed by read access privileges to the target rendezvous file -19
thus, the combination of permissions, UID, and GID of the rendezvous files act as a first-level of20
security for tool access.21

A tool may connect to as many servers at one time as the implementation supports, but is limited to22
designating only one such connection as its primary server. This is done to avoid confusion when23
the tool calls an API as to which server should service the request. The first server the tool connects24
to is automatically designated as the primary server.25

Tools are allowed to change their primary server at any time via the PMIx_tool_set_server26
API, and to connect/disconnect from a server as many times as desired. Note that standing requests27
(e.g., event registrations) with the current primary server may be lost and/or may not be transferred28
when transitioning to another primary server - PMIx implementors are not required to maintain or29
transfer state across tool-server connections.30

Tool process identifiers are assigned by one of the following methods:31

• If PMIX_TOOL_NSPACE is given, then the namespace of the tool will be assigned that value.32

– If PMIX_TOOL_RANK is also given, then the rank of the tool will be assigned that value.33

– If PMIX_TOOL_RANK is not given, then the rank will be set to a default value of zero.34

• If a process ID is not provided and the tool connects to a server, then one will be assigned by the35
host environment upon connection to that server.36

410 PMIx Standard – Version 4.1 – October 2021

• If a process ID is not provided and the tool does not connect to a server (e.g., if1
PMIX_TOOL_DO_NOT_CONNECT is given), then the tool shall self-assign a unique identifier.2
This is often done using some combination involving hostname and PID.3

Tool process identifiers remain constant across servers. Thus, it is critical that a system-wide unique4
namespace be provided if the tool itself sets the identifier, and that host environments provide a5
system-wide unique identifier in the case where the identifier is set by the server upon connection.6
The host environment is required to reject any connection request that fails to meet this criterion.7

For simplicity, the following descriptions will refer to the:8

• PMIX_SYSTEM_TMPDIR as the directory specified by either the PMIX_SYSTEM_TMPDIR9
attribute (if given) or the TMPDIR environmental variable.10

• PMIX_SERVER_TMPDIR as the directory specified by either the PMIX_SERVER_TMPDIR11
attribute or the TMPDIR environmental variable.12

The rendezvous methods are automatically employed for the initial tool connection during13
PMIx_tool_init unless the PMIX_TOOL_DO_NOT_CONNECT attribute is specified, and on14
all subsequent calls to PMIx_tool_attach_to_server.15

17.1.1 Rendezvousing with a local server16

Connection to a local PMIx server is pursued according to the following precedence chain based on17
attributes contained in the call to the PMIx_tool_init or18
PMIx_tool_attach_to_server APIs. Servers to which the tool already holds a connection19
will be ignored. Except where noted, the PMIx library will return an error if the specified file20
cannot be found, the caller lacks permissions to read it, or the server specified within the file does21
not respond to or accept the connection — the library will not proceed to check for other22
connection options as the user specified a particular one to use.23

Note that the PMIx implementation may choose to introduce a "delayed connection" protocol24
between steps in the precedence chain - i.e., the library may cycle several times, checking for25
creation of the rendezvous file each time after a delay of some period of time, thereby allowing the26
tool to wait for the server to create the rendezvous file before either returning an error or continuing27
to the next step in the chain.28

• If PMIX_TOOL_ATTACHMENT_FILE is given, then the tool will attempt to read the specified29
file and connect to the server based on the information contained within it. The format of the30
attachment file is identical to the rendezvous files described in earlier in this section. An error31
will be returned if the specified file cannot be found.32

• If PMIX_SERVER_URI or PMIX_TCP_URI is given, then connection will be attempted to the33
server at the specified URI. Note that it is an error for both of these attributes to be specified.34
PMIX_SERVER_URI is the preferred method as it is more generalized — PMIX_TCP_URI is35
provided for those cases where the user specifically wants to use a TCP transport for the36
connection and wants to error out if one isn’t available or cannot be used.37

CHAPTER 17. TOOLS AND DEBUGGERS 411

• If PMIX_SERVER_PIDINFO was provided, then the tool will search for a rendezvous file1
created by a PMIx server of the given PID in the PMIX_SERVER_TMPDIR directory. An error2
will be returned if a matching rendezvous file cannot be found.3

• If PMIX_SERVER_NSPACE is given, then the tool will search for a rendezvous file created by a4
PMIx server of the given namespace in the PMIX_SERVER_TMPDIR directory. An error will5
be returned if a matching rendezvous file cannot be found.6

• If PMIX_CONNECT_TO_SYSTEM is given, then the tool will search for a system-level7
rendezvous file created by a PMIx server in the PMIX_SYSTEM_TMPDIR directory. An error8
will be returned if a matching rendezvous file cannot be found.9

• If PMIX_CONNECT_SYSTEM_FIRST is given, then the tool will look for a system-level10
rendezvous file created by a PMIx server in the PMIX_SYSTEM_TMPDIR directory. If found,11
then the tool will attempt to connect to it. In this case, no error will be returned if the rendezvous12
file is not found or connection is refused — the PMIx library will silently continue to the next13
option.14

• By default, the tool will search the directory tree under the PMIX_SERVER_TMPDIR directory15
for rendezvous files of PMIx servers, attempting to connect to each it finds until one accepts the16
connection. If no rendezvous files are found, or all contacted servers refuse connection, then the17
PMIx library will return an error. No "delayed connection" protocols may be utilized at this point.18

Note that there can be multiple local servers - one from the system plus others from launchers and19
active jobs. The PMIx tool connection search method is not guaranteed to pick a particular server20
unless directed to do so. Tools can obtain a list of servers available on their local node using the21
PMIx_Query_info APIs with the PMIX_QUERY_AVAIL_SERVERS key.22

17.1.2 Connecting to a remote server23

Connecting to remote servers is complicated due to the lack of access to the previously-described24
rendezvous files. Two methods are required to be supported, both based on the caller having explicit25
knowledge of either connection information or a path to a local file that contains such information:26

• If PMIX_TOOL_ATTACHMENT_FILE is given, then the tool will attempt to read the specified27
file and connect to the server based on the information contained within it. The format of the28
attachment file is identical to the rendezvous files described in earlier in this section.29

• If PMIX_SERVER_URI or PMIX_TCP_URI is given, then connection will be attempted to the30
server at the specified URI. Note that it is an error for both of these attributes to be specified.31
PMIX_SERVER_URI is the preferred method as it is more generalized — PMIX_TCP_URI is32
provided for those cases where the user specifically wants to use the TCP transport for the33
connection and wants to error out if it isn’t available or cannot be used.34

Additional methods may be provided by particular PMIx implementations. For example, the tool35
may use ssh to launch a probe process onto the remote node so that the probe can search the36
PMIX_SYSTEM_TMPDIR and PMIX_SERVER_TMPDIR directories for rendezvous files,37

412 PMIx Standard – Version 4.1 – October 2021

relaying the discovered information back to the requesting tool. If sufficient information is found to1
allow for remote connection, then the tool can use it to establish the connection. Note that this2
method is not required to be supported - it is provided here as an example and left to the discretion3
of PMIx implementors.4

17.1.3 Attaching to running jobs5

When attaching to a running job, the tool must connect to a PMIx server that is associated with that6
job - e.g., a server residing in the host environment’s local daemon that spawned one or more of the7
job’s processes, or the server residing in the launcher that is overseeing the job. Identifying an8
appropriate server can sometimes prove challenging, particularly in an environment where multiple9
job launchers may be in operation, possibly under control of the same user.10

In cases where the user has only the one job of interest in operation on the local node (e.g., when11
engaged in an interactive session on the node from which the launcher was executed), the normal12
rendezvous file discovery method can often be used to successfully connect to the target job, even13
in the presence of jobs executed by other users. The permissions and security authorizations can, in14
many cases, reliably ensure that only the one connection can be made. However, this is not15
guaranteed in all cases.16

The most common method, therefore, for attaching to a running job is to specify either the PID of17
the job’s launcher or the namespace of the launcher’s job (note that the launcher’s namespace18
frequently differs from the namespace of the job it has launched). Unless the application processes19
themselves act as PMIx servers, connection must be to the servers in the daemons that oversee the20
application. This is typically either daemons specifically started by the job’s launcher process, or21
daemons belonging to the host environment, that are responsible for starting the application’s22
processes and oversee their execution.23

Identifying the correct PID or namespace can be accomplished in a variety of ways, including:24

• Using typical OS or host environment tools to obtain a listing of active jobs and perusing those to25
find the target launcher.26

• Using a PMIx-based tool attached to a system-level server to query the active jobs and their27
command lines, thereby identifying the application of interest and its associated launcher.28

• Manually recording the PID of the launcher upon starting the job.29

Once the namespace and/or PID of the target server has been identified, either of the previous30
methods can be used to connect to it.31

17.1.4 Tool initialization attributes32

The following attributes are passed to the PMIx_tool_init API for use when initializing the33
PMIx library.34

PMIX_TOOL_NSPACE "pmix.tool.nspace" (char*)35

CHAPTER 17. TOOLS AND DEBUGGERS 413

Name of the namespace to use for this tool.1
PMIX_TOOL_RANK "pmix.tool.rank" (uint32_t)2

Rank of this tool.3
PMIX_LAUNCHER "pmix.tool.launcher" (bool)4

Tool is a launcher and needs to create rendezvous files.5

17.1.5 Tool initialization environmental variables6

The following environmental variables are used during PMIx_tool_init and7
PMIx_server_init to control various rendezvous-related operations when the process is8
started manually (e.g., on a command line) or by a fork/exec-like operation.9

PMIX_LAUNCHER_RNDZ_URI10
The spawned tool is to be connected back to the spawning tool using the given URI so that11
the spawning tool can provide directives (e.g., a PMIx_Spawn command) to it.12

PMIX_LAUNCHER_RNDZ_FILE13
If the specified file does not exist, this variable contains the absolute path of the file where14
the spawned tool is to store its connection information so that the spawning tool can connect15
to it. If the file does exist, it contains the information specifying the server to which the16
spawned tool is to connect.17

PMIX_KEEPALIVE_PIPE18
An integer read-end of a POSIX pipe that the tool should monitor for closure, thereby19
indicating that the parent tool has terminated. Used. for example, when a tool fork/exec’s an20
intermediate launcher that should self-terminate if the originating tool exits.21

Note that these environmental variables should be cleared from the environment after use and prior22
to forking child processes to avoid potentially unexpected behavior by the child processes.23

17.1.6 Tool connection attributes24

These attributes are defined to assist PMIx-enabled tools to connect with a PMIx server by passing25
them into either the PMIx_tool_init or the PMIx_tool_attach_to_server APIs - thus,26
they are not typically accessed via the PMIx_Get API.27

PMIX_SERVER_PIDINFO "pmix.srvr.pidinfo" (pid_t)28
PID of the target PMIx server for a tool.29

PMIX_CONNECT_TO_SYSTEM "pmix.cnct.sys" (bool)30
The requester requires that a connection be made only to a local, system-level PMIx server.31

PMIX_CONNECT_SYSTEM_FIRST "pmix.cnct.sys.first" (bool)32
Preferentially, look for a system-level PMIx server first.33

PMIX_SERVER_URI "pmix.srvr.uri" (char*)34
URI of the PMIx server to be contacted.35

PMIX_SERVER_HOSTNAME "pmix.srvr.host" (char*)36
Host where target PMIx server is located.37

PMIX_CONNECT_MAX_RETRIES "pmix.tool.mretries" (uint32_t)38

414 PMIx Standard – Version 4.1 – October 2021

Maximum number of times to try to connect to PMIx server - the default value is1
implementation specific.2

PMIX_CONNECT_RETRY_DELAY "pmix.tool.retry" (uint32_t)3
Time in seconds between connection attempts to a PMIx server - the default value is4
implementation specific.5

PMIX_TOOL_DO_NOT_CONNECT "pmix.tool.nocon" (bool)6
The tool wants to use internal PMIx support, but does not want to connect to a PMIx server.7

PMIX_TOOL_CONNECT_OPTIONAL "pmix.tool.conopt" (bool)8
The tool shall connect to a server if available, but otherwise continue to operate unconnected.9

PMIX_TOOL_ATTACHMENT_FILE "pmix.tool.attach" (char*)10
Pathname of file containing connection information to be used for attaching to a specific11
server.12

PMIX_LAUNCHER_RENDEZVOUS_FILE "pmix.tool.lncrnd" (char*)13
Pathname of file where the launcher is to store its connection information so that the14
spawning tool can connect to it.15

PMIX_PRIMARY_SERVER "pmix.pri.srvr" (bool)16
The server to which the tool is connecting shall be designated the primary server once17
connection has been accomplished.18

PMIX_WAIT_FOR_CONNECTION "pmix.wait.conn" (bool)19
Wait until the specified process has connected to the requesting tool or server, or the20
operation times out (if the PMIX_TIMEOUT directive is included in the request).21

17.2 Launching Applications with Tools22

Tool-directed launches require that the tool include the PMIX_LAUNCHER attribute when calling23
PMIx_tool_init. Two launch modes are supported:24

• Direct launch where the tool itself is directly responsible for launching all processes, including25
debugger daemons, using either the RM or daemons launched by the tool – i.e., there is no26
intermediate launcher (IL) such as mpiexec. The case where the tool is self-contained (i.e., uses27
its own daemons without interacting with an external entity such as the RM) lies outside the28
scope of this Standard; and29

• Indirect launch where all processes are started via an IL such as mpiexec and the tool itself is not30
directly involved in launching application processes or debugger daemons. Note that the IL may31
utilize the RM to launch processes and/or daemons under the tool’s direction.32

Either of these methods can be executed interactively or by a batch script. Note that not all host33
environments may support the direct launch method.34

17.2.1 Direct launch35

In the direct-launch use-case (Fig. 17.2), the tool itself performs the role of the launcher. Once36
invoked, the tool connects to an appropriate PMIx server - e.g., a system-level server hosted by the37

CHAPTER 17. TOOLS AND DEBUGGERS 415

RM. The tool is responsible for assembling the description of the application to be launched (e.g.,1
by parsing its command line) into a spawn request containing an array of pmix_app_t2
applications and pmix_info_t job-level information. An allocation of resources may or may not3
have been made in advance – if not, then the spawn request must include allocation request4
information.5

Figure 17.2.: Direct Launch

In addition to the attributes described in PMIx_Spawn, the tool may optionally wish to include the6
following tool-specific attributes in the job_info argument to that API (the debugger-related7
attributes are discussed in more detail in Section 17.4):8

• PMIX_FWD_STDIN "pmix.fwd.stdin" (pmix_rank_t)9
The requester intends to push information from its stdin to the indicated process. The10
local spawn agent should, therefore, ensure that the stdin channel to that process11
remains available. A rank of PMIX_RANK_WILDCARD indicates that all processes in the12
spawned job are potential recipients. The requester will issue a call to PMIx_IOF_push13
to initiate the actual forwarding of information to specified targets - this attribute simply14
requests that the IL retain the ability to forward the information to the designated targets.15

• PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)16
Requests that the ability to forward the stdout of the spawned processes be maintained.17
The requester will issue a call to PMIx_IOF_pull to specify the callback function and18
other options for delivery of the forwarded output.19

• PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)20
Requests that the ability to forward the stderr of the spawned processes be maintained.21
The requester will issue a call to PMIx_IOF_pull to specify the callback function and22

416 PMIx Standard – Version 4.1 – October 2021

other options for delivery of the forwarded output.1

• PMIX_FWD_STDDIAG "pmix.fwd.stddiag" (bool)2
Requests that the ability to forward the diagnostic channel (if it exists) of the spawned3
processes be maintained. The requester will issue a call to PMIx_IOF_pull to specify4
the callback function and other options for delivery of the forwarded output.5

• PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)6
The requested size of the PMIx server cache in bytes for each specified channel. By7
default, the server is allowed (but not required) to drop all bytes received beyond the max8
size.9

• PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)10
In an overflow situation, the PMIx server is to drop the oldest bytes to make room in the11
cache.12

• PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)13
In an overflow situation, the PMIx server is to drop any new bytes received until room14
becomes available in the cache (default).15

• PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)16
Requests that IO on the specified channel(s) be aggregated in the PMIx tool library until17
the specified number of bytes is collected to avoid being called every time a block of IO18
arrives. The PMIx tool library will execute the callback and reset the collection counter19
whenever the specified number of bytes becomes available. Any remaining buffered data20
will be flushed to the callback upon a call to deregister the respective channel.21

• PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)22
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering23
size, this prevents IO from being held indefinitely while waiting for another payload to24
arrive.25

• PMIX_IOF_TAG_OUTPUT "pmix.iof.tag" (bool)26
Requests that output be prefixed with the nspace,rank of the source and a string27
identifying the channel (stdout, stderr, etc.).28

• PMIX_IOF_TIMESTAMP_OUTPUT "pmix.iof.ts" (bool)29
Requests that output be marked with the time at which the data was received by the tool -30
note that this will differ from the time at which the data was collected from the source.31

• PMIX_IOF_XML_OUTPUT "pmix.iof.xml" (bool)32
Requests that output be formatted in XML.33

• PMIX_NOHUP "pmix.nohup" (bool)34
Any processes started on behalf of the calling tool (or the specified namespace, if such35
specification is included in the list of attributes) should continue after the tool disconnects36
from its server.37

• PMIX_NOTIFY_JOB_EVENTS "pmix.note.jev" (bool)38

CHAPTER 17. TOOLS AND DEBUGGERS 417

Requests that the launcher generate the PMIX_EVENT_JOB_START,1
PMIX_LAUNCH_COMPLETE, and PMIX_EVENT_JOB_END events. Each event is to2
include at least the namespace of the corresponding job and a3
PMIX_EVENT_TIMESTAMP indicating the time the event occurred. Note that the4
requester must register for these individual events, or capture and process them by5
registering a default event handler instead of individual handlers and then process the6
events based on the returned status code. Another common method is to register one event7
handler for all job-related events, with a separate handler for non-job events - see8
PMIx_Register_event_handler for details.9

• PMIX_NOTIFY_COMPLETION "pmix.notecomp" (bool)10
Requests that the launcher generate the PMIX_EVENT_JOB_END event for normal or11
abnormal termination of the spawned job. The event shall include the returned status code12
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)13
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a14
PMIX_EVENT_TIMESTAMP indicating the time the termination occurred. Note that the15
requester must register for the event or capture and process it within a default event16
handler.17

• PMIX_LOG_JOB_EVENTS "pmix.log.jev" (bool)18
Requests that the launcher log the PMIX_EVENT_JOB_START,19
PMIX_LAUNCH_COMPLETE, and PMIX_EVENT_JOB_END events using PMIx_Log,20
subject to the logging attributes of Section 12.4.3.21

• PMIX_LOG_COMPLETION "pmix.logcomp" (bool)22
Requests that the launcher log the PMIX_EVENT_JOB_END event for normal or23
abnormal termination of the spawned job using PMIx_Log, subject to the logging24
attributes of Section 12.4.3. The event shall include the returned status code25
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)26
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a27
PMIX_EVENT_TIMESTAMP indicating the time the termination occurred.28

• PMIX_DEBUG_STOP_ON_EXEC "pmix.dbg.exec" (bool)29
Included in either the pmix_info_t array in a pmix_app_t description (if the30
directive applies only to that application) or in the job_info array if it applies to all31
applications in the given spawn request. Indicates that the application is being spawned32
under a debugger, and that the local launch agent is to pause the resulting application33
processes on first instruction for debugger attach. The launcher (RM or IL) is to generate34
the PMIX_LAUNCH_COMPLETE event when all processes are stopped at the exec point.35

• PMIX_DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)36
Included in either the pmix_info_t array in a pmix_app_t description (if the37
directive applies only to that application) or in the job_info array if it applies to all38
applications in the given spawn request. Indicates that the specified application is being39
spawned under a debugger. The PMIx client library in each resulting application process40
shall notify its PMIx server that it is pausing and then pause during PMIx_Init of the41

418 PMIx Standard – Version 4.1 – October 2021

spawned processes until either released by debugger modification of an appropriate1
variable or receipt of the PMIX_DEBUGGER_RELEASE event. The launcher (RM or IL)2
is responsible for generating the PMIX_DEBUG_WAITING_FOR_NOTIFY event when3
all processes have reached the pause point.4

• PMIX_DEBUG_WAIT_FOR_NOTIFY "pmix.dbg.notify" (bool)5
Included in either the pmix_info_t array in a pmix_app_t description (if the6
directive applies only to that application) or in the job_info array if it applies to all7
applications in the given spawn request. Indicates that the specified application is being8
spawned under a debugger. The resulting application processes are to notify their server9
(by generating the PMIX_DEBUG_WAITING_FOR_NOTIFY event) when they reach10
some application-determined location and pause at that point until either released by11
debugger modification of an appropriate variable or receipt of the12
PMIX_DEBUGGER_RELEASE event. The launcher (RM or IL) is responsible for13
generating the PMIX_DEBUG_WAITING_FOR_NOTIFY event when all processes have14
indicated they are at the pause point.15

The tool then calls the PMIx_Spawn API so that the PMIx library can communicate the spawn16
request to the server.17

Upon receipt, the PMIx server library passes the spawn request to its host RM daemon for18
processing via the pmix_server_spawn_fn_t server module function. If this callback was not19
provided, then the PMIx server library will return the PMIX_ERR_NOT_SUPPORTED error status.20

If an allocation must be made, then the host environment is responsible for communicating the21
request to its associated scheduler. Once resources are available, the host environment initiates the22
launch process to start the job. The host environment must parse the spawn request for relevant23
directives, returning an error if any required directive cannot be supported. Optional directives may24
be ignored if they cannot be supported.25

Any error while executing the spawn request must be returned by PMIx_Spawn to the requester.26
Once the spawn request has succeeded in starting the specified processes, the request will return27
PMIX_SUCCESS back to the requester along with the namespace of the started job. Upon28
termination of the spawned job, the host environment must generate a PMIX_EVENT_JOB_END29
event for normal or abnormal termination if requested to do so. The event shall include:30

• the returned status code (PMIX_JOB_TERM_STATUS) for the corresponding job;31

• the identity (PMIX_PROCID) and exit status (PMIX_EXIT_CODE) of the first failed process, if32
applicable;33

• a PMIX_EVENT_TIMESTAMP indicating the time the termination occurred; plus34

• any other info provided by the host environment.35

17.2.2 Indirect launch36

In the indirect launch use-case, the application processes are started via an intermediate launcher37
(e.g., mpiexec) that is itself started by the tool (see Fig 17.3). Thus, at a high level, this is a38

CHAPTER 17. TOOLS AND DEBUGGERS 419

two-stage launch procedure to start the application: the tool (henceforth referred to as the initiator)1
starts the IL, which then starts the applications. In practice, additional steps may be involved if, for2
example, the IL starts its own daemons to shepherd the application processes.3

A key aspect of this operational mode is the avoidance of any requirement that the initiator parse4
and/or understand the command line of the IL. Instead, the indirect launch procedure supports5
either of two methods: one where the initiator assumes responsibility for parsing its command line6
to obtain the application as well as the IL and its options, and another where the initiator defers the7
command line parsing to the IL. Both of these methods are described in the following sections.8

17.2.2.1 Initiator-based command line parsing9

This method utilizes a first call to the PMIx_Spawn API to start the IL itself, and then uses a10
second call to PMIx_Spawn to request that the IL spawn the actual job. The burden of analyzing11
the initial command line to separately identify the IL’s command line from the application itself12
falls upon the initiator. An example is provided below:13

$ initiator --launcher "mpiexec --verbose" -n 3 ./app <appoptions>14

The initiator spawns the IL using the same procedure for launching an application - it begins by15
assembling the description of the IL into a spawn request containing an array of pmix_app_t and16
pmix_info_t job-level information. Note that this step does not include any information17
regarding the application itself - only the launcher is included. In addition, the initiator must18
include the rendezvous URI in the environment so the IL knows how to connect back to it.19

An allocation of resources for the IL itself may or may not be required – if it is, then the allocation20
must be made in advance or the spawn request must include allocation request information.21

(a) Indirect Launch - Start (b) Indirect Launch - End

Figure 17.3.: Indirect launch procedure

The initiator may optionally wish to include the following tool-specific attributes in the job_info22
argument to PMIx_Spawn - note that these attributes refer only to the behavior of the IL itself and23
not the eventual job to be launched:24

• PMIX_FWD_STDIN "pmix.fwd.stdin" (pmix_rank_t)25

420 PMIx Standard – Version 4.1 – October 2021

The requester intends to push information from its stdin to the indicated process. The1
local spawn agent should, therefore, ensure that the stdin channel to that process2
remains available. A rank of PMIX_RANK_WILDCARD indicates that all processes in the3
spawned job are potential recipients. The requester will issue a call to PMIx_IOF_push4
to initiate the actual forwarding of information to specified targets - this attribute simply5
requests that the IL retain the ability to forward the information to the designated targets.6

• PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)7
Requests that the ability to forward the stdout of the spawned processes be maintained.8
The requester will issue a call to PMIx_IOF_pull to specify the callback function and9
other options for delivery of the forwarded output.10

• PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)11
Requests that the ability to forward the stderr of the spawned processes be maintained.12
The requester will issue a call to PMIx_IOF_pull to specify the callback function and13
other options for delivery of the forwarded output.14

• PMIX_FWD_STDDIAG "pmix.fwd.stddiag" (bool)15
Requests that the ability to forward the diagnostic channel (if it exists) of the spawned16
processes be maintained. The requester will issue a call to PMIx_IOF_pull to specify17
the callback function and other options for delivery of the forwarded output.18

• PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)19
The requested size of the PMIx server cache in bytes for each specified channel. By20
default, the server is allowed (but not required) to drop all bytes received beyond the max21
size.22

• PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)23
In an overflow situation, the PMIx server is to drop the oldest bytes to make room in the24
cache.25

• PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)26
In an overflow situation, the PMIx server is to drop any new bytes received until room27
becomes available in the cache (default).28

• PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)29
Requests that IO on the specified channel(s) be aggregated in the PMIx tool library until30
the specified number of bytes is collected to avoid being called every time a block of IO31
arrives. The PMIx tool library will execute the callback and reset the collection counter32
whenever the specified number of bytes becomes available. Any remaining buffered data33
will be flushed to the callback upon a call to deregister the respective channel.34

• PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)35
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering36
size, this prevents IO from being held indefinitely while waiting for another payload to37
arrive.38

• PMIX_IOF_TAG_OUTPUT "pmix.iof.tag" (bool)39

CHAPTER 17. TOOLS AND DEBUGGERS 421

Requests that output be prefixed with the nspace,rank of the source and a string1
identifying the channel (stdout, stderr, etc.).2

• PMIX_IOF_TIMESTAMP_OUTPUT "pmix.iof.ts" (bool)3
Requests that output be marked with the time at which the data was received by the tool -4
note that this will differ from the time at which the data was collected from the source.5

• PMIX_IOF_XML_OUTPUT "pmix.iof.xml" (bool)6
Requests that output be formatted in XML.7

• PMIX_NOHUP "pmix.nohup" (bool)8
Any processes started on behalf of the calling tool (or the specified namespace, if such9
specification is included in the list of attributes) should continue after the tool disconnects10
from its server.11

• PMIX_LAUNCHER_DAEMON "pmix.lnch.dmn" (char*)12
Path to executable that is to be used as the backend daemon for the launcher. This replaces13
the launcher’s own daemon with the specified executable. Note that the user is therefore14
responsible for ensuring compatibility of the specified executable and the host launcher.15

• PMIX_FORKEXEC_AGENT "pmix.frkex.agnt" (char*)16
Path to executable that the launcher’s backend daemons are to fork/exec in place of the17
actual application processes. The fork/exec agent shall connect back (as a PMIx tool) to18
the launcher’s daemon to receive its spawn instructions, and is responsible for starting the19
actual application process it replaced. See Section 17.4.3 for details.20

• PMIX_EXEC_AGENT "pmix.exec.agnt" (char*)21
Path to executable that the launcher’s backend daemons are to fork/exec in place of the22
actual application processes. The launcher’s daemon shall pass the full command line of23
the application on the command line of the exec agent, which shall not connect back to the24
launcher’s daemon. The exec agent is responsible for exec’ing the specified application25
process in its own place. See Section 17.4.3 for details.26

• PMIX_DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)27
Included in either the pmix_info_t array in a pmix_app_t description (if the28
directive applies only to that application) or in the job_info array if it applies to all29
applications in the given spawn request. Indicates that the specified application is being30
spawned under a debugger. The PMIx client library in each resulting application process31
shall notify its PMIx server that it is pausing and then pause during PMIx_Init of the32
spawned processes until either released by debugger modification of an appropriate33
variable or receipt of the PMIX_DEBUGGER_RELEASE event. The launcher (RM or IL)34
is responsible for generating the PMIX_DEBUG_WAITING_FOR_NOTIFY event when35
all processes have reached the pause point. In this context, the initiator is directing the IL36
to stop in PMIx_tool_init. This gives the initiator a chance to connect to the IL and37
register for events prior to the IL launching the application job.38

and the following optional variables in the environment of the IL:39

422 PMIx Standard – Version 4.1 – October 2021

• PMIX_KEEPALIVE_PIPE - an integer read-end of a POSIX pipe that the IL should monitor1
for closure, thereby indicating that the initiator has terminated.2

The initiator then calls the PMIx_Spawn API so that the PMIx library can either communicate the3
spawn request to a server (if connected to one), or locally spawn the IL itself if not connected to a4
server and the PMIx implementation includes self-spawn support. PMIx_Spawn shall return an5
error if neither of these conditions is met.6

When initialized by the IL, the PMIx_tool_init function must perform two operations:7

• check for the presence of the PMIX_KEEPALIVE_PIPE environmental variable - if provided,8
then the library shall monitor the pipe for closure, providing a PMIX_EVENT_JOB_END event9
when the pipe closes (thereby indicating the termination of the initiator). The IL should register10
for this event after completing PMIx_tool_init - the initiator’s namespace can be obtained11
via a call to PMIx_Get with the PMIX_PARENT_ID key. Note that this feature will only be12
available if the spawned IL is local to the initiator.13

• check for the PMIX_LAUNCHER_RNDZ_URI environmental parameter - if found, the library14
shall connect back to the initiator using the PMIx_tool_attach_to_server API,15
retaining its current server as its primary server.16

Once the IL completes PMIx_tool_init, it must register for the PMIX_EVENT_JOB_END17
termination event and then idle until receiving that event - either directly from the initiator, or from18
the PMIx library upon detecting closure of the keepalive pipe. The IL idles in the intervening time19
as it is solely acting as a relay (if connected to a server that is performing the actual application20
launch) or as a PMIx server responding to spawn requests.21

Upon return from the PMIx_Spawn API, the initiator should set the spawned IL as its primary22
server using the PMIx_tool_set_server API with the nspace returned by PMIx_Spawn and23
any valid rank (a rank of zero would ordinarily be used as only one IL process is typically started).24
It is advisable to set a connection timeout value when calling this function. The initiator can then25
proceed to spawn the actual application according to the procedure described in Section 17.2.1.26

17.2.2.2 IL-based command line parsing27

In the case where the initiator cannot parse its command line, it must defer that parsing to the IL. A28
common example is provided below:29

$ initiator mpiexec --verbose -n 3 ./app <appoptions>30

For this situation, the initiator proceeds as above with only one notable exception: instead of calling31
PMIx_Spawn twice (once to start the IL and again to start the actual application), the initiator only32
calls that API one time:33

• The app parameter passed to the spawn request contains only one pmix_app_t that contains34
the entire command line, including both launcher and application(s).35

• The launcher executable must be in the app.cmd field and in app.argv[0], with the rest of the36
command line appended to the app.argv array.37

CHAPTER 17. TOOLS AND DEBUGGERS 423

• Any job-level directives for the IL itself (e.g., PMIX_FORKEXEC_AGENT or1
PMIX_FWD_STDOUT) are included in the job_info parameter of the call to PMIx_Spawn.2

• The job-level directives must include both the PMIX_SPAWN_TOOL attribute indicating that the3
initiator is spawning a tool, and the PMIX_DEBUG_STOP_IN_INIT attribute directing the IL4
to stop during the call to PMIx_tool_init. The latter directive allows the initiator to connect5
to the IL prior to launch of the application.6

• The PMIX_LAUNCHER_RNDZ_URI and PMIX_KEEPALIVE_PIPE environmental variables7
are provided to the launcher in its environment via the app.env field.8

• The IL must use PMIx_Get with the PMIX_LAUNCH_DIRECTIVES key to obtain any9
initiator-provided directives (e.g., PMIX_DEBUG_STOP_IN_INIT or10
PMIX_DEBUG_STOP_ON_EXEC) aimed at the application(s) it will spawn.11

Upon return from PMIx_Spawn, the initiator must:12

• use the PMIx_tool_set_server API to set the spawned IL as its primary server13

• register with that server to receive the PMIX_LAUNCH_COMPLETE event. This allows the14
initiator to know when the IL has completed launch of the application15

• release the IL from its "hold" in PMIx_tool_init by issuing the16
PMIX_DEBUGGER_RELEASE event, specifying the IL as the custom range. Upon receipt of the17
event, the IL is free to parse its command line, apply any provided directives, and execute the18
application.19

Upon receipt of the PMIX_LAUNCH_COMPLETE event, the initiator should register to receive20
notification of completion of the returned namespace of the application. Receipt of the21
PMIX_EVENT_JOB_END event provides a signal that the initiator may itself terminate.22

17.2.3 Tool spawn-related attributes23

Tools are free to utilize the spawn attributes available to applications (see 11.2.4) when24
constructing a spawn request, but can also utilize the following attributes that are specific to25
tool-based spawn operations:26

PMIX_FWD_STDIN "pmix.fwd.stdin" (pmix_rank_t)27
The requester intends to push information from its stdin to the indicated process. The28
local spawn agent should, therefore, ensure that the stdin channel to that process remains29
available. A rank of PMIX_RANK_WILDCARD indicates that all processes in the spawned30
job are potential recipients. The requester will issue a call to PMIx_IOF_push to initiate31
the actual forwarding of information to specified targets - this attribute simply requests that32
the IL retain the ability to forward the information to the designated targets.33

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)34
Requests that the ability to forward the stdout of the spawned processes be maintained.35
The requester will issue a call to PMIx_IOF_pull to specify the callback function and36
other options for delivery of the forwarded output.37

424 PMIx Standard – Version 4.1 – October 2021

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)1
Requests that the ability to forward the stderr of the spawned processes be maintained.2
The requester will issue a call to PMIx_IOF_pull to specify the callback function and3
other options for delivery of the forwarded output.4

PMIX_FWD_STDDIAG "pmix.fwd.stddiag" (bool)5
Requests that the ability to forward the diagnostic channel (if it exists) of the spawned6
processes be maintained. The requester will issue a call to PMIx_IOF_pull to specify the7
callback function and other options for delivery of the forwarded output.8

PMIX_NOHUP "pmix.nohup" (bool)9
Any processes started on behalf of the calling tool (or the specified namespace, if such10
specification is included in the list of attributes) should continue after the tool disconnects11
from its server.12

PMIX_LAUNCHER_DAEMON "pmix.lnch.dmn" (char*)13
Path to executable that is to be used as the backend daemon for the launcher. This replaces14
the launcher’s own daemon with the specified executable. Note that the user is therefore15
responsible for ensuring compatibility of the specified executable and the host launcher.16

PMIX_FORKEXEC_AGENT "pmix.frkex.agnt" (char*)17
Path to executable that the launcher’s backend daemons are to fork/exec in place of the actual18
application processes. The fork/exec agent shall connect back (as a PMIx tool) to the19
launcher’s daemon to receive its spawn instructions, and is responsible for starting the actual20
application process it replaced. See Section 17.4.3 for details.21

PMIX_EXEC_AGENT "pmix.exec.agnt" (char*)22
Path to executable that the launcher’s backend daemons are to fork/exec in place of the actual23
application processes. The launcher’s daemon shall pass the full command line of the24
application on the command line of the exec agent, which shall not connect back to the25
launcher’s daemon. The exec agent is responsible for exec’ing the specified application26
process in its own place. See Section 17.4.3 for details.27

PMIX_LAUNCH_DIRECTIVES "pmix.lnch.dirs" (pmix_data_array_t*)28
Array of pmix_info_t containing directives for the launcher - a convenience attribute for29
retrieving all directives with a single call to PMIx_Get.30

17.2.4 Tool rendezvous-related events31

The following constants refer to events relating to rendezvous of a tool and launcher during spawn32
of the IL.33

PMIX_LAUNCHER_READY An application launcher (e.g., mpiexec) shall generate this event to34
signal a tool that started it that the launcher is ready to receive directives/commands (e.g.,35
PMIx_Spawn). This is only used when the initiator is able to parse the command line itself,36
or the launcher is started as a persistent Distributed Virtual Machine (DVM).37

17.3 IO Forwarding38

Underlying the operation of many tools is a common need to forward stdin from the tool to39
targeted processes, and to return stdout/stderr from those processes to the tool (e.g., for40

CHAPTER 17. TOOLS AND DEBUGGERS 425

display on the user’s console). Historically, each tool developer was responsible for creating their1
own IO forwarding subsystem. However, the introduction of PMIx as a standard mechanism for2
interacting between applications and the host environment has made it possible to relieve tool3
developers of this burden.4

This section defines functions by which tools can request forwarding of input/output to/from other5
processes and serves as a design guide to:6

• provide tool developers with an overview of the expected behavior of the PMIx IO forwarding7
support;8

• guide RM vendors regarding roles and responsibilities expected of the RM to support IO9
forwarding; and10

• provide insight into the thinking of the PMIx community behind the definition of the PMIx IO11
forwarding APIs.12

Note that the forwarding of IO via PMIx requires that both the host environment and the tool13
support PMIx, but does not impose any similar requirements on the application itself.14

The responsibility of the host environment in forwarding of IO falls into the following areas:15

• Capturing output from specified processes.16

• Forwarding that output to the host of the PMIx server library that requested it.17

• Delivering that payload to the PMIx server library via the PMIx_server_IOF_deliver API18
for final dispatch to the requesting tool.19

It is the responsibility of the PMIx library to buffer, format, and deliver the payload to the20
requesting client. This may require caching of output until a forwarding registration is received, as21
governed by the corresponding IO forwarding attributes of Section 17.3.5 that are supported by the22
implementation.23

17.3.1 Forwarding stdout/stderr24

At an appropriate point in its operation (usually during startup), a tool will utilize the25
PMIx_tool_init function to connect to a PMIx server. The PMIx server can be hosted by an26
RM daemon or could be embedded in a library-provided starter program such as mpiexec - in terms27
of IO forwarding, the operations remain the same either way. For purposes of this discussion, we28
will assume the server is in an RM daemon and that the application processes are directly launched29
by the RM, as shown in Fig 17.4.30

Once the tool has connected to the target server, it can request that processes be spawned on its31
behalf or that output from a specified set of existing processes in a given executing application be32
forwarded to it. Requests to spawn processes should include the PMIX_FWD_STDIN,33
PMIX_FWD_STDOUT, and/or PMIX_FWD_STDERR attributes if the tool intends to request that34
the corresponding streams be forwarded at some point during execution.35

426 PMIx Standard – Version 4.1 – October 2021

Figure 17.4.: Forwarding stdout/stderr

Note that requests to capture output from existing processes via the PMIx_IOF_pull API, and/or1
to forward input to specified processes via the PMIx_IOF_push API, can only succeed if the2
required attributes to retain that ability were passed when the corresponding job was spawned. The3
host is required to return an error for all such requests in cases where this condition is not met.4

Two modes are supported when requesting that the host forward standard output/error via the5
PMIx_IOF_pull API - these can be controlled by including one of the following attributes in the6
info array passed to that function:7

• PMIX_IOF_COPY "pmix.iof.cpy" (bool)8
Requests that the host environment deliver a copy of the specified output stream(s) to the9
tool, letting the stream(s) continue to also be delivered to the default location. This allows10
the tool to tap into the output stream(s) without redirecting it from its current final11
destination.12

• PMIX_IOF_REDIRECT "pmix.iof.redir" (bool)13
Requests that the host environment intercept the specified output stream(s) and deliver it14
to the requesting tool instead of its current final destination. This might be used, for15
example, during a debugging procedure to avoid injection of debugger-related output into16
the application’s results file. The original output stream(s) destination is restored upon17
termination of the tool. This is the default mode of operation.18

When requesting to forward stdout/stderr, the tool can specify several formatting options to19
be used on the resulting output stream. These include:20

• PMIX_IOF_TAG_OUTPUT "pmix.iof.tag" (bool)21

CHAPTER 17. TOOLS AND DEBUGGERS 427

Requests that output be prefixed with the nspace,rank of the source and a string1
identifying the channel (stdout, stderr, etc.).2

• PMIX_IOF_TIMESTAMP_OUTPUT "pmix.iof.ts" (bool)3
Requests that output be marked with the time at which the data was received by the tool -4
note that this will differ from the time at which the data was collected from the source.5

• PMIX_IOF_XML_OUTPUT "pmix.iof.xml" (bool)6
Requests that output be formatted in XML.7

The PMIx client in the tool is responsible for formatting the output stream. Note that output from8
multiple processes will often be interleaved due to variations in arrival time - ordering of output is9
not guaranteed across processes and/or nodes.10

17.3.2 Forwarding stdin11

A tool is not necessarily a child of the RM as it may have been started directly from the command12
line. Thus, provision must be made for the tool to collect its stdin and pass it to the host RM (via13
the PMIx server) for forwarding. Two methods of support for forwarding of stdin are defined:14

Figure 17.5.: Forwarding stdin

• internal collection by the PMIx tool library itself. This is requested via the15
PMIX_IOF_PUSH_STDIN attribute in the PMIx_IOF_push call. When this mode is16
selected, the tool library begins collecting all stdin data and internally passing it to the local17

428 PMIx Standard – Version 4.1 – October 2021

server for distribution to the specified target processes. All collected data is sent to the same1
targets until stdin is closed, or a subsequent call to PMIx_IOF_push is made that includes2
the PMIX_IOF_COMPLETE attribute indicating that forwarding of stdin is to be terminated.3

• external collection directly by the tool. It is assumed that the tool will provide its own4
code/mechanism for collecting its stdin as the tool developers may choose to insert some5
filtering and/or editing of the stream prior to forwarding it. In addition, the tool can directly6
control the targets for the data on a per-call basis – i.e., each call to PMIx_IOF_push can7
specify its own set of target recipients for that particular blob of data. Thus, this method provides8
maximum flexibility, but requires that the tool developer provide their own code to capture9
stdin.10

Note that it is the responsibility of the RM to forward data to the host where the target process(es)11
are executing, and for the host daemon on that node to deliver the data to the stdin of target12
process(es). The PMIx server on the remote node is not involved in this process. Systems that do13
not support forwarding of stdin shall return PMIX_ERR_NOT_SUPPORTED in response to a14
forwarding request.15

Advice to users

Scalable forwarding of stdin represents a significant challenge. Most environments will at least16
handle a send-to-1 model whereby stdin is forwarded to a single identified process, and17
occasionally an additional send-to-all model where stdin is forwarded to all processes in the18
application. Users are advised to check their host environment for available support as the19
distribution method lies outside the scope of PMIx.20

Stdin buffering by the RM and/or PMIx library can be problematic. If any targeted recipient is21
slow reading data (or decides never to read data), then the data must be buffered in some22
intermediate daemon or the PMIx tool library itself. Thus, piping a large amount of data into23
stdin can result in a very large memory footprint in the system management stack or the tool.24
Best practices, therefore, typically focus on reading of input files by application processes as25
opposed to forwarding of stdin.26

17.3.3 IO Forwarding Channels27

PMIx v3.0 The pmix_iof_channel_t structure is a uint16_t type that defines a set of bit-mask flags28
for specifying IO forwarding channels. These can be bitwise OR’d together to reference multiple29
channels.30

PMIX_FWD_NO_CHANNELS Forward no channels.31
PMIX_FWD_STDIN_CHANNEL Forward stdin.32
PMIX_FWD_STDOUT_CHANNEL Forward stdout.33
PMIX_FWD_STDERR_CHANNEL Forward stderr.34
PMIX_FWD_STDDIAG_CHANNEL Forward stddiag, if available.35
PMIX_FWD_ALL_CHANNELS Forward all available channels.36

CHAPTER 17. TOOLS AND DEBUGGERS 429

17.3.4 IO Forwarding constants1

PMIX_ERR_IOF_FAILURE An IO forwarding operation failed - the affected channel will be2
included in the notification.3

PMIX_ERR_IOF_COMPLETE IO forwarding of the standard input for this process has4
completed - i.e., the stdin file descriptor has closed.5

17.3.5 IO Forwarding attributes6

The following attributes are used to control IO forwarding behavior at the request of tools. Use of7
the attributes is optional - any option not provided will revert to some implementation-specific8
value.9

PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)10
The requested size of the PMIx server cache in bytes for each specified channel. By default,11
the server is allowed (but not required) to drop all bytes received beyond the max size.12

PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)13
In an overflow situation, the PMIx server is to drop the oldest bytes to make room in the14
cache.15

PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)16
In an overflow situation, the PMIx server is to drop any new bytes received until room17
becomes available in the cache (default).18

PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)19
Requests that IO on the specified channel(s) be aggregated in the PMIx tool library until the20
specified number of bytes is collected to avoid being called every time a block of IO arrives.21
The PMIx tool library will execute the callback and reset the collection counter whenever the22
specified number of bytes becomes available. Any remaining buffered data will be flushed to23
the callback upon a call to deregister the respective channel.24

PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)25
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering26
size, this prevents IO from being held indefinitely while waiting for another payload to arrive.27

PMIX_IOF_COMPLETE "pmix.iof.cmp" (bool)28
Indicates that the specified IO channel has been closed by the source.29

PMIX_IOF_TAG_OUTPUT "pmix.iof.tag" (bool)30
Requests that output be prefixed with the nspace,rank of the source and a string identifying31
the channel (stdout, stderr, etc.).32

PMIX_IOF_TIMESTAMP_OUTPUT "pmix.iof.ts" (bool)33
Requests that output be marked with the time at which the data was received by the tool -34
note that this will differ from the time at which the data was collected from the source.35

PMIX_IOF_XML_OUTPUT "pmix.iof.xml" (bool)36
Requests that output be formatted in XML.37

PMIX_IOF_PUSH_STDIN "pmix.iof.stdin" (bool)38

430 PMIx Standard – Version 4.1 – October 2021

Requests that the PMIx library collect the stdin of the requester and forward it to the1
processes specified in the PMIx_IOF_push call. All collected data is sent to the same2
targets until stdin is closed, or a subsequent call to PMIx_IOF_push is made that3
includes the PMIX_IOF_COMPLETE attribute indicating that forwarding of stdin is to be4
terminated.5

PMIX_IOF_COPY "pmix.iof.cpy" (bool)6
Requests that the host environment deliver a copy of the specified output stream(s) to the7
tool, letting the stream(s) continue to also be delivered to the default location. This allows the8
tool to tap into the output stream(s) without redirecting it from its current final destination.9

PMIX_IOF_REDIRECT "pmix.iof.redir" (bool)10
Requests that the host environment intercept the specified output stream(s) and deliver it to11
the requesting tool instead of its current final destination. This might be used, for example,12
during a debugging procedure to avoid injection of debugger-related output into the13
application’s results file. The original output stream(s) destination is restored upon14
termination of the tool.15

17.4 Debugger Support16

Debuggers are a class of tool that merits special consideration due to their particular requirements17
for access to job-related information and control over process execution. The primary advantage of18
using PMIx for these purposes lies in the resulting portability of the debugger as it can be used with19
any system and/or programming model that supports PMIx. In addition to the general tool support20
described above, debugger support includes:21

• Co-location, co-spawn, and communication wireup of debugger daemons for scalable launch.22
This includes providing debugger daemons with endpoint connection information across the23
daemons themselves.24

• Identification of the job that is to be debugged. This includes automatically providing debugger25
daemons with the job-level information for their target job.26

Debuggers can also utilize the options in the PMIx_Spawn API to exercise a degree of control27
over spawned jobs for debugging purposes. For example, a debugger can utilize the environmental28
parameter attributes of Section 11.2.4 to request LD_PRELOAD of a memory interceptor library29
prior to spawning an application process, or interject a custom fork/exec agent to shepherd the30
application process.31

A key element of the debugging process is the ability of the debugger to require that processes32
pause at some well-defined point, thereby providing the debugger with an opportunity to attach and33
control execution. The actual implementation of the pause lies outside the scope of PMIx - it34
typically requires either the launcher or the application itself to implement the necessary35
operations. However, PMIx does provide several standard attributes by which the debugger can36
specify the desired attach point:37

• PMIX_DEBUG_STOP_ON_EXEC "pmix.dbg.exec" (bool)38

CHAPTER 17. TOOLS AND DEBUGGERS 431

Included in either the pmix_info_t array in a pmix_app_t description (if the1
directive applies only to that application) or in the job_info array if it applies to all2
applications in the given spawn request. Indicates that the application is being spawned3
under a debugger, and that the local launch agent is to pause the resulting application4
processes on first instruction for debugger attach. The launcher (RM or IL) is to generate5
the PMIX_LAUNCH_COMPLETE event when all processes are stopped at the exec point.6
Launchers that cannot support this operation shall return an error from the PMIx_Spawn7
API if this behavior is requested.8

• PMIX_DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)9
Included in either the pmix_info_t array in a pmix_app_t description (if the10
directive applies only to that application) or in the job_info array if it applies to all11
applications in the given spawn request. Indicates that the specified application is being12
spawned under a debugger. The PMIx client library in each resulting application process13
shall notify its PMIx server that it is pausing and then pause during PMIx_Init of the14
spawned processes until either released by debugger modification of an appropriate15
variable or receipt of the PMIX_DEBUGGER_RELEASE event. The launcher (RM or IL)16
is responsible for generating the PMIX_DEBUG_WAITING_FOR_NOTIFY event when17
all processes have reached the pause point. PMIx implementations that do not support18
this operation shall return an error from PMIx_Init if this behavior is requested.19
Launchers that cannot support this operation shall return an error from the PMIx_Spawn20
API if this behavior is requested.21

• PMIX_DEBUG_WAIT_FOR_NOTIFY "pmix.dbg.notify" (bool)22
Included in either the pmix_info_t array in a pmix_app_t description (if the23
directive applies only to that application) or in the job_info array if it applies to all24
applications in the given spawn request. Indicates that the specified application is being25
spawned under a debugger. The resulting application processes are to notify their server26
(by generating the PMIX_DEBUG_WAITING_FOR_NOTIFY event) when they reach27
some application-determined location and pause at that point until either released by28
debugger modification of an appropriate variable or receipt of the29
PMIX_DEBUGGER_RELEASE event. The launcher (RM or IL) is responsible for30
generating the PMIX_DEBUG_WAITING_FOR_NOTIFY event when all processes have31
indicated they are at the pause point. Launchers that cannot support this operation shall32
return an error from the PMIx_Spawn API if this behavior is requested.33

Note that there is no mechanism by which the PMIx library or the launcher can verify that34
an application will recognize and support the PMIX_DEBUG_WAIT_FOR_NOTIFY35
request. Debuggers utilizing this attachment method must, therefore, be prepared to deal36
with the case where the application fails to recognize and/or honor the request.37

If the PMIx implementation and/or the host environment support it, debuggers can utilize the38
PMIx_Query_info API to determine which features are available via the39
PMIX_QUERY_ATTRIBUTE_SUPPORT attribute.40

• PMIX_DEBUG_STOP_IN_INIT by checking PMIX_CLIENT_ATTRIBUTES for the41

432 PMIx Standard – Version 4.1 – October 2021

PMIx_Init API.1

• PMIX_DEBUG_STOP_ON_EXEC by checking PMIX_HOST_ATTRIBUTES for the2
PMIx_Spawn API.3

The target namespace or process (as given by the debugger in the spawn request) shall be provided4
to each daemon in its job-level information via the PMIX_DEBUG_TARGET attribute. Debugger5
daemons are responsible for self-determining their specific target process(es), and can then utilize6
the PMIx_Query_info API to obtain information about them (see Fig 17.6) - e.g., to obtain the7
PIDs of the local processes to which they need to attach. PMIx provides the8
pmix_proc_info_t structure for organizing information about a process’ PID, location, and9
state. Debuggers may request information on a given job at two levels:10

• PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)11
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each12
process in the specified namespace, ordered by process job rank. REQUIRED13
QUALIFIER: PMIX_NSPACE indicating the namespace whose process table is being14
queried.15

• PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)16
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each17
process in the specified namespace executing on the same node as the requester, ordered18
by process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the19
namespace whose local process table is being queried. OPTIONAL QUALIFIER:20
PMIX_HOSTNAME indicating the host whose local process table is being queried. By21
default, the query assumes that the host upon which the request was made is to be used.22

Note that the information provided in the returned proctable represents a snapshot in time. Any23
process, regardless of role (tool, client, debugger, etc.) can obtain the proctable of a given24
namespace so long as it has the system-determined authorizations to do so. The list of namespaces25
available via a given server can be obtained using the PMIx_Query_info API with the26
PMIX_QUERY_NAMESPACES key.27

Debugger daemons can be started in two ways - either at the same time the application is spawned,28
or separately at a later time.29

17.4.1 Co-Location of Debugger Daemons30

Debugging operations typically require the use of daemons that are located on the same node as the31
processes they are attempting to debug. The debugger can, of course, specify its own mapping32
method when issuing its spawn request or utilize its own internal launcher to place the daemons.33
However, when attaching to a running job, PMIx provides debuggers with a simplified method for34
requesting that the launcher associated with the job co-locate the required daemons. Debuggers can35
request co-location of their daemons by adding the following attributes to the PMIx_Spawn used36
to spawn them:37

CHAPTER 17. TOOLS AND DEBUGGERS 433

Figure 17.6.: Obtaining proctables

• PMIX_DEBUGGER_DAEMONS - indicating that the launcher is being asked to spawn debugger1
daemons.2

• PMIX_DEBUG_TARGET - indicating the job or process that is to be debugged. This allows the3
launcher to identify the processes to be debugged and their location. Note that the debugger job4
shall be assigned its own namespace (different from that of the job it is being spawned to debug)5
and each daemon will be assigned a unique rank within that namespace.6

• PMIX_DEBUG_DAEMONS_PER_PROC - specifies the number of debugger daemons to be7
co-located per target process.8

• PMIX_DEBUG_DAEMONS_PER_NODE - specifies the number of debugger daemons to be9
co-located per node where at least one target process is executing.10

Debugger daemons spawned in this manner shall be provided with the typical PMIx information for11
their own job plus the target they are to debug via the PMIX_DEBUG_TARGET attribute. The12
debugger daemons spawned on a given node are responsible for self-determining their specific13
target process(es) - e.g., by referencing their own PMIX_LOCAL_RANK in the daemon debugger14
job versus the corresponding PMIX_LOCAL_RANK of the target processes on the node. Note that15
the debugger will be attaching to the application processes at some arbitrary point in the16
application’s execution unless some method for pausing the application (e.g., by providing a PMIx17
directive at time of launch, or via a tool using the PMIx_Job_control API to direct that the18
process be paused) has been employed.19

Advice to users

Note that the tool calling PMIx_Spawn to request the launch of the debugger daemons is not20
included in the resulting job - i.e., the debugger daemons do not inherit the namespace of the tool.21

434 PMIx Standard – Version 4.1 – October 2021

Thus, collective operations and notifications that target the debugger daemon job will not include1
the tool unless the namespace/rank of the tool is explicitly included.2

17.4.2 Co-Spawn of Debugger Daemons3

In the case where a job is being spawned under the control of a debugger, PMIx provides a shortcut4
method for spawning the debugger’s daemons in parallel with the job. This requires that the5
debugger be specified as one of the pmix_app_t in the same spawn command used to start the6
job. The debugger application must include at least the PMIX_DEBUGGER_DAEMONS attribute7
identifying itself as a debugger, and may utilize either a mapping option to direct daemon8
placement, or one of the PMIX_DEBUG_DAEMONS_PER_PROC or9
PMIX_DEBUG_DAEMONS_PER_NODE directives.10

The launcher must not include information regarding the debugger daemons in the job-level info11
provided to the rest of the pmix_app_ts, nor in any calculated rank values (e.g.,12
PMIX_NODE_RANK or PMIX_LOCAL_RANK) in those applications. The debugger job is to be13
assigned its own namespace and each debugger daemon shall receive a unique rank - i.e., the14
debugger application is to be treated as a completely separate PMIx job that is simply being started15
in parallel with the user’s applications. The launcher is free to implement the launch as a single16
operation for both the applications and debugger daemons (preferred), or may stage the launches as17
required. The launcher shall not return from the PMIx_Spawn command until all included18
applications and the debugger daemons have been started.19

Attributes that apply to both the debugger daemons and the application processes can be specified20
in the job_info array passed into the PMIx_Spawn API. Attributes that either (a) apply solely to21
the debugger daemons or to one of the applications included in the spawn request, or (b) have22
values that differ from those provided in the job_info array, should be specified in the info array in23
the corresponding pmix_app_t. Note that PMIx job pause attributes (e.g.,24
PMIX_DEBUG_STOP_IN_INIT) do not apply to applications (defined in pmix_app_t) where25
the PMIX_DEBUGGER_DAEMONS attribute is set to true.26

Debugger daemons spawned in this manner shall be provided with the typical PMIx information for27
their own job plus the target they are to debug via the PMIX_DEBUG_TARGET attribute. The28
debugger daemons spawned on a given node are responsible for self-determining their specific29
target process(es) - e.g., by referencing their own PMIX_LOCAL_RANK in the daemon debugger30
job versus the corresponding PMIX_LOCAL_RANK of the target processes on the node.31

CHAPTER 17. TOOLS AND DEBUGGERS 435

Advice to users

Note that the tool calling PMIx_Spawn to request the launch of the debugger daemons is not1
included in the resulting job - i.e., the debugger daemons do not inherit the namespace of the tool.2
Thus, collective operations and notifications that target the debugger daemon job will not include3
the tool unless the namespace/rank of the tool is explicitly included.4

The PMIx_Spawn API only supports the return of a single namespace resulting from the spawn5
request. In the case where the debugger job is co-spawned with the application, the spawn function6
shall return the namespace of the application and not the debugger job. Tools requiring access to7
the namespace of the debugger job must query the launcher for the spawned namespaces to find the8
one belonging to the debugger job.9

17.4.3 Debugger Agents10

Individual debuggers may, depending upon implementation, require varying degrees of control over11
each application process when it is started beyond those available via directives to PMIx_Spawn.12
PMIx offers two mechanisms to help provide a means of meeting these needs.13

The PMIX_FORKEXEC_AGENT attribute allows the debugger to specify an intermediate process14
(the Fork/Exec Agent (FEA)) for spawning the actual application process (see Fig. 17.7a), thereby15
interposing the debugger daemon between the application process and the launcher’s daemon.16
Instead of spawning the application process, the launcher will spawn the FEA, which will connect17
back to the PMIx server as a tool to obtain the spawn description of the application process it is to18
spawn. The PMIx server in the launcher’s daemon shall not register the fork/exec agent as a local19
client process, nor shall the launcher include the agent in any of the job-level values (e.g.,20
PMIX_RANK within the job or PMIX_LOCAL_RANK on the node) provided to the application21
process. The launcher shall treat the collection of FEAs as a debugger job equivalent to the22
co-spawn use-case described in Section 17.4.2.23

In contrast, the PMIX_EXEC_AGENT attribute (Fig. 17.7b) allows the debugger to specify an agent24
that will perform some preparatory actions and then exec the eventual application process to replace25
itself. In this scenario, the exec agent is provided with the application process’ command line as26
arguments on its command line (e.g., "./agent appargv[0] appargv[1]") and does not27
connect back to the host’s PMIx server. It is the responsibility of the exec agent to properly separate28
its own command line arguments (if any) from the application description.29

436 PMIx Standard – Version 4.1 – October 2021

(a) Fork/exec agent (b) Exec agent

Figure 17.7.: Intermediate agents

17.4.4 Tracking the job lifecycle1

There are a wide range of events a debugger can register to receive, but three are specifically2
defined for tracking a job’s progress:3

• PMIX_EVENT_JOB_START indicates when the first process in the job has been spawned.4

• PMIX_LAUNCH_COMPLETE indicates when the last process in the job has been spawned.5

• PMIX_EVENT_JOB_END indicates that all processes have terminated.6

Each event is required to contain at least the namespace of the corresponding job and a7
PMIX_EVENT_TIMESTAMP indicating the time the event occurred. In addition, the8
PMIX_EVENT_JOB_END event shall contain the returned status code9
(PMIX_JOB_TERM_STATUS) for the corresponding job, plus the identity (PMIX_PROCID) and10
exit status (PMIX_EXIT_CODE) of the first failed process, if applicable. Generation of these11
events by the launcher can be requested by including the PMIX_NOTIFY_JOB_EVENTS12
attributes in the spawn request. Note that these events can be logged via the PMIx_Log API by13
including the PMIX_LOG_JOB_EVENTS attribute - this can be done either in conjunction with14
generated events, or in place of them.15

Alternatively, if the debugger or tool solely wants to be alerted to job termination, then including16
the PMIX_NOTIFY_COMPLETION attribute in the spawn request would suffice. This attribute17
directs the launcher to provide just the PMIX_EVENT_JOB_END event. Note that this event can be18
logged via the PMIx_Log API by including the PMIX_LOG_COMPLETION attribute - this can be19
done either in conjunction with the generated event, or in place of it.20

Advice to users

The PMIx server is required to cache events in order to avoid race conditions - e.g., when a tool is21
trying to register for the PMIX_EVENT_JOB_END event from a very short-lived job. Accordingly,22
registering for job-related events can result in receiving events relating to jobs other than the one of23
interest.24

CHAPTER 17. TOOLS AND DEBUGGERS 437

Users are therefore advised to specify the job whose events are of interest by including the1
PMIX_EVENT_AFFECTED_PROC or PMIX_EVENT_AFFECTED_PROCS attribute in the info2
array passed to the PMIx_Register_event_handler API.3

17.4.4.1 Job lifecycle events4

PMIX_EVENT_JOB_START The first process in the job has been spawned - includes5
PMIX_EVENT_TIMESTAMP as well as the PMIX_JOBID and/or PMIX_NSPACE of the job.6

PMIX_LAUNCH_COMPLETE All processes in the job have been spawned - includes7
PMIX_EVENT_TIMESTAMP as well as the PMIX_JOBID and/or PMIX_NSPACE of the job.8

PMIX_EVENT_JOB_END All processes in the job have terminated - includes9
PMIX_EVENT_TIMESTAMP when the last process terminated as well as the PMIX_JOBID10
and/or PMIX_NSPACE of the job.11

PMIX_EVENT_SESSION_START The allocation has been instantiated and is ready for use -12
includes PMIX_EVENT_TIMESTAMP as well as the PMIX_SESSION_ID of the allocation.13
This event is issued after any system-controlled prologue has completed, but before any14
user-specified actions are taken.15

PMIX_EVENT_SESSION_END The allocation has terminated - includes16
PMIX_EVENT_TIMESTAMP as well as the PMIX_SESSION_ID of the allocation. This17
event is issued after any user-specified actions have completed, but before any18
system-controlled epilogue is performed.19

The following events relate to processes within a job:20

PMIX_EVENT_PROC_TERMINATED The specified process(es) terminated - normal or21
abnormal termination will be indicated by the PMIX_PROC_TERM_STATUS in the info22
array of the notification. Note that a request for individual process events can generate a23
significant event volume from large-scale jobs.24

PMIX_ERR_PROC_TERM_WO_SYNC Process terminated without calling PMIx_Finalize,25
or was a member of an assemblage formed via PMIx_Connect and terminated or called26
PMIx_Finalize without first calling PMIx_Disconnect (or its non-blocking form)27
from that assemblage.28

The following constants may be included via the PMIX_JOB_TERM_STATUS attributed in the29
info array in the PMIX_EVENT_JOB_END event notification to provide more detailed information30
regarding the reason for job abnormal termination:31

PMIX_ERR_JOB_CANCELED The job was canceled by the host environment.32
PMIX_ERR_JOB_ABORTED One or more processes in the job called abort, causing the job to33

be terminated.34
PMIX_ERR_JOB_KILLED_BY_CMD The job was killed by user command.35
PMIX_ERR_JOB_ABORTED_BY_SIG The job was aborted due to receipt of an error signal36

(e.g., SIGKILL).37

438 PMIx Standard – Version 4.1 – October 2021

PMIX_ERR_JOB_TERM_WO_SYNC The job was terminated due to at least one process1
terminating without calling PMIx_Finalize, or was a member of an assemblage formed2
via PMIx_Connect and terminated or called PMIx_Finalize without first calling3
PMIx_Disconnect (or its non-blocking form) from that assemblage.4

PMIX_ERR_JOB_SENSOR_BOUND_EXCEEDED The job was terminated due to one or more5
processes exceeding a specified sensor limit.6

PMIX_ERR_JOB_NON_ZERO_TERM The job was terminated due to one or more processes7
exiting with a non-zero status.8

PMIX_ERR_JOB_ABORTED_BY_SYS_EVENT The job was aborted due to receipt of a9
system event.10

17.4.4.2 Job lifecycle attributes11

PMIX_JOB_TERM_STATUS "pmix.job.term.status" (pmix_status_t)12
Status returned by job upon its termination. The status will be communicated as part of a13
PMIx event payload provided by the host environment upon termination of a job. Note that14
generation of the PMIX_EVENT_JOB_END event is optional and host environments may15
choose to provide it only upon request.16

PMIX_PROC_STATE_STATUS "pmix.proc.state" (pmix_proc_state_t)17
State of the specified process as of the last report - may not be the actual current state based18
on update rate.19

PMIX_PROC_TERM_STATUS "pmix.proc.term.status" (pmix_status_t)20
Status returned by a process upon its termination. The status will be communicated as part21
of a PMIx event payload provided by the host environment upon termination of a process.22
Note that generation of the PMIX_EVENT_PROC_TERMINATED event is optional and host23
environments may choose to provide it only upon request.24

17.4.5 Debugger-related constants25

The following constants are used in events used to coordinate applications and the debuggers26
attaching to them.27

PMIX_DEBUG_WAITING_FOR_NOTIFY All processes in the job to be debugged are paused28
waiting for a release at some point within the application. The application shall remain in a29
paused state awaiting release until receipt of the PMIX_DEBUGGER_RELEASE.30

PMIX_DEBUGGER_RELEASE Release processes that are paused at the31
PMIX_DEBUG_WAIT_FOR_NOTIFY point in the target application.32

17.4.6 Debugger attributes33

Attributes used to assist debuggers - these are values that can either be passed to the PMIx_Spawn34
APIs or accessed by a debugger itself using the PMIx_Get API with the35
PMIX_RANK_WILDCARD rank.36

PMIX_DEBUG_STOP_ON_EXEC "pmix.dbg.exec" (bool)37

CHAPTER 17. TOOLS AND DEBUGGERS 439

Included in either the pmix_info_t array in a pmix_app_t description (if the directive1
applies only to that application) or in the job_info array if it applies to all applications in the2
given spawn request. Indicates that the application is being spawned under a debugger, and3
that the local launch agent is to pause the resulting application processes on first instruction4
for debugger attach. The launcher (RM or IL) is to generate the5
PMIX_LAUNCH_COMPLETE event when all processes are stopped at the exec point.6

PMIX_DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)7
Included in either the pmix_info_t array in a pmix_app_t description (if the directive8
applies only to that application) or in the job_info array if it applies to all applications in the9
given spawn request. Indicates that the specified application is being spawned under a10
debugger. The PMIx client library in each resulting application process shall notify its PMIx11
server that it is pausing and then pause during PMIx_Init of the spawned processes until12
either released by debugger modification of an appropriate variable or receipt of the13
PMIX_DEBUGGER_RELEASE event. The launcher (RM or IL) is responsible for generating14
the PMIX_DEBUG_WAITING_FOR_NOTIFY event when all processes have reached the15
pause point.16

PMIX_DEBUG_WAIT_FOR_NOTIFY "pmix.dbg.notify" (bool)17
Included in either the pmix_info_t array in a pmix_app_t description (if the directive18
applies only to that application) or in the job_info array if it applies to all applications in the19
given spawn request. Indicates that the specified application is being spawned under a20
debugger. The resulting application processes are to notify their server (by generating the21
PMIX_DEBUG_WAITING_FOR_NOTIFY event) when they reach some22
application-determined location and pause at that point until either released by debugger23
modification of an appropriate variable or receipt of the PMIX_DEBUGGER_RELEASE24
event. The launcher (RM or IL) is responsible for generating the25
PMIX_DEBUG_WAITING_FOR_NOTIFY event when all processes have indicated they are26
at the pause point.27

PMIX_DEBUG_TARGET "pmix.dbg.tgt" (pmix_proc_t*)28
Identifier of process(es) to be debugged - a rank of PMIX_RANK_WILDCARD indicates that29
all processes in the specified namespace are to be included.30

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)31
Included in the pmix_info_t array of a pmix_app_t, this attribute declares that the32
application consists of debugger daemons and shall be governed accordingly. If used as the33
sole pmix_app_t in a PMIx_Spawn request, then the PMIX_DEBUG_TARGET attribute34
must also be provided (in either the job_info or in the info array of the pmix_app_t) to35
identify the namespace to be debugged so that the launcher can determine where to place the36
spawned daemons. If neither PMIX_DEBUG_DAEMONS_PER_PROC nor37
PMIX_DEBUG_DAEMONS_PER_NODE is specified, then the launcher shall default to a38
placement policy of one daemon per process in the target job.39

PMIX_COSPAWN_APP "pmix.cospawn" (bool)40
Designated application is to be spawned as a disconnected job - i.e., the launcher shall not41
include the application in any of the job-level values (e.g., PMIX_RANK within the job)42
provided to any other application process generated by the same spawn request. Typically43

440 PMIx Standard – Version 4.1 – October 2021

used to cospawn debugger daemons alongside an application.1
PMIX_DEBUG_DAEMONS_PER_PROC "pmix.dbg.dpproc" (uint16_t)2

Number of debugger daemons to be spawned per application process. The launcher is to pass3
the identifier of the namespace to be debugged by including the PMIX_DEBUG_TARGET4
attribute in the daemon’s job-level information. The debugger daemons spawned on a given5
node are responsible for self-determining their specific target process(es) - e.g., by6
referencing their own PMIX_LOCAL_RANK in the daemon debugger job versus the7
corresponding PMIX_LOCAL_RANK of the target processes on the node.8

PMIX_DEBUG_DAEMONS_PER_NODE "pmix.dbg.dpnd" (uint16_t)9
Number of debugger daemons to be spawned on each node where the target job is executing.10
The launcher is to pass the identifier of the namespace to be debugged by including the11
PMIX_DEBUG_TARGET attribute in the daemon’s job-level information. The debugger12
daemons spawned on a given node are responsible for self-determining their specific target13
process(es) - e.g., by referencing their own PMIX_LOCAL_RANK in the daemon debugger14
job versus the corresponding PMIX_LOCAL_RANK of the target processes on the node.15

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)16
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each17
process in the specified namespace, ordered by process job rank. REQUIRED QUALIFIER:18
PMIX_NSPACE indicating the namespace whose process table is being queried.19

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)20
Returns a (pmix_data_array_t) array of pmix_proc_info_t, one entry for each21
process in the specified namespace executing on the same node as the requester, ordered by22
process job rank. REQUIRED QUALIFIER: PMIX_NSPACE indicating the namespace23
whose local process table is being queried. OPTIONAL QUALIFIER: PMIX_HOSTNAME24
indicating the host whose local process table is being queried. By default, the query assumes25
that the host upon which the request was made is to be used.26

17.5 Tool-Specific APIs27

PMIx-based tools automatically have access to all PMIx client functions. Tools designated as a28
launcher or a server will also have access to all PMIx server functions. There are, however, an29
additional set of functions (described in this section) that are specific to a PMIx tool. Access to30
those functions require use of the tool initialization routine.31

17.5.1 PMIx_tool_init32

Summary33
Initialize the PMIx library for operating as a tool, optionally connecting to a specified PMIx server.34

Format35 PMIx v2.0

CHAPTER 17. TOOLS AND DEBUGGERS 441

C
pmix_status_t1
PMIx_tool_init(pmix_proc_t *proc,2

pmix_info_t info[], size_t ninfo);3

C

INOUT proc4
pmix_proc_t structure (handle)5

IN info6
Array of pmix_info_t structures (array of handles)7

IN ninfo8
Number of elements in the info array (size_t)9

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.10

Required Attributes

The following attributes are required to be supported by all PMIx libraries:11

PMIX_TOOL_NSPACE "pmix.tool.nspace" (char*)12
Name of the namespace to use for this tool.13

PMIX_TOOL_RANK "pmix.tool.rank" (uint32_t)14
Rank of this tool.15

PMIX_TOOL_DO_NOT_CONNECT "pmix.tool.nocon" (bool)16
The tool wants to use internal PMIx support, but does not want to connect to a PMIx server.17

PMIX_TOOL_ATTACHMENT_FILE "pmix.tool.attach" (char*)18
Pathname of file containing connection information to be used for attaching to a specific19
server.20

PMIX_SERVER_URI "pmix.srvr.uri" (char*)21
URI of the PMIx server to be contacted.22

PMIX_TCP_URI "pmix.tcp.uri" (char*)23
The URI of the PMIx server to connect to, or a file name containing it in the form of24
file:<name of file containing it>.25

PMIX_SERVER_PIDINFO "pmix.srvr.pidinfo" (pid_t)26
PID of the target PMIx server for a tool.27

PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)28
Name of the namespace to use for this PMIx server.29

PMIX_CONNECT_TO_SYSTEM "pmix.cnct.sys" (bool)30
The requester requires that a connection be made only to a local, system-level PMIx server.31

PMIX_CONNECT_SYSTEM_FIRST "pmix.cnct.sys.first" (bool)32

442 PMIx Standard – Version 4.1 – October 2021

Preferentially, look for a system-level PMIx server first.1

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:2

PMIX_CONNECT_RETRY_DELAY "pmix.tool.retry" (uint32_t)3
Time in seconds between connection attempts to a PMIx server - the default value is4
implementation specific.5

PMIX_CONNECT_MAX_RETRIES "pmix.tool.mretries" (uint32_t)6
Maximum number of times to try to connect to PMIx server - the default value is7
implementation specific.8

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)9
POSIX mode_t (9 bits valid). If the library supports socket connections, this attribute may10
be supported for setting the socket mode.11

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)12
If provided, directs that the TCP URI be reported and indicates the desired method of13
reporting: ’-’ for stdout, ’+’ for stderr, or filename. If the library supports TCP socket14
connections, this attribute may be supported for reporting the URI.15

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)16
Comma-delimited list of devices and/or CIDR notation to include when establishing the17
TCP connection. If the library supports TCP socket connections, this attribute may be18
supported for specifying the interfaces to be used.19

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)20
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the21
TCP connection. If the library supports TCP socket connections, this attribute may be22
supported for specifying the interfaces that are not to be used.23

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)24
The IPv4 port to be used.. If the library supports IPV4 connections, this attribute may be25
supported for specifying the port to be used.26

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)27
The IPv6 port to be used. If the library supports IPV6 connections, this attribute may be28
supported for specifying the port to be used.29

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)30
Set to true to disable IPv4 family of addresses. If the library supports IPV4 connections,31
this attribute may be supported for disabling it.32

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)33
Set to true to disable IPv6 family of addresses. If the library supports IPV6 connections,34
this attribute may be supported for disabling it.35

CHAPTER 17. TOOLS AND DEBUGGERS 443

PMIX_EXTERNAL_PROGRESS "pmix.evext" (bool)1
The host shall progress the PMIx library via calls to PMIx_Progress2

PMIX_EVENT_BASE "pmix.evbase" (void*)3
Pointer to an event_base to use in place of the internal progress thread. All PMIx library4
events are to be assigned to the provided event base. The event base must be compatible with5
the event library used by the PMIx implementation - e.g., either both the host and PMIx6
library must use libevent, or both must use libev. Cross-matches are unlikely to work and7
should be avoided - it is the responsibility of the host to ensure that the PMIx8
implementation supports (and was built with) the appropriate event library.9

Description10
Initialize the PMIx tool, returning the process identifier assigned to this tool in the provided11
pmix_proc_t struct. The info array is used to pass user requests pertaining to the initialization12
and subsequent operations. Passing a NULL value for the array pointer is supported if no directives13
are desired.14

If called with the PMIX_TOOL_DO_NOT_CONNECT attribute, the PMIx tool library will fully15
initialize but not attempt to connect to a PMIx server. The tool can connect to a server at a later16
point in time, if desired, by calling the PMIx_tool_attach_to_server function. If provided,17
the proc structure will be set to a zero-length namespace and a rank of PMIX_RANK_UNDEF unless18
the PMIX_TOOL_NSPACE and PMIX_TOOL_RANK attributes are included in the info array.19

In all other cases, the PMIx tool library will automatically attempt to connect to a PMIx server20
according to the precedence chain described in Section 17.1. If successful, the function will return21
PMIX_SUCCESS and will fill the process structure (if provided) with the assigned namespace and22
rank of the tool. The server to which the tool connects will be designated its primary server. Note23
that each connection attempt in the above precedence chain will retry (with delay between each24
retry) a number of times according to the values of the corresponding attributes.25

Note that the PMIx tool library is referenced counted, and so multiple calls to PMIx_tool_init26
are allowed. If the tool is not connected to any server when this API is called, then the tool will27
attempt to connect to a server unless the PMIX_TOOL_DO_NOT_CONNECT is included in the call28
to API.29

17.5.2 PMIx_tool_finalize30

Summary31
Finalize the PMIx tool library.32

444 PMIx Standard – Version 4.1 – October 2021

Format1 C
pmix_status_t2
PMIx_tool_finalize(void);3

C

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.4

Description5
Finalize the PMIx tool library, closing all existing connections to servers. An error code will be6
returned if, for some reason, a connection cannot be cleanly terminated — in such cases, the7
connection is dropped. Upon detecting loss of the connection, the PMIx server shall cleanup all8
associated records of the tool.9

17.5.3 PMIx_tool_disconnect10

Summary11
Disconnect the PMIx tool from the specified server connection while leaving the tool library12
initialized.13

Format14 PMIx v4.0 C
pmix_status_t15
PMIx_tool_disconnect(const pmix_proc_t *server);16

C

IN server17
pmix_proc_t structure (handle)18

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.19

Description20
Close the current connection to the specified server, if one has been made, while leaving the PMIx21
library initialized. An error code will be returned if, for some reason, the connection cannot be22
cleanly terminated - in this case, the connection is dropped. In either case, the library will remain23
initialized. Upon detecting loss of the connection, the PMIx server shall cleanup all associated24
records of the tool.25

Note that if the server being disconnected is the current primary server, then all operations26
requiring support from a server will return the PMIX_ERR_UNREACH error until the tool either27
designates an existing connection to be the primary server or, if no other connections exist, the tool28
establishes a connection to a PMIx server.29

CHAPTER 17. TOOLS AND DEBUGGERS 445

17.5.4 PMIx_tool_attach_to_server1

Summary2
Establish a connection to a PMIx server.3

Format4 C
pmix_status_t5
PMIx_tool_attach_to_server(pmix_proc_t *proc,6

pmix_proc_t *server,7
pmix_info_t info[],8
size_t ninfo);9

C

INOUT proc10
Pointer to pmix_proc_t structure (handle)11

INOUT server12
Pointer to pmix_proc_t structure (handle)13

IN info14
Array of pmix_info_t structures (array of handles)15

IN ninfo16
Number of elements in the info array (size_t)17

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.18

Required Attributes

The following attributes are required to be supported by all PMIx libraries:19

PMIX_TOOL_ATTACHMENT_FILE "pmix.tool.attach" (char*)20
Pathname of file containing connection information to be used for attaching to a specific21
server.22

PMIX_SERVER_URI "pmix.srvr.uri" (char*)23
URI of the PMIx server to be contacted.24

PMIX_TCP_URI "pmix.tcp.uri" (char*)25
The URI of the PMIx server to connect to, or a file name containing it in the form of26
file:<name of file containing it>.27

PMIX_SERVER_PIDINFO "pmix.srvr.pidinfo" (pid_t)28
PID of the target PMIx server for a tool.29

PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)30
Name of the namespace to use for this PMIx server.31

PMIX_CONNECT_TO_SYSTEM "pmix.cnct.sys" (bool)32
The requester requires that a connection be made only to a local, system-level PMIx server.33

PMIX_CONNECT_SYSTEM_FIRST "pmix.cnct.sys.first" (bool)34

446 PMIx Standard – Version 4.1 – October 2021

Preferentially, look for a system-level PMIx server first.1

PMIX_PRIMARY_SERVER "pmix.pri.srvr" (bool)2
The server to which the tool is connecting shall be designated the primary server once3
connection has been accomplished.4

Description5
Establish a connection to a server. This function can be called at any time by a PMIx tool to create a6
new connection to a server. If a specific server is given and the tool is already attached to it, then7
the API shall return PMIX_SUCCESS without taking any further action. In all other cases, the tool8
will attempt to discover a server using the method described in Section 17.1, ignoring all candidates9
to which it is already connected. The PMIX_ERR_UNREACH error shall be returned if no new10
connection is made.11

The process identifier assigned to this tool is returned in the provided proc structure. Passing a12
value of NULL for the proc parameter is allowed if the user wishes solely to connect to a PMIx13
server and does not require return of the identifier at that time.14

The process identifier of the server to which the tool attached is returned in the server structure.15
Passing a value of NULL for the proc parameter is allowed if the user wishes solely to connect to a16
PMIx server and does not require return of the identifier at that time.17

Note that the PMIX_PRIMARY_SERVER attribute must be included in the info array if the server18
being connected to is to become the primary server, or a call to PMIx_tool_set_server must19
be provided immediately after the call to this function.20

Advice to PMIx library implementers

When a tool connects to a server that is under a different namespace manager (e.g., host RM) from21
the prior server, the namespace in the identifier of the tool must remain unique in the new universe.22
If the namespace of the tool fails to meet this criteria in the new universe, then the new namespace23
manager is required to return an error and the connection attempt must fail.24

Advice to users

Some PMIx implementations may not support connecting to a server that is not under the same25
namespace manager (e.g., host RM) as the server to which the tool is currently connected.26

17.5.5 PMIx_tool_get_servers27

Summary28
Get an array containing the pmix_proc_t process identifiers of all servers to which the tool is29
currently connected.30

CHAPTER 17. TOOLS AND DEBUGGERS 447

Format1 C
pmix_status_t2
PMIx_tool_get_servers(pmix_proc_t *servers[], size_t *nservers);3

C

OUT servers4
Address where the pointer to an array of pmix_proc_t structures shall be returned (handle)5

INOUT nservers6
Address where the number of elements in servers shall be returned (handle)7

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.8

Description9
Return an array containing the pmix_proc_t process identifiers of all servers to which the tool is10
currently connected. The process identifier of the current primary server shall be the first entry in11
the array, with the remaining entries in order of attachment from earliest to most recent.12

17.5.6 PMIx_tool_set_server13

Summary14
Designate a server as the tool’s primary server.15

Format16 PMIx v4.0 C
pmix_status_t17
PMIx_tool_set_server(const pmix_proc_t *server,18

pmix_info_t info[], size_t ninfo);19

C

IN server20
pmix_proc_t structure (handle)21

IN info22
Array of pmix_info_t structures (array of handles)23

IN ninfo24
Number of elements in the info array (size_t)25

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.26

448 PMIx Standard – Version 4.1 – October 2021

Required Attributes

The following attributes are required to be supported by all PMIx libraries:1

PMIX_WAIT_FOR_CONNECTION "pmix.wait.conn" (bool)2
Wait until the specified process has connected to the requesting tool or server, or the3
operation times out (if the PMIX_TIMEOUT directive is included in the request).4

PMIX_TIMEOUT "pmix.timeout" (int)5
Time in seconds before the specified operation should time out (zero indicating infinite) and6
return the PMIX_ERR_TIMEOUT error. Care should be taken to avoid race conditions7
caused by multiple layers (client, server, and host) simultaneously timing the operation.8

Description9
Designate the specified server to be the tool’s primary server for all subsequent API calls.10

17.5.7 PMIx_IOF_pull11

Summary12
Register to receive output forwarded from a set of remote processes.13

Format14 PMIx v3.0 C
pmix_status_t15
PMIx_IOF_pull(const pmix_proc_t procs[], size_t nprocs,16

const pmix_info_t directives[], size_t ndirs,17
pmix_iof_channel_t channel,18
pmix_iof_cbfunc_t cbfunc,19
pmix_hdlr_reg_cbfunc_t regcbfunc,20
void *regcbdata);21

C

IN procs22
Array of proc structures identifying desired source processes (array of handles)23

IN nprocs24
Number of elements in the procs array (integer)25

IN directives26
Array of pmix_info_t structures (array of handles)27

IN ndirs28
Number of elements in the directives array (integer)29

IN channel30
Bitmask of IO channels included in the request (pmix_iof_channel_t)31

IN cbfunc32
Callback function for delivering relevant output (pmix_iof_cbfunc_t function reference)33

CHAPTER 17. TOOLS AND DEBUGGERS 449

IN regcbfunc1
Function to be called when registration is completed (pmix_hdlr_reg_cbfunc_t2
function reference)3

IN regcbdata4
Data to be passed to the regcbfunc callback function (memory reference)5

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant. In the event6
the function returns an error, the regcbfunc will not be called.7

Required Attributes

The following attributes are required for PMIx libraries that support IO forwarding:8

PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)9
The requested size of the PMIx server cache in bytes for each specified channel. By default,10
the server is allowed (but not required) to drop all bytes received beyond the max size.11

PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)12
In an overflow situation, the PMIx server is to drop the oldest bytes to make room in the13
cache.14

PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)15
In an overflow situation, the PMIx server is to drop any new bytes received until room16
becomes available in the cache (default).17

Optional Attributes

The following attributes are optional for PMIx libraries that support IO forwarding:18

PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)19
Requests that IO on the specified channel(s) be aggregated in the PMIx tool library until the20
specified number of bytes is collected to avoid being called every time a block of IO arrives.21
The PMIx tool library will execute the callback and reset the collection counter whenever the22
specified number of bytes becomes available. Any remaining buffered data will be flushed to23
the callback upon a call to deregister the respective channel.24

PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)25
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering26
size, this prevents IO from being held indefinitely while waiting for another payload to27
arrive.28

PMIX_IOF_TAG_OUTPUT "pmix.iof.tag" (bool)29
Requests that output be prefixed with the nspace,rank of the source and a string identifying30
the channel (stdout, stderr, etc.).31

PMIX_IOF_TIMESTAMP_OUTPUT "pmix.iof.ts" (bool)32
Requests that output be marked with the time at which the data was received by the tool -33
note that this will differ from the time at which the data was collected from the source.34

450 PMIx Standard – Version 4.1 – October 2021

PMIX_IOF_XML_OUTPUT "pmix.iof.xml" (bool)1
Requests that output be formatted in XML.2

Description3
Register to receive output forwarded from a set of remote processes.4

Advice to users

Providing a NULL function pointer for the cbfunc parameter will cause output for the indicated5
channels to be written to their corresponding stdout/stderr file descriptors. Use of6
PMIX_RANK_WILDCARD to specify all processes in a given namespace is supported but should be7
used carefully due to bandwidth and memory footprint considerations.8

17.5.8 PMIx_IOF_deregister9

Summary10
Deregister from output forwarded from a set of remote processes.11

Format12 PMIx v3.0 C
pmix_status_t13
PMIx_IOF_deregister(size_t iofhdlr,14

const pmix_info_t directives[], size_t ndirs,15
pmix_op_cbfunc_t cbfunc, void *cbdata);16

C

IN iofhdlr17
Registration number returned from the pmix_hdlr_reg_cbfunc_t callback from the18
call to PMIx_IOF_pull (size_t)19

IN directives20
Array of pmix_info_t structures (array of handles)21

IN ndirs22
Number of elements in the directives array (integer)23

IN cbfunc24
Callback function to be called when deregistration has been completed. (function reference)25

IN cbdata26
Data to be passed to the cbfunc callback function (memory reference)27

Returns one of the following:28

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result29
will be returned in the provided cbfunc. Note that the library must not invoke the callback30
function prior to returning from the API.31

CHAPTER 17. TOOLS AND DEBUGGERS 451

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and1
returned success - the cbfunc will not be called2

• a PMIx error constant indicating either an error in the input or that the request was immediately3
processed and failed - the cbfunc will not be called4

Description5
Deregister from output forwarded from a set of remote processes.6

Advice to PMIx library implementers

Any currently buffered IO should be flushed upon receipt of a deregistration request. All received7
IO after receipt of the request shall be discarded.8

17.5.9 PMIx_IOF_push9

Summary10
Push data collected locally (typically from stdin or a file) to stdin of the target recipients.11

Format12 PMIx v3.0 C
pmix_status_t13
PMIx_IOF_push(const pmix_proc_t targets[], size_t ntargets,14

pmix_byte_object_t *bo,15
const pmix_info_t directives[], size_t ndirs,16
pmix_op_cbfunc_t cbfunc, void *cbdata);17

C

IN targets18
Array of proc structures identifying desired target processes (array of handles)19

IN ntargets20
Number of elements in the targets array (integer)21

IN bo22
Pointer to pmix_byte_object_t containing the payload to be delivered (handle)23

IN directives24
Array of pmix_info_t structures (array of handles)25

IN ndirs26
Number of elements in the directives array (integer)27

IN directives28
Array of pmix_info_t structures (array of handles)29

IN cbfunc30
Callback function to be called when operation has been completed. (pmix_op_cbfunc_t31
function reference)32

452 PMIx Standard – Version 4.1 – October 2021

IN cbdata1
Data to be passed to the cbfunc callback function (memory reference)2

Returns one of the following:3

• PMIX_SUCCESS, indicating that the request is being processed by the host environment - result4
will be returned in the provided cbfunc. Note that the library must not invoke the callback5
function prior to returning from the API.6

• PMIX_OPERATION_SUCCEEDED, indicating that the request was immediately processed and7
returned success - the cbfunc will not be called.8

• a PMIx error constant indicating either an error in the input or that the request was immediately9
processed and failed - the cbfunc will not be called.10

Required Attributes

The following attributes are required for PMIx libraries that support IO forwarding:11

PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)12
The requested size of the PMIx server cache in bytes for each specified channel. By default,13
the server is allowed (but not required) to drop all bytes received beyond the max size.14

PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)15
In an overflow situation, the PMIx server is to drop the oldest bytes to make room in the16
cache.17

PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)18
In an overflow situation, the PMIx server is to drop any new bytes received until room19
becomes available in the cache (default).20

Optional Attributes

The following attributes are optional for PMIx libraries that support IO forwarding:21

PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)22
Requests that IO on the specified channel(s) be aggregated in the PMIx tool library until the23
specified number of bytes is collected to avoid being called every time a block of IO arrives.24
The PMIx tool library will execute the callback and reset the collection counter whenever the25
specified number of bytes becomes available. Any remaining buffered data will be flushed to26
the callback upon a call to deregister the respective channel.27

PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)28
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering29
size, this prevents IO from being held indefinitely while waiting for another payload to30
arrive.31

PMIX_IOF_PUSH_STDIN "pmix.iof.stdin" (bool)32

CHAPTER 17. TOOLS AND DEBUGGERS 453

Requests that the PMIx library collect the stdin of the requester and forward it to the1
processes specified in the PMIx_IOF_push call. All collected data is sent to the same2
targets until stdin is closed, or a subsequent call to PMIx_IOF_push is made that3
includes the PMIX_IOF_COMPLETE attribute indicating that forwarding of stdin is to be4
terminated.5

Description6
Called either to:7

• push data collected by the caller themselves (typically from stdin or a file) to stdin of the8
target recipients;9

• request that the PMIx library automatically collect and push the stdin of the caller to the target10
recipients; or11

• indicate that automatic collection and transmittal of stdin is to stop12

Advice to users

Execution of the cbfunc callback function serves as notice that the PMIx library no longer requires13
the caller to maintain the bo data object - it does not indicate delivery of the payload to the targets.14
Use of PMIX_RANK_WILDCARD to specify all processes in a given namespace is supported but15
should be used carefully due to bandwidth and memory footprint considerations.16

454 PMIx Standard – Version 4.1 – October 2021

CHAPTER 18

Storage Support Definitions

Provisional Distributed and parallel computing systems are increasingly embracing storage hierarchies to meet1
the diverse data management needs of applications and other systems software in a cost-effective2
manner. These hierarchies provide access to a number of distinct storage layers, with each3
potentially composed of different storage hardware (e.g., HDD, SSD, tape, PMEM), deployed at4
different locations (e.g., on-node, on-switch, on-site, WAN), and designed using different storage5
paradigms (e.g., file-based, object-based). Each of these systems offers unique performance and6
usage characteristics that storage system users should carefully consider to ensure the most efficient7
use of storage resources.8

PMIx enables users to better understand storage hierarchies by defining attributes that formalize9
storage system characteristics, state, and other parameters. These attributes can be queried by10
applications, I/O libraries and middleware, and workflow systems to discover available storage11
resources and to inform on which resources are most suitable for different I/O workload12
requirements.13

18.1 Storage support constants14

Provisional The pmix_storage_medium_t is a uint64_t type that defines a set of bit-mask flags for15
specifying different types of storage mediums. These can be bitwise OR’d together to16
accommodate storage systems that mix storage medium types.17

PMIX_STORAGE_MEDIUM_UNKNOWNProvisional The storage medium type is unknown.18

PMIX_STORAGE_MEDIUM_TAPEProvisional The storage system uses tape media.19

PMIX_STORAGE_MEDIUM_HDDProvisional The storage system uses HDDs with traditional SAS, SATA20
interfaces.21

PMIX_STORAGE_MEDIUM_SSDProvisional The storage system uses SSDs with traditional SAS, SATA22
interfaces.23

PMIX_STORAGE_MEDIUM_NVMEProvisional The storage system uses SSDs with NVMe interface.24

PMIX_STORAGE_MEDIUM_PMEMProvisional The storage system uses persistent memory.25

PMIX_STORAGE_MEDIUM_RAMProvisional The storage system is volatile (e.g., tmpfs).26

455

Advice to PMIx library implementers

PMIx implementations should maintain the same ordering for bit-mask values for1
pmix_storage_medium_t struct as provided in this standard, since these constants are ordered2
to provide semantic information that may be of use to PMIx users. Namely,3
pmix_storage_medium_t constants are ordered in terms of increasing medium bandwidth.4

It is further recommended that implementations should try to allocate empty bits in the mask so5
that they can be extended to account for new constant definitions corresponding to new storage6
mediums.7

Provisional The pmix_storage_accessibility_t is a uint64_t type that defines a set of bit-mask8
flags for specifying different levels of storage accessibility (i.e,. from where a storage system may9
be accessed). These can be bitwise OR’d together to accommodate storage systems that are10
accessibile in multiple ways.11

PMIX_STORAGE_ACCESSIBILITY_NODEProvisional The storage system resources are accessible12
within the same node.13

PMIX_STORAGE_ACCESSIBILITY_SESSIONProvisional The storage system resources are accessible14
within the same session.15

PMIX_STORAGE_ACCESSIBILITY_JOBProvisional The storage system resources are accessible16
within the same job.17

PMIX_STORAGE_ACCESSIBILITY_RACKProvisional The storage system resources are accessible18
within the same rack.19

PMIX_STORAGE_ACCESSIBILITY_CLUSTERProvisional The storage system resources are accessible20
within the same cluster.21

PMIX_STORAGE_ACCESSIBILITY_REMOTEProvisional The storage system resources are remote.22
Provisional The pmix_storage_persistence_t type specifies different levels of persistence for a23

particular storage system.24

PMIX_STORAGE_PERSISTENCE_TEMPORARYProvisional Data on the storage system is persisted only25
temporarily (i.e, it does not survive across sessions or node reboots).26

PMIX_STORAGE_PERSISTENCE_NODEProvisional Data on the storage system is persisted on the node.27

PMIX_STORAGE_PERSISTENCE_SESSIONProvisional Data on the storage system is persisted for the28
duration of the session.29

PMIX_STORAGE_PERSISTENCE_JOBProvisional Data on the storage system is persisted for the30
duration of the job.31

PMIX_STORAGE_PERSISTENCE_SCRATCHProvisional Data on the storage system is persisted32
according to scratch storage policies (short-term storage, typically persisted for days to weeks).33

PMIX_STORAGE_PERSISTENCE_PROJECTProvisional Data on the storage system is persisted34
according to project storage policies (long-term storage, typically persisted for the duration of35
a project).36

456 PMIx Standard – Version 4.1 – October 2021

PMIX_STORAGE_PERSISTENCE_ARCHIVE Data on the storage system is persisted1
according to archive storage policies (long-term storage, typically persisted indefinitely).2

The pmix_storage_access_type_t type specifies different storage system access types.3

PMIX_STORAGE_ACCESS_RDProvisional Provide information on storage system read operations.4

PMIX_STORAGE_ACCESS_WRProvisional Provide information on storage system write operations.5

PMIX_STORAGE_ACCESS_RDWRProvisional Provide information on storage system read and write6
operations.7

18.2 Storage support attributes8

The following attributes may be returned in response to queries (e.g., PMIx_Get or9
PMIx_Query_info) made by processes or tools.10

PMIX_STORAGE_ID "pmix.strg.id" (char*)Provisional11
An identifier for the storage system (e.g., lustre-fs1, daos-oss1, home-fs)12

PMIX_STORAGE_PATH "pmix.strg.path" (char*)Provisional13
Mount point path for the storage system (valid only for file-based storage systems)14

PMIX_STORAGE_TYPE "pmix.strg.type" (char*)Provisional15
Type of storage system (i.e., "lustre", "gpfs", "daos", "ext4")16

PMIX_STORAGE_VERSION "pmix.strg.ver" (char*)Provisional17
Version string for the storage system18

PMIX_STORAGE_MEDIUM "pmix.strg.medium" (pmix_storage_medium_t)Provisional19
Types of storage mediums utilized by the storage system (e.g., SSDs, HDDs, tape)20

PMIX_STORAGE_ACCESSIBILITY21
"pmix.strg.access" (pmix_storage_accessibility_t)Provisional22

Accessibility level of the storage system (e.g., within same node, within same session)23
PMIX_STORAGE_PERSISTENCE24
"pmix.strg.persist" (pmix_storage_persistence_t)Provisional25

Persistence level of the storage system (e.g., sratch storage or achive storage)26
PMIX_QUERY_STORAGE_LIST "pmix.strg.list" (char*)Provisional27

Comma-delimited list of storage identifiers (i.e., PMIX_STORAGE_ID types) for available28
storage systems29

PMIX_STORAGE_CAPACITY_LIMIT "pmix.strg.caplim" (double)Provisional30
Overall limit on capacity (in bytes) for the storage system31

PMIX_STORAGE_CAPACITY_USED "pmix.strg.capuse" (double)Provisional32
Overall used capacity (in bytes) for the storage system33

PMIX_STORAGE_OBJECT_LIMIT "pmix.strg.objlim" (uint64_t)Provisional34
Overall limit on number of objects (e.g., inodes) for the storage system35

PMIX_STORAGE_OBJECTS_USED "pmix.strg.objuse" (uint64_t)Provisional36
Overall used number of objects (e.g., inodes) for the storage system37

PMIX_STORAGE_MINIMAL_XFER_SIZE "pmix.strg.minxfer" (double)Provisional38

CHAPTER 18. STORAGE SUPPORT DEFINITIONS 457

Minimal transfer size (in bytes) for the storage system - this is the storage system’s atomic1
unit of transfer (e.g., block size)2

PMIX_STORAGE_SUGGESTED_XFER_SIZE "pmix.strg.sxfer" (double)Provisional3
Suggested transfer size (in bytes) for the storage system4

PMIX_STORAGE_BW_MAX "pmix.strg.bwmax" (double)Provisional5
Maximum bandwidth (in bytes/sec) for storage system - provided as the theoretical6
maximum or the maximum observed bandwidth value7

PMIX_STORAGE_BW_CUR "pmix.strg.bwcur" (double)Provisional8
Observed bandwidth (in bytes/sec) for storage system - provided as a recently observed9
bandwidth value, with the exact measurement interval depending on the storage system10
and/or PMIx library implementation11

PMIX_STORAGE_IOPS_MAX "pmix.strg.iopsmax" (double)Provisional12
Maximum IOPS (in I/O operations per second) for storage system - provided as the13
theoretical maximum or the maximum observed IOPS value14

PMIX_STORAGE_IOPS_CUR "pmix.strg.iopscur" (double)Provisional15
Observed IOPS (in I/O operations per second) for storage system - provided as a recently16
observed IOPS value, with the exact measurement interval depending on the storage system17
and/or PMIx library implementation18

PMIX_STORAGE_ACCESS_TYPE19
"pmix.strg.atype" (pmix_storage_access_type_t)Provisional20

Qualifier describing the type of storage access to return information for (e.g., for qualifying21
PMIX_STORAGE_BW_CUR, PMIX_STORAGE_IOPS_CUR, or22
PMIX_STORAGE_SUGGESTED_XFER_SIZE attributes)23

458 PMIx Standard – Version 4.1 – October 2021

APPENDIX A

Python Bindings

While the PMIx Standard is defined in terms of C-based APIs, there is no intent to limit the use of1
PMIx to that specific language. Support for other languages is captured in the Standard by2
describing their equivalent syntax for the PMIx APIs and native forms for the PMIx datatypes. This3
Appendix specifically deals with Python interfaces, beginning with a review of the PMIx datatypes.4
Support is restricted to Python 3 and above - i.e., the Python bindings do not support Python 2.5

Note: the PMIx APIs have been loosely collected into three Python classes based on their PMIx6
“class” (i.e., client, server, and tool). All processes have access to a basic set of the APIs, and7
therefore those have been included in the “client” class. Servers can utilize any of those functions8
plus a set focused on operations not commonly executed by an application process. Finally, tools9
can also act as servers but have their own initialization function.10

A.1 Design Considerations11

Several issues arose during design of the Python bindings:12

A.1.1 Error Codes vs Python Exceptions13

The C programming language reports errors through the return of the corresponding integer status14
codes. PMIx has defined a range of negative values for this purpose. However, Python has the15
option of raising exceptions that effectively operate as interrupts that can be trapped if the program16
appropriately tests for them. The PMIx Python bindings opted to follow the C-based standard and17
return PMIx status codes in lieu of raising exceptions as this method was considered more18
consistent for those working in both domains.19

A.1.2 Representation of Structured Data20

PMIx utilizes a number of C-language structures to efficiently bundle related information. For21
example, the PMIx process identifier is represented as a struct containing a character array for the22
namespace and a 32-bit unsigned integer for the process rank. There are several options for23
translating such objects to Python – e.g., the PMIx process identifier could be represented as a24
two-element tuple (nspace, rank) or as a dictionary ‘nspace’: name, ‘rank’: 0. Exploration found no25
discernible benefit to either representation, nor was any clearly identifiable rationale developed that26
would lead a user to expect one versus the other for a given PMIx data type. Consistency in the27
translation (i.e., exclusively using tuple or dictionary) appeared to be the most important criterion.28
Hence, the decision was made to express all complex datatypes as Python dictionaries.29

459

A.2 Datatype Definitions1

PMIx defines a number of datatypes comprised of fixed-size character arrays, restricted range2
integers (e.g., uint32_t), and structures. Each datatype is represented by a named unsigned 16-bit3
integer (uint16_t) constant. Users are advised to use the named PMIx constants for indicating4
datatypes instead of integer values to ensure compatibility with future PMIx versions.5

With only a few exceptions, the C-based PMIx datatypes defined in Chapter 3 on page 12 directly6
translate to Python. However, Python lacks the size-specific value definitions of C (e.g., uint8_t)7
and thus some care must be taken to protect against overflow/underflow situations when moving8
between the languages. Python bindings that accept values including PMIx datatypes shall9
therefore have the datatype and associated value checked for compatibility with their PMIx-defined10
equivalents, returning an error if:11

• datatypes not defined by PMIx are encountered12

• provided values fall outside the range of the C-equivalent definition - e.g., if a value identified as13
PMIX_UINT8 lies outside the uint8_trange14

Note that explicit labeling of PMIx data type, even when Python itself doesn’t care, is often15
required for the Python bindings to know how to properly interpret and label the provided value16
when passing it to the PMIx library.17

Table A.1 lists the correspondence between data types in the two languages.18

460 PMIx Standard – Version 4.1 – October 2021

Table A.1.: C-to-Python Datatype Correspondence
C-Definition PMIx Name Python Definition Notes
bool PMIX_BOOL boolean
byte PMIX_BYTE A single element byte

array (i.e., a byte array
of length one)

char* PMIX_STRING string
size_t PMIX_SIZE integer
pid_t PMIX_PID integer value shall be limited to the uint32_t

range
int, int8_t, int16_t,
int32_t, int64_t

PMIX_INT, PMIX_INT8,
PMIX_INT16,
PMIX_INT32, PMIX_INT64

integer value shall be limited to its corresponding
range

uint, uint8_t,
uint16_t, uint32_t,
uint64_t

PMIX_UINT, PMIX_UINT8,
PMIX_UINT16,
PMIX_UINT32,
PMIX_UINT64

integer value shall be limited to its corresponding
range

float, double PMIX_FLOAT,
PMIX_DOUBLE

float value shall be limited to its corresponding
range

struct timeval PMIX_TIMEVAL {’sec’: sec, ’usec’:
microsec}

each field is an integer value

time_t PMIX_TIME integer limited to positive values
pmix_data_type_t PMIX_DATA_TYPE integer value shall be limited to the uint16_t

range
pmix_status_t PMIX_STATUS integer
pmix_key_t N/A string The string’s length shall be limited to one

less than the size of the pmix_key_t
array (to reserve space for the terminating
NULL)

pmix_nspace_t N/A string The string’s length shall be limited to one
less than the size of the pmix_nspace_t
array (to reserve space for the terminating
NULL)

A
PPEN

D
IX

A
.
PY

TH
O
N
BIN

D
IN

G
S

461

Table A.1.: C-to-Python Datatype Correspondence
C-Definition PMIx Name Python Definition Notes
pmix_rank_t PMIX_PROC_RANK integer value shall be limited to the uint32_t

range excepting the reserved values near
UINT32_MAX

pmix_proc_t PMIX_PROC {’nspace’: nspace,
’rank’: rank}

nspace is a Python string and rank is an
integer value. The nspace string’s length
shall be limited to one less than the size of
the pmix_nspace_t array (to reserve
space for the terminating NULL), and the
rank value shall conform to the constraints
associated with pmix_rank_t

pmix_byte_object_t PMIX_BYTE_OBJECT {’bytes’: bytes, ’size’:
size}

bytes is a Python byte array and size is the
integer number of bytes in that array.

pmix_persistence_t PMIX_PERSISTENCE integer value shall be limited to the uint8_t
range

pmix_scope_t PMIX_SCOPE integer value shall be limited to the uint8_t
range

pmix_data_range_t PMIX_RANGE integer value shall be limited to the uint8_t
range

pmix_proc_state_t PMIX_PROC_STATE integer value shall be limited to the uint8_t
range

pmix_proc_info_t PMIX_PROC_INFO {’proc’: {’nspace’:
nspace, ’rank’:
rank}, ’hostname’:
hostname, ’executable’:
executable, ’pid’: pid,
’exitcode’: exitcode,
’state’: state}

proc is a Python proc dictionary;
hostname and executable are Python
strings; and pid, exitcode, and state are
Python integers

462
PM

Ix
Standard

–
Version

4.1
–
O
ctober2021

Table A.1.: C-to-Python Datatype Correspondence
C-Definition PMIx Name Python Definition Notes
pmix_data_array_t PMIX_DATA_ARRAY {’type’: type, ’array’:

array}
type is the PMIx type of object in the array
and array is a Python list containing the
individual array elements. Note that array
can consist of any PMIx types, including
(for example) a Python info object that
itself contains an array value

pmix_info_directives_t PMIX_INFO_DIRECTIVES list list of integer values (defined in Section
3.2.10)

pmix_alloc_directive_t PMIX_ALLOC_DIRECTIVE integer value shall be limited to the uint8_t
range

pmix_iof_channel_t PMIX_IOF_CHANNEL list list of integer values (defined in Section
17.3.3)

pmix_envar_t PMIX_ENVAR {’envar’: envar,
’value’: value,
’separator’: separator}

envar and value are Python strings, and
separator a single-character Python string

pmix_value_t PMIX_VALUE {’value’: value,
’val_type’: type}

type is the PMIx datatype of value, and
value is the associated value expressed
in the appropriate Python form for the
specified datatype

pmix_info_t PMIX_INFO {’key’: key, ’flags’:
flags, value’: value,
’val_type’: type}

key is a Python string key, flags is an
info directives value, type is
the PMIx datatype of value, and value
is the associated value expressed in the
appropriate Python form for the specified
datatype

pmix_pdata_t PMIX_PDATA {’proc’: {’nspace’:
nspace, ’rank’: rank},
’key’: key, ’value’:
value, ’val_type’: type}

proc is a Python proc dictionary;
key is a Python string key; type is the
PMIx datatype of value; and value is
the associated value expressed in the
appropriate Python form for the specified
datatype

A
PPEN

D
IX

A
.
PY

TH
O
N
BIN

D
IN

G
S

463

Table A.1.: C-to-Python Datatype Correspondence
C-Definition PMIx Name Python Definition Notes
pmix_app_t PMIX_APP {’cmd’: cmd, ’argv’:

[argv], ’env’: [env],
’maxprocs’: maxprocs,
’info’: [info]}

cmd is a Python string; argv and env are
Python lists containing Python strings;
maxprocs is an integer; and info is a
Python list of info values

pmix_query_t PMIX_QUERY {’keys’: [keys],
’qualifiers’: [info]}

keys is a Python list of Python strings, and
qualifiers is a Python list of info values

pmix_regattr_t PMIX_REGATTR {’name’: name, ’key’:
key, ’type’: type, ’info’:
[info], ’description’:
[desc]}

name and string are Python strings; type
is the PMIx datatype for the attribute’s
value; info is a Python list of info values;
and description is a list of Python strings
describing the attribute

pmix_job_state_t PMIX_JOB_STATE integer value shall be limited to the uint8_t
range

pmix_link_state_t PMIX_LINK_STATE integer value shall be limited to the uint8_t
range

pmix_cpuset_t PMIX_PROC_CPUSET {’source’: source,
’cpus’: bitmap}

source is a string name of the library that
created the cpuset; and cpus is a list of
string ranges identifying the PUs to which
the process is bound (e.g., [1, 3-5, 7])

pmix_locality_t PMIX_LOCTYPE list list of integer values (defined in Section
11.4.2.3) describing the relative locality of
the specified local process

pmix_fabric_t N/A {’name’: name,
’index’: idx, ’info’:
[info]}

name is the string name assigned to the
fabric; index is the integer ID assigned to
the fabric; info is a list of info describing
the fabric

pmix_endpoint_t PMIX_ENDPOINT {’uuid’: uuid,
’osname’: osname,
endpt’: endpt}

uuid is the string system-unique identifier
assigned to the device; osname is the
operating system name assigned to
the device; endpt is a byteobject
containing the endpoint information

464
PM

Ix
Standard

–
Version

4.1
–
O
ctober2021

Table A.1.: C-to-Python Datatype Correspondence
C-Definition PMIx Name Python Definition Notes
pmix_device_distance_t PMIX_DEVICE_DIST {’uuid’: uuid,

’osname’: osname,
mindist’: mindist,
’maxdist’: maxdist}

uuid is the string system-unique identifier
assigned to the device; osname is the
operating system name assigned to the
device; and mindist and maxdist are
Python integers

pmix_coord_t PMIX_COORD {’view’: view, ’coord’:
[coords]}

view is the pmix_coord_view_t of the
coordinate; and coord is a list of integer
coordinates, one for each dimension of the
fabric

pmix_geometry_t PMIX_GEOMETRY {’fabric’: idx, ’uuid’:
uuid, ’osname’:
osname, coordinates’:
[coords]}

fabric is the Python integer index of the
fabric; uuid is the string system-unique
identifier assigned to the device; osname is
the operating system name assigned to the
device; and coordinates is a list of coord
containing the coordinates for the device
across all views

pmix_device_type_t PMIX_DEVTYPE list list of integer values (defined in Section
11.4.8)

pmix_bind_envelope_t N/A integer one of the values defined in Section
11.4.4.1

A
PPEN

D
IX

A
.
PY

TH
O
N
BIN

D
IN

G
S

465

A.2.1 Example1

Converting a C-based program to its Python equivalent requires translation of the relevant2
datatypes as well as use of the appropriate API form. An example small program may help3
illustrate the changes. Consider the following C-based program snippet:4

C
#include <pmix.h>5
...6

7
pmix_info_t info[2];8

9
PMIX_INFO_LOAD(&info[0], PMIX_PROGRAMMING_MODEL, "TEST", PMIX_STRING)10
PMIX_INFO_LOAD(&info[1], PMIX_MODEL_LIBRARY_NAME, "PMIX", PMIX_STRING)11

12
rc = PMIx_Init(&myproc, info, 2);13

14
PMIX_INFO_DESTRUCT(&info[0]); // free the copied string15
PMIX_INFO_DESTRUCT(&info[1]); // free the copied string16

C

Moving to the Python version requires that the pmix_info_t be translated to the Python info17
equivalent, and that the returned information be captured in the return parameters as opposed to a18
pointer parameter in the function call, as shown below:19

Python
import pmix20
...21

22
myclient = PMIxClient()23
info = [{’key’:PMIX_PROGRAMMING_MODEL,24

’value’:’TEST’, ’val_type’:PMIX_STRING},25
{’key’:PMIX_MODEL_LIBRARY_NAME,26

’value’:’PMIX’, ’val_type’:PMIX_STRING}]27
(rc,myproc) = myclient.init(info)28

Python

Note the use of the PMIX_STRING identifier to ensure the Python bindings interpret the provided29
string value as a PMIx "string" and not an array of bytes.30

466 PMIx Standard – Version 4.1 – October 2021

A.3 Callback Function Definitions1

A.3.1 IOF Delivery Function2

Summary3
Callback function for delivering forwarded IO to a process4

Format5 PMIx v4.0 Python
def iofcbfunc(iofhdlr:integer, channel:bitarray,6

source:dict, payload:dict, info:list)7

Python

IN iofhdlr8
Registration number of the handler being invoked (integer)9

IN channel10
Python channel 16-bit bitarray identifying the channel the data arrived on (bitarray)11

IN source12
Python proc identifying the namespace/rank of the process that generated the data (dict)13

IN payload14
Python byteobject containing the data (dict)15

IN info16
List of Python info provided by the source containing metadata about the payload. This17
could include PMIX_IOF_COMPLETE (list)18

Returns: nothing19

See pmix_iof_cbfunc_t for details20

A.3.2 Event Handler21

Summary22
Callback function for event handlers23

Format24 PMIx v4.0

APPENDIX A. PYTHON BINDINGS 467

Python
def evhandler(evhdlr:integer, status:integer,1

source:dict, info:list, results:list)2

Python

IN iofhdlr3
Registration number of the handler being invoked (integer)4

IN status5
Status associated with the operation (integer)6

IN source7
Python proc identifying the namespace/rank of the process that generated the event (dict)8

IN info9
List of Python info provided by the source containing metadata about the event (list)10

IN results11
List of Python info containing the aggregated results of all prior evhandlers (list)12

Returns:13

• rc - Status returned by the event handler’s operation (integer)14

• results - List of Python info containing results from this event handler’s operation on the event15
(list)16

See pmix_notification_fn_t for details17

A.3.3 Server Module Functions18

The following definitions represent functions that may be provided to the PMIx server library at19
time of initialization for servicing of client requests. Module functions that are not provided default20
to returning "not supported" to the caller.21

A.3.3.1 Client Connected22

Summary23
Notify the host server that a client connected to this server.24

Format25 PMIx v4.0

468 PMIx Standard – Version 4.1 – October 2021

Python
def clientconnected2(proc:dict is not None, info:list)1

Python

IN proc2
Python proc identifying the namespace/rank of the process that connected (dict)3

IN info4
list of Python info containing information about the process (list)5

Returns:6

• rc - PMIX_SUCCESS or a PMIx error code indicating the connection should be rejected (integer)7

See pmix_server_client_connected2_fn_t for details8

A.3.3.2 Client Finalized9

Summary10
Notify the host environment that a client called PMIx_Finalize.11

Format12 PMIx v4.0 Python
def clientfinalized(proc:dict is not None):13

Python

IN proc14
Python proc identifying the namespace/rank of the process that finalized (dict)15

Returns: nothing16

See pmix_server_client_finalized_fn_t for details17

A.3.3.3 Client Aborted18

Summary19
Notify the host environment that a local client called PMIx_Abort.20

APPENDIX A. PYTHON BINDINGS 469

Format1 Python
def clientaborted(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’caller’: Python proc identifying the namespace/rank of the process calling abort (dict)5

• ’status’: PMIx status to be returned on exit (integer)6

• ’msg’: Optional string message to be printed (string)7

• ’targets’: Optional list of Python proc identifying the namespace/rank of the processes to8
be aborted (list)9

Returns:10

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)11

See pmix_server_abort_fn_t for details12

A.3.3.4 Fence13

Summary14
At least one client called either PMIx_Fence or PMIx_Fence_nb15

Format16 PMIx v4.0 Python
def fence(args:dict is not None)17

Python

IN args18
Python dictionary containing:19

• ’procs’: List of Python proc identifying the namespace/rank of the participating processes20
(list)21

• ’directives’: Optional list of Python info containing directives controlling the operation22
(list)23

• ’data’: Optional Python bytearray of data to be circulated during fence operation (bytearray)24

Returns:25

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)26

• data - Python bytearray containing the aggregated data from all participants (bytearray)27

See pmix_server_fencenb_fn_t for details28

470 PMIx Standard – Version 4.1 – October 2021

A.3.3.5 Direct Modex1

Summary2
Used by the PMIx server to request its local host contact the PMIx server on the remote node that3
hosts the specified proc to obtain and return a direct modex blob for that proc.4

Format5 PMIx v4.0 Python
def dmodex(args:dict is not None)6

Python

IN args7
Python dictionary containing:8

• ’proc’: Python proc of process whose data is being requested (dict)9

• ’directives’: Optional list of Python info containing directives controlling the operation10
(list)11

Returns:12

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)13

• data - Python bytearray containing the data for the specified process (bytearray)14

See pmix_server_dmodex_req_fn_t for details15

A.3.3.6 Publish16

Summary17
Publish data per the PMIx API specification.18

Format19 PMIx v4.0 Python
def publish(args:dict is not None)20

Python

IN args21
Python dictionary containing:22

• ’proc’: Python proc dictionary of process publishing the data (dict)23

• ’directives’: List of Python info containing data and directives (list)24

Returns:25

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)26

See pmix_server_publish_fn_t for details27

APPENDIX A. PYTHON BINDINGS 471

A.3.3.7 Lookup1

Summary2
Lookup published data.3

Format4 PMIx v4.0 Python
def lookup(args:dict is not None)5

Python

IN args6
Python dictionary containing:7

• ’proc’: Python proc of process seeking the data (dict)8

• ’keys’: List of Python strings (list)9

• ’directives’: Optional list of Python info containing directives (list)10

Returns:11

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)12

• pdata - List of pdata containing the returned results (list)13

See pmix_server_lookup_fn_t for details14

A.3.3.8 Unpublish15

Summary16
Delete data from the data store.17

Format18 PMIx v4.0 Python
def unpublish(args:dict is not None)19

Python

IN args20
Python dictionary containing:21

• ’proc’: Python proc of process unpublishing data (dict)22

• ’keys’: List of Python strings (list)23

• ’directives’: Optional list of Python info containing directives (list)24

Returns:25

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)26

See pmix_server_unpublish_fn_t for details27

472 PMIx Standard – Version 4.1 – October 2021

A.3.3.9 Spawn1

Summary2
Spawn a set of applications/processes as per the PMIx_Spawn API.3

Format4 PMIx v4.0 Python
def spawn(args:dict is not None)5

Python

IN args6
Python dictionary containing:7

• ’proc’: Python proc of process making the request (dict)8

• ’jobinfo’: Optional list of Python info job-level directives and information (list)9

• ’apps’: List of Python app describing applications to be spawned (list)10

Returns:11

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)12

• nspace - Python string containing namespace of the spawned job (str)13

See pmix_server_spawn_fn_t for details14

A.3.3.10 Connect15

Summary16
Record the specified processes as connected.17

Format18 PMIx v4.0 Python
def connect(args:dict is not None)19

Python

IN args20
Python dictionary containing:21

• ’procs’: List of Python proc identifying the namespace/rank of the participating processes22
(list)23

• ’directives’: Optional list of Python info containing directives controlling the operation24
(list)25

Returns:26

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)27

See pmix_server_connect_fn_t for details28

APPENDIX A. PYTHON BINDINGS 473

A.3.3.11 Disconnect1

Summary2
Disconnect a previously connected set of processes.3

Format4 PMIx v4.0 Python
def disconnect(args:dict is not None)5

Python

IN args6
Python dictionary containing:7

• ’procs’: List of Python proc identifying the namespace/rank of the participating processes8
(list)9

• ’directives’: Optional list of Python info containing directives controlling the operation10
(list)11

Returns:12

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)13

See pmix_server_disconnect_fn_t for details14

A.3.3.12 Register Events15

Summary16
Register to receive notifications for the specified events.17

Format18 PMIx v4.0 Python
def register_events(args:dict is not None)19

Python

IN args20
Python dictionary containing:21

• ’codes’: List of Python integers (list)22

• ’directives’: Optional list of Python info containing directives controlling the operation23
(list)24

Returns:25

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)26

See pmix_server_register_events_fn_t for details27

474 PMIx Standard – Version 4.1 – October 2021

A.3.3.13 Deregister Events1

Summary2
Deregister to receive notifications for the specified events.3

Format4 PMIx v4.0 Python
def deregister_events(args:dict is not None)5

Python

IN args6
Python dictionary containing:7

• ’codes’: List of Python integers (list)8

Returns:9

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)10

See pmix_server_deregister_events_fn_t for details11

A.3.3.14 Notify Event12

Summary13
Notify the specified range of processes of an event.14

Format15 PMIx v4.0 Python
def notify_event(args:dict is not None)16

Python

IN args17
Python dictionary containing:18

• ’code’: Python integer pmix_status_t (integer)19

• ’source’: Python proc of process that generated the event (dict)20

• ’range’: Python range in which the event is to be reported (integer)21

• ’directives’: Optional list of Python info directives (list)22

Returns:23

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)24

See pmix_server_notify_event_fn_t for details25

A.3.3.15 Query26

Summary27
Query information from the resource manager.28

APPENDIX A. PYTHON BINDINGS 475

Format1 Python
def query(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’source’: Python proc of requesting process (dict)5

• ’queries’: List of Python query directives (list)6

Returns:7

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)8

• info - List of Python info containing the returned results (list)9

See pmix_server_query_fn_t for details10

A.3.3.16 Tool Connected11

Summary12
Register that a tool has connected to the server.13

Format14 PMIx v4.0 Python
def tool_connected(args:dict is not None)15

Python

IN args16
Python dictionary containing:17

• ’directives’: Optional list of Python info info on the connecting tool (list)18

Returns:19

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)20

• proc - Python proc containing the assigned namespace:rank for the tool (dict)21

See pmix_server_tool_connection_fn_t for details22

A.3.3.17 Log23

Summary24
Log data on behalf of a client.25

476 PMIx Standard – Version 4.1 – October 2021

Format1 Python
def log(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’source’: Python proc of requesting process (dict)5

• ’data’: Optional list of Python info containing data to be logged (list)6

• ’directives’: Optional list of Python info containing directives (list)7

Returns:8

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)9

See pmix_server_log_fn_t for details.10

A.3.3.18 Allocate Resources11

Summary12
Request allocation operations on behalf of a client.13

Format14 PMIx v4.0 Python
def allocate(args:dict is not None)15

Python

IN args16
Python dictionary containing:17

• ’source’: Python proc of requesting process (dict)18

• ’action’: Python allocdir specifying requested action (integer)19

• ’directives’: Optional list of Python info containing directives (list)20

Returns:21

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)22

• refarginfo - List of Python info containing results of requested operation (list)23

See pmix_server_alloc_fn_t for details.24

A.3.3.19 Job Control25

Summary26
Execute a job control action on behalf of a client.27

APPENDIX A. PYTHON BINDINGS 477

Format1 Python
def job_control(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’source’: Python proc of requesting process (dict)5

• ’targets’: List of Python proc specifying target processes (list)6

• ’directives’: Optional list of Python info containing directives (list)7

Returns:8

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)9

See pmix_server_job_control_fn_t for details.10

A.3.3.20 Monitor11

Summary12
Request that a client be monitored for activity.13

Format14 PMIx v4.0 Python
def monitor(args:dict is not None)15

Python

IN args16
Python dictionary containing:17

• ’source’: Python proc of requesting process (dict)18

• ’monitor’: Python info attribute indicating the type of monitor being requested (dict)19

• ’error’: Status code to be used when generating an event notification (integer) alerting that20
the monitor has been triggered.21

• ’directives’: Optional list of Python info containing directives (list)22

Returns:23

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)24

See pmix_server_monitor_fn_t for details.25

A.3.3.21 Get Credential26

Summary27
Request a credential from the host environment.28

478 PMIx Standard – Version 4.1 – October 2021

Format1 Python
def get_credential(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’source’: Python proc of requesting process (dict)5

• ’directives’: Optional list of Python info containing directives (list)6

Returns:7

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)8

• cred - Python byteobject containing returned credential (dict)9

• info - List of Python info containing any additional info about the credential (list)10

See pmix_server_get_cred_fn_t for details.11

A.3.3.22 Validate Credential12

Summary13
Request validation of a credential14

Format15 PMIx v4.0 Python
def validate_credential(args:dict is not None)16

Python

IN args17
Python dictionary containing:18

• ’source’: Python proc of requesting process (dict)19

• ’credential’: Python byteobject containing credential (dict)20

• ’directives’: Optional list of Python info containing directives (list)21

Returns:22

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)23

• info - List of Python info containing any additional info from the credential (list)24

See pmix_server_validate_cred_fn_t for details.25

A.3.3.23 IO Forward26

Summary27
Request the specified IO channels be forwarded from the given array of processes.28

APPENDIX A. PYTHON BINDINGS 479

Format1 Python
def iof_pull(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’sources’: List of Python proc of processes whose IO is being requested (list)5

• ’channels’: Bitmask of Python channel identifying IO channels to be forwarded (integer)6

• ’directives’: Optional list of Python info containing directives (list)7

Returns:8

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)9

See pmix_server_iof_fn_t for details.10

A.3.3.24 IO Push11

Summary12
Pass standard input data to the host environment for transmission to specified recipients.13

Format14 PMIx v4.0 Python
def iof_push(args:dict is not None)15

Python

IN args16
Python dictionary containing:17

• ’source’: Python proc of process whose input is being forwarded (dict)18

• ’payload’: Python byteobject containing input bytes (dict)19

• ’targets’: List of proc of processes that are to receive the payload (list)20

• ’directives’: Optional list of Python info containing directives (list)21

Returns:22

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)23

See pmix_server_stdin_fn_t for details.24

A.3.3.25 Group Operations25

Summary26
Request group operations (construct, destruct, etc.) on behalf of a set of processes.27

480 PMIx Standard – Version 4.1 – October 2021

Format1 Python
def group(args:dict is not None)2

Python

IN args3
Python dictionary containing:4

• ’op’: Operation host is to perform on the specified group (integer)5

• ’group’: String identifier of target group (str)6

• ’procs’: List of Python proc of participating processes (dict)7

• ’directives’: Optional list of Python info containing directives (list)8

Returns:9

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)10

• refarginfo - List of Python info containing results of requested operation (list)11

See pmix_server_grp_fn_t for details.12

A.3.3.26 Fabric Operations13

Summary14
Request fabric-related operations (e.g., information on a fabric) on behalf of a tool or other process.15

Format16 PMIx v4.0 Python
def fabric(args:dict is not None)17

Python

IN args18
Python dictionary containing:19

• ’source’: Python proc of requesting process (dict)20

• ’index’: Identifier of the fabric being operated upon (integer)21

• ’op’: Operation host is to perform on the specified fabric (integer)22

• ’directives’: Optional list of Python info containing directives (list)23

Returns:24

• rc - PMIX_SUCCESS or a PMIx error code indicating the operation failed (integer)25

• refarginfo - List of Python info containing results of requested operation (list)26

See pmix_server_fabric_fn_t for details.27

APPENDIX A. PYTHON BINDINGS 481

A.4 PMIxClient1

The client Python class is by far the richest in terms of APIs as it houses all the APIs that an2
application might utilize. Due to the datatype translation requirements of the C-Python interface,3
only the blocking form of each API is supported – providing a Python callback function directly to4
the C interface underlying the bindings was not a supportable option.5

A.4.1 Client.init6

Summary7
Initialize the PMIx client library after obtaining a new PMIxClient object.8

Format9 PMIx v4.0 Python
rc, proc = myclient.init(info:list)10

Python

IN info11
List of Python info dictionaries (list)12

Returns:13

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)14

• proc - a Python proc dictionary (dict)15

See PMIx_Init for description of all relevant attributes and behaviors.16

A.4.2 Client.initialized17

Format18 PMIx v4.0 Python
rc = myclient.initialized()19

Python

Returns:20

• rc - a value of 1 (true) will be returned if the PMIx library has been initialized, and 0 (false)21
otherwise (integer)22

See PMIx_Initialized for description of all relevant attributes and behaviors.23

482 PMIx Standard – Version 4.1 – October 2021

A.4.3 Client.get_version1

Format2 Python
vers = myclient.get_version()3

Python

Returns:4

• vers - Python string containing the version of the PMIx library (e.g., "3.1.4") (integer)5

See PMIx_Get_version for description of all relevant attributes and behaviors.6

A.4.4 Client.finalize7

Summary8
Finalize the PMIx client library.9

Format10 PMIx v4.0 Python
rc = myclient.finalize(info:list)11

Python

IN info12
List of Python info dictionaries (list)13

Returns:14

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)15

See PMIx_Finalize for description of all relevant attributes and behaviors.16

A.4.5 Client.abort17

Summary18
Request that the provided list of processes be aborted.19

APPENDIX A. PYTHON BINDINGS 483

Format1 Python
rc = myclient.abort(status:integer, msg:str, targets:list)2

Python

IN status3
PMIx status to be returned on exit (integer)4

IN msg5
String message to be printed (string)6

IN targets7
List of Python proc dictionaries (list)8

Returns:9

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)10

See PMIx_Abort for description of all relevant attributes and behaviors.11

A.4.6 Client.store_internal12

Summary13
Store some data locally for retrieval by other areas of the process14

Format15 PMIx v4.0 Python
rc = myclient.store_internal(proc:dict, key:str, value:dict)16

Python

IN proc17
Python proc dictionary of the process being referenced (dict)18

IN key19
String key of the data (string)20

IN value21
Python value dictionary (dict)22

Returns:23

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)24

See PMIx_Store_internal for details.25

A.4.7 Client.put26

Summary27
Push a key/value pair into the client’s namespace.28

484 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc = myclient.put(scope:integer, key:str, value:dict)2

Python

IN scope3
Scope of the data being posted (integer)4

IN key5
String key of the data (string)6

IN value7
Python value dictionary (dict)8

Returns:9

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)10

See PMIx_Put for description of all relevant attributes and behaviors.11

A.4.8 Client.commit12

Summary13
Push all previously PMIxClient.put values to the local PMIx server.14

Format15 PMIx v4.0 Python
rc = myclient.commit()16

Python

Returns:17

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)18

See PMIx_Commit for description of all relevant attributes and behaviors.19

A.4.9 Client.fence20

Summary21
Execute a blocking barrier across the processes identified in the specified list.22

APPENDIX A. PYTHON BINDINGS 485

Format1 Python
rc = myclient.fence(peers:list, directives:list)2

Python

IN peers3
List of Python proc dictionaries (list)4

IN directives5
List of Python info dictionaries (list)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

See PMIx_Fence for description of all relevant attributes and behaviors.9

A.4.10 Client.get10

Summary11
Retrieve a key/value pair.12

Format13 PMIx v4.0 Python
rc, val = myclient.get(proc:dict, key:str, directives:list)14

Python

IN proc15
Python proc whose data is being requested (dict)16

IN key17
Python string key of the data to be returned (str)18

IN directives19
List of Python info dictionaries (list)20

Returns:21

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)22

• val - Python value containing the returned data (dict)23

See PMIx_Get for description of all relevant attributes and behaviors.24

A.4.11 Client.publish25

Summary26
Publish data for later access via PMIx_Lookup.27

486 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc = myclient.publish(directives:list)2

Python

IN directives3
List of Python info dictionaries containing data to be published and directives (list)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

See PMIx_Publish for description of all relevant attributes and behaviors.7

A.4.12 Client.lookup8

Summary9
Lookup information published by this or another process with PMIx_Publish.10

Format11 PMIx v4.0 Python
rc,info = myclient.lookup(pdata:list, directives:list)12

Python

IN pdata13
List of Python pdata dictionaries identifying data to be retrieved (list)14

IN directives15
List of Python info dictionaries (list)16

Returns:17

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)18

• info - Python list of info containing the returned data (list)19

See PMIx_Lookup for description of all relevant attributes and behaviors.20

A.4.13 Client.unpublish21

Summary22
Delete data published by this process with PMIx_Publish.23

APPENDIX A. PYTHON BINDINGS 487

Format1 Python
rc = myclient.unpublish(keys:list, directives:list)2

Python

IN keys3
List of Python string keys identifying data to be deleted (list)4

IN directives5
List of Python info dictionaries (list)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

See PMIx_Unpublish for description of all relevant attributes and behaviors.9

A.4.14 Client.spawn10

Summary11
Spawn a new job.12

Format13 PMIx v4.0 Python
rc,nspace = myclient.spawn(jobinfo:list, apps:list)14

Python

IN jobinfo15
List of Python info dictionaries (list)16

IN apps17
List of Python app dictionaries (list)18

Returns:19

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)20

• nspace - Python nspace of the new job (dict)21

See PMIx_Spawn for description of all relevant attributes and behaviors.22

A.4.15 Client.connect23

Summary24
Connect namespaces.25

488 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc = myclient.connect(peers:list, directives:list)2

Python

IN peers3
List of Python proc dictionaries (list)4

IN directives5
List of Python info dictionaries (list)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

See PMIx_Connect for description of all relevant attributes and behaviors.9

A.4.16 Client.disconnect10

Summary11
Disconnect namespaces.12

Format13 PMIx v4.0 Python
rc = myclient.disconnect(peers:list, directives:list)14

Python

IN peers15
List of Python proc dictionaries (list)16

IN directives17
List of Python info dictionaries (list)18

Returns:19

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)20

See PMIx_Disconnect for description of all relevant attributes and behaviors.21

A.4.17 Client.resolve_peers22

Summary23
Return list of processes within the specified nspace on the given node.24

APPENDIX A. PYTHON BINDINGS 489

Format1 Python
rc,procs = myclient.resolve_peers(node:str, nspace:str)2

Python

IN node3
Name of node whose processes are being requested (str)4

IN nspace5
Python nspace whose processes are to be returned (str)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

• procs - List of Python proc dictionaries (list)9

See PMIx_Resolve_peers for description of all relevant attributes and behaviors.10

A.4.18 Client.resolve_nodes11

Summary12
Return list of nodes hosting processes within the specified nspace.13

Format14 PMIx v4.0 Python
rc,nodes = myclient.resolve_nodes(nspace:str)15

Python

IN nspace16
Python nspace (str)17

Returns:18

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)19

• nodes - List of Python string node names (list)20

See PMIx_Resolve_nodes for description of all relevant attributes and behaviors.21

A.4.19 Client.query22

Summary23
Query information about the system in general.24

490 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc,info = myclient.query(queries:list)2

Python

IN queries3
List of Python query dictionaries (list)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

• info - List of Python info containing results of the query (list)7

See PMIx_Query_info for description of all relevant attributes and behaviors.8

A.4.20 Client.log9

Summary10
Log data to a central data service/store.11

Format12 PMIx v4.0 Python
rc = myclient.log(data:list, directives:list)13

Python

IN data14
List of Python info (list)15

IN directives16
Optional list of Python info (list)17

Returns:18

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)19

See PMIx_Log for description of all relevant attributes and behaviors.20

A.4.21 Client.allocation_request21

Summary22
Request an allocation operation from the host resource manager.23

APPENDIX A. PYTHON BINDINGS 491

Format1 Python
rc,info = myclient.allocation_request(request:integer, directives:list)2

Python

IN request3
Python allocdir specifying requested operation (integer)4

IN directives5
List of Python info describing request (list)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

• info - List of Python info containing results of the request (list)9

See PMIx_Allocation_request for description of all relevant attributes and behaviors.10

A.4.22 Client.job_ctrl11

Summary12
Request a job control action.13

Format14 PMIx v4.0 Python
rc,info = myclient.job_ctrl(targets:list, directives:list)15

Python

IN targets16
List of Python proc specifying targets of requested operation (integer)17

IN directives18
List of Python info describing operation to be performed (list)19

Returns:20

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)21

• info - List of Python info containing results of the request (list)22

See PMIx_Job_control for description of all relevant attributes and behaviors.23

A.4.23 Client.monitor24

Summary25
Request that something be monitored.26

492 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc,info = myclient.monitor(monitor:dict, error_code:integer, directives:list)2

Python

IN monitor3
Python info specifying specifying the type of monitor being requested (dict)4

IN error_code5
Status code to be used when generating an event notification alerting that the monitor has6
been triggered (integer)7

IN directives8
List of Python info describing request (list)9

Returns:10

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)11

• info - List of Python info containing results of the request (list)12

See PMIx_Process_monitor for description of all relevant attributes and behaviors.13

A.4.24 Client.get_credential14

Summary15
Request a credential from the PMIx server/SMS.16

Format17 PMIx v4.0 Python
rc,cred = myclient.get_credential(directives:list)18

Python

IN directives19
Optional list of Python info describing request (list)20

Returns:21

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)22

• cred - Python byteobject containing returned credential (dict)23

See PMIx_Get_credential for description of all relevant attributes and behaviors.24

A.4.25 Client.validate_credential25

Summary26
Request validation of a credential by the PMIx server/SMS.27

APPENDIX A. PYTHON BINDINGS 493

Format1 Python
rc,info = myclient.validate_credential(cred:dict, directives:list)2

Python

IN cred3
Python byteobject containing credential (dict)4

IN directives5
Optional list of Python info describing request (list)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

• info - List of Python info containing additional results of the request (list)9

See PMIx_Validate_credential for description of all relevant attributes and behaviors.10

A.4.26 Client.group_construct11

Summary12
Construct a new group composed of the specified processes and identified with the provided group13
identifier.14

Format15 PMIx v4.0 Python
rc,info = myclient.construct_group(grp:string,16

members:list, directives:list)17

Python

IN grp18
Python string identifier for the group (str)19

IN members20
List of Python proc dictionaries identifying group members (list)21

IN directives22
Optional list of Python info describing request (list)23

Returns:24

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)25

• info - List of Python info containing results of the request (list)26

See PMIx_Group_construct for description of all relevant attributes and behaviors.27

A.4.27 Client.group_invite28

Summary29
Explicitly invite specified processes to join a group.30

494 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc,info = myclient.group_invite(grp:string,2

members:list, directives:list)3

Python

IN grp4
Python string identifier for the group (str)5

IN members6
List of Python proc dictionaries identifying processes to be invited (list)7

IN directives8
Optional list of Python info describing request (list)9

Returns:10

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)11

• info - List of Python info containing results of the request (list)12

See PMIx_Group_invite for description of all relevant attributes and behaviors.13

A.4.28 Client.group_join14

Summary15
Respond to an invitation to join a group that is being asynchronously constructed.16

Format17 PMIx v4.0 Python
rc,info = myclient.group_join(grp:string,18

leader:dict, opt:integer,19
directives:list)20

Python

IN grp21
Python string identifier for the group (str)22

IN leader23
Python proc dictionary identifying process leading the group (dict)24

IN opt25
One of the pmix_group_opt_t values indicating decline/accept (integer)26

IN directives27
Optional list of Python info describing request (list)28

Returns:29

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)30

• info - List of Python info containing results of the request (list)31

See PMIx_Group_join for description of all relevant attributes and behaviors.32

APPENDIX A. PYTHON BINDINGS 495

A.4.29 Client.group_leave1

Summary2
Leave a PMIx Group.3

Format4 PMIx v4.0 Python
rc = myclient.group_leave(grp:string, directives:list)5

Python

IN grp6
Python string identifier for the group (str)7

IN directives8
Optional list of Python info describing request (list)9

Returns:10

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)11

See PMIx_Group_leave for description of all relevant attributes and behaviors.12

A.4.30 Client.group_destruct13

Summary14
Destruct a PMIx Group.15

Format16 PMIx v4.0 Python
rc = myclient.group_destruct(grp:string, directives:list)17

Python

IN grp18
Python string identifier for the group (str)19

IN directives20
Optional list of Python info describing request (list)21

Returns:22

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)23

See PMIx_Group_destruct for description of all relevant attributes and behaviors.24

A.4.31 Client.register_event_handler25

Summary26
Register an event handler to report events.27

496 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc,id = myclient.register_event_handler(codes:list,2

directives:list, cbfunc)3

Python

IN codes4
List of Python integer status codes that should be reported to this handler (llist)5

IN directives6
Optional list of Python info describing request (list)7

IN cbfunc8
Python evhandler to be called when event is received (func)9

Returns:10

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)11

• id - PMIx reference identifier for handler (integer)12

See PMIx_Register_event_handler for description of all relevant attributes and behaviors.13

A.4.32 Client.deregister_event_handler14

Summary15
Deregister an event handler.16

Format17 PMIx v4.0 Python
myclient.deregister_event_handler(id:integer)18

Python

IN id19
PMIx reference identifier for handler (integer)20

Returns: None21

See PMIx_Deregister_event_handler for description of all relevant attributes and22
behaviors.23

A.4.33 Client.notify_event24

Summary25
Report an event for notification via any registered handler.26

APPENDIX A. PYTHON BINDINGS 497

Format1 Python
rc = myclient.notify_event(status:integer, source:dict,2

range:integer, directives:list)3

Python

IN status4
PMIx status code indicating the event being reported (integer)5

IN source6
Python proc of the process that generated the event (dict)7

IN range8
Python range in which the event is to be reported (integer)9

IN directives10
Optional list of Python info dictionaries describing the event (list)11

Returns:12

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)13

See PMIx_Notify_event for description of all relevant attributes and behaviors.14

A.4.34 Client.fabric_register15

Summary16
Register for access to fabric-related information, including communication cost matrix.17

Format18 PMIx v4.0 Python
rc,idx,fabricinfo = myclient.fabric_register(directives:list)19

Python

IN directives20
Optional list of Python info containing directives (list)21

Returns:22

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)23

• idx - Index of the registered fabric (integer)24

• fabricinfo - List of Python info containing fabric info (list)25

See PMIx_Fabric_register for details.26

A.4.35 Client.fabric_update27

Summary28
Update fabric-related information, including communication cost matrix.29

498 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc,fabricinfo = myclient.fabric_update(idx:integer)2

Python
IN idx3

Index of the registered fabric (list)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

• fabricinfo - List of Python info containing updated fabric info (list)7

See PMIx_Fabric_update for details.8

A.4.36 Client.fabric_deregister9

Summary10
Deregister fabric.11

Format12 PMIx v4.0 Python
rc = myclient.fabric_deregister(idx:integer)13

Python
IN idx14

Index of the registered fabric (list)15

Returns:16

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)17

See PMIx_Fabric_deregister for details.18

A.4.37 Client.load_topology19

Summary20
Load the local hardware topology into the PMIx library.21

Format22 PMIx v4.0 Python
rc = myclient.load_topology()23

Python
Returns:24

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)25

See PMIx_Load_topology for details - note that the topology loaded into the PMIx library may26
be utilized by PMIx and other libraries, but is not directly accessible by Python.27

APPENDIX A. PYTHON BINDINGS 499

A.4.38 Client.get_relative_locality1

Summary2
Get the relative locality of two local processes.3

Format4 PMIx v4.0 Python
rc,locality = myclient.get_relative_locality(loc1:str, loc2:str)5

Python

IN loc16
Locality string of a process (str)7

IN loc28
Locality string of a process (str)9

Returns:10

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)11

• locality - locality list containing the relative locality of the two processes (list)12

See PMIx_Get_relative_locality for details.13

A.4.39 Client.get_cpuset14

Summary15
Get the PU binding bitmap of the current process.16

Format17 PMIx v4.0 Python
rc,cpuset = myclient.get_cpuset(ref:integer)18

Python

IN ref19
bindenv binding envelope to be used (integer)20

Returns:21

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)22

• cpuset - cpuset containing the source and bitmap of the cpuset (dict)23

See PMIx_Get_cpuset for details.24

A.4.40 Client.parse_cpuset_string25

Summary26
Parse the PU binding bitmap from its string representation.27

500 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc,cpuset = myclient.parse_cpuset_string(cpuset:string)2

Python

IN cpuset3
String returned by PMIxServer.generate_cpuset_string (string)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

• cpuset - cpuset containing the source and bitmap of the cpuset (dict)7

See PMIx_Parse_cpuset_string for details.8

A.4.41 Client.compute_distances9

Summary10
Compute distances from specified process location to local devices.11

Format12 PMIx v4.0 Python
rc,distances = myclient.compute_distances(cpuset:dict, info:list)13

Python

IN cpuset14
cpuset describing the location of the process (dict)15

IN info16
List of info dictionaries describing the devices whose distance is to be computed (list)17

Returns:18

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)19

• distances - List of devdist structures containing the distances from the caller to the specified20
devices (list)21

See PMIx_Compute_distances for details. Note that distances can only be computed against22
the local topology.23

A.4.42 Client.error_string24

Summary25
Pretty-print string representation of pmix_status_t.26

APPENDIX A. PYTHON BINDINGS 501

Format1 Python
rep = myclient.error_string(status:integer)2

Python
IN status3

PMIx status code (integer)4

Returns:5

• rep - String representation of the provided status code (str)6

See PMIx_Error_string for further details.7

A.4.43 Client.proc_state_string8

Summary9
Pretty-print string representation of pmix_proc_state_t.10

Format11 PMIx v4.0 Python
rep = myclient.proc_state_string(state:integer)12

Python
IN state13

PMIx process state code (integer)14

Returns:15

• rep - String representation of the provided process state (str)16

See PMIx_Proc_state_string for further details.17

A.4.44 Client.scope_string18

Summary19
Pretty-print string representation of pmix_scope_t.20

Format21 PMIx v4.0 Python
rep = myclient.scope_string(scope:integer)22

Python
IN scope23

PMIx scope value (integer)24

Returns:25

• rep - String representation of the provided scope (str)26

See PMIx_Scope_string for further details27

502 PMIx Standard – Version 4.1 – October 2021

A.4.45 Client.persistence_string1

Summary2
Pretty-print string representation of pmix_persistence_t.3

Format4 PMIx v4.0 Python
rep = myclient.persistence_string(persistence:integer)5

Python

IN persistence6
PMIx persistence value (integer)7

Returns:8

• rep - String representation of the provided persistence (str)9

See PMIx_Persistence_string for further details.10

A.4.46 Client.data_range_string11

Summary12
Pretty-print string representation of pmix_data_range_t.13

Format14 PMIx v4.0 Python
rep = myclient.data_range_string(range:integer)15

Python

IN range16
PMIx data range value (integer)17

Returns:18

• rep - String representation of the provided data range (str)19

See PMIx_Data_range_string for further details.20

A.4.47 Client.info_directives_string21

Summary22
Pretty-print string representation of pmix_info_directives_t.23

APPENDIX A. PYTHON BINDINGS 503

Format1 Python
rep = myclient.info_directives_string(directives:bitarray)2

Python
IN directives3

PMIx info directives value (bitarray)4

Returns:5

• rep - String representation of the provided info directives (str)6

See PMIx_Info_directives_string for further details.7

A.4.48 Client.data_type_string8

Summary9
Pretty-print string representation of pmix_data_type_t.10

Format11 PMIx v4.0 Python
rep = myclient.data_type_string(dtype:integer)12

Python
IN dtype13

PMIx datatype value (integer)14

Returns:15

• rep - String representation of the provided datatype (str)16

See PMIx_Data_type_string for further details.17

A.4.49 Client.alloc_directive_string18

Summary19
Pretty-print string representation of pmix_alloc_directive_t.20

Format21 PMIx v4.0 Python
rep = myclient.alloc_directive_string(adir:integer)22

Python
IN adir23

PMIx allocation directive value (integer)24

Returns:25

• rep - String representation of the provided allocation directive (str)26

See PMIx_Alloc_directive_string for further details.27

504 PMIx Standard – Version 4.1 – October 2021

A.4.50 Client.iof_channel_string1

Summary2
Pretty-print string representation of pmix_iof_channel_t.3

Format4 PMIx v4.0 Python
rep = myclient.iof_channel_string(channel:bitarray)5

Python

IN channel6
PMIx IOF channel value (bitarray)7

Returns:8

• rep - String representation of the provided IOF channel (str)9

See PMIx_IOF_channel_string for further details.10

A.4.51 Client.job_state_string11

Summary12
Pretty-print string representation of pmix_job_state_t.13

Format14 PMIx v4.0 Python
rep = myclient.job_state_string(state:integer)15

Python

IN state16
PMIx job state value (integer)17

Returns:18

• rep - String representation of the provided job state (str)19

See PMIx_Job_state_string for further details.20

A.4.52 Client.get_attribute_string21

Summary22
Pretty-print string representation of a PMIx attribute.23

APPENDIX A. PYTHON BINDINGS 505

Format1 Python
rep = myclient.get_attribute_string(attribute:str)2

Python
IN attribute3

PMIx attribute name (string)4

Returns:5

• rep - String representation of the provided attribute (str)6

See PMIx_Get_attribute_string for further details.7

A.4.53 Client.get_attribute_name8

Summary9
Pretty-print name of a PMIx attribute corresponding to the provided string.10

Format11 PMIx v4.0 Python
rep = myclient.get_attribute_name(attribute:str)12

Python
IN attributestring13

Attribute string (string)14

Returns:15

• rep - Attribute name corresponding to the provided string (str)16

See PMIx_Get_attribute_name for further details.17

A.4.54 Client.link_state_string18

Summary19
Pretty-print string representation of pmix_link_state_t.20

Format21 PMIx v4.0 Python
rep = myclient.link_state_string(state:integer)22

Python
IN state23

PMIx link state value (integer)24

Returns:25

• rep - String representation of the provided link state (str)26

See PMIx_Link_state_string for further details.27

506 PMIx Standard – Version 4.1 – October 2021

A.4.55 Client.device_type_string1

Summary2
Pretty-print string representation of pmix_device_type_t.3

Format4 PMIx v4.0 Python
rep = myclient.device_type_string(type:bitarray)5

Python

IN type6
PMIx device type value (bitarray)7

Returns:8

• rep - String representation of the provided device type (str)9

See PMIx_Device_type_string for further details.10

A.4.56 Client.progress11

Summary12
Progress the PMIx library.13

Format14 PMIx v4.0 Python
myclient.progress()15

Python

See PMIx_Progress for further details.16

A.5 PMIxServer17

The server Python class inherits the Python "client" class as its parent. Thus, it includes all client18
functions in addition to the ones defined in this section.19

A.5.1 Server.init20

Summary21
Initialize the PMIx server library after obtaining a new PMIxServer object.22

APPENDIX A. PYTHON BINDINGS 507

Format1 Python
rc = myserver.init(directives:list, map:dict)2

Python

IN directives3
List of Python info dictionaries (list)4

IN map5
Python dictionary key-function pairs that map server module callback functions to6
provided implementations (see pmix_server_module_t) (dict)7

Returns:8

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)9

See PMIx_server_init for description of all relevant attributes and behaviors.10

A.5.2 Server.finalize11

Summary12
Finalize the PMIx server library.13

Format14 PMIx v4.0 Python
rc = myserver.finalize()15

Python

Returns:16

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)17

See PMIx_server_finalize for details.18

A.5.3 Server.generate_regex19

Summary20
Generate a regular expression representation of the input strings.21

508 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc,regex = myserver.generate_regex(input:list)2

Python

IN input3
List of Python strings (e.g., node names) (list)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

• regex - Python bytearray containing regular expression representation of the input list7
(bytearray)8

See PMIx_generate_regex for details.9

A.5.4 Server.generate_ppn10

Summary11
Generate a regular expression representation of the input strings.12

Format13 PMIx v4.0 Python
rc,regex = myserver.generate_ppn(input:list)14

Python

IN input15
List of Python strings, each string consisting of a comma-delimited list of ranks on each node,16
with the strings being in the same order as the node names provided to "generate_regex" (list)17

Returns:18

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)19

• regex - Python bytearray containing regular expression representation of the input list20
(bytearray)21

See PMIx_generate_ppn for details.22

A.5.5 Server.generate_locality_string23

Summary24
Generate a PMIx locality string from a given cpuset.25

APPENDIX A. PYTHON BINDINGS 509

Format1 Python
rc,locality = myserver.generate_locality_string(cpuset:dict)2

Python

IN cset3
cpuset containing the bitmap of assigned PUs (dict)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

• locality - String representation of the PMIx locality corresponding to the input bitmap (string)7

See PMIx_server_generate_locality_string for details.8

A.5.6 Server.generate_cpuset_string9

Summary10
Generate a PMIx string representation of the provided cpuset.11

Format12 PMIx v4.0 Python
rc,cpustr = myserver.generate_cpuset_string(cpuset:dict)13

Python

IN cset14
cpuset containing the bitmap of assigned PUs (dict)15

Returns:16

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)17

• cpustr - String representation of the input bitmap (string)18

See PMIx_server_generate_cpuset_string for details.19

A.5.7 Server.register_nspace20

Summary21
Setup the data about a particular namespace.22

510 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc = myserver.register_nspace(nspace:str,2

nlocalprocs:integer,3
directives:list)4

Python

IN nspace5
Python string containing the namespace (str)6

IN nlocalprocs7
Number of local processes (integer)8

IN directives9
List of Python info dictionaries (list)10

Returns:11

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)12

See PMIx_server_register_nspace for description of all relevant attributes and behaviors.13

A.5.8 Server.deregister_nspace14

Summary15
Deregister a namespace.16

Format17 PMIx v4.0 Python
myserver.deregister_nspace(nspace:str)18

Python

IN nspace19
Python string containing the namespace (str)20

Returns: None21

See PMIx_server_deregister_nspace for details.22

A.5.9 Server.register_resources23

Summary24
Register non-namespace related information with the local PMIx library25

APPENDIX A. PYTHON BINDINGS 511

Format1 Python
myserver.register_resources(directives:list)2

Python
IN directives3

List of Python info dictionaries (list)4

Returns: None5

See PMIx_server_register_resources for details.6

A.5.10 Server.deregister_resources7

Summary8
Remove non-namespace related information from the local PMIx library9

Format10 PMIx v4.0 Python
myserver.deregister_resources(directives:list)11

Python
IN directives12

List of Python info dictionaries (list)13

Returns: None14

See PMIx_server_deregister_resources for details.15

A.5.11 Server.register_client16

Summary17
Register a client process with the PMIx server library.18

Format19 PMIx v4.0 Python
rc = myserver.register_client(proc:dict, uid:integer, gid:integer)20

Python
IN proc21

Python proc dictionary identifying the client process (dict)22
IN uid23

Linux uid value for user executing client process (integer)24
IN gid25

Linux gid value for user executing client process (integer)26

Returns:27

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)28

See PMIx_server_register_client for details.29

512 PMIx Standard – Version 4.1 – October 2021

A.5.12 Server.deregister_client1

Summary2
Deregister a client process and purge all data relating to it.3

Format4 PMIx v4.0 Python
myserver.deregister_client(proc:dict)5

Python

IN proc6
Python proc dictionary identifying the client process (dict)7

Returns: None8

See PMIx_server_deregister_client for details.9

A.5.13 Server.setup_fork10

Summary11
Setup the environment of a child process that is to be forked by the host.12

Format13 PMIx v4.0 Python
rc = myserver.setup_fork(proc:dict, envin:dict)14

Python

IN proc15
Python proc dictionary identifying the client process (dict)16

INOUT envin17
Python dictionary containing the environment to be passed to the client (dict)18

Returns:19

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)20

See PMIx_server_setup_fork for details.21

A.5.14 Server.dmodex_request22

Summary23
Function by which the host server can request modex data from the local PMIx server.24

APPENDIX A. PYTHON BINDINGS 513

Format1 Python
rc,data = myserver.dmodex_request(proc:dict)2

Python

IN proc3
Python proc dictionary identifying the process whose data is requested (dict)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

• data - Python byteobject containing the returned data (dict)7

See PMIx_server_dmodex_request for details.8

A.5.15 Server.setup_application9

Summary10
Function by which the resource manager can request application-specific setup data prior to launch11
of a job.12

Format13 PMIx v4.0 Python
rc,info = myserver.setup_application(nspace:str, directives:list)14

Python

IN nspace15
Namespace whose setup information is being requested (str)16

IN directives17
Python list of info directives18

Returns:19

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)20

• info - Python list of info dictionaries containing the returned data (list)21

See PMIx_server_setup_application for details.22

A.5.16 Server.register_attributes23

Summary24
Register host environment attribute support for a function.25

514 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc = myserver.register_attributes(function:str, attrs:list)2

Python

IN function3
Name of the function (str)4

IN attrs5
Python list of regattr describing the supported attributes6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

See PMIx_Register_attributes for details.9

A.5.17 Server.setup_local_support10

Summary11
Function by which the local PMIx server can perform any application-specific operations prior to12
spawning local clients of a given application.13

Format14 PMIx v4.0 Python
rc = myserver.setup_local_support(nspace:str, info:list)15

Python

IN nspace16
Namespace whose setup information is being requested (str)17

IN info18
Python list of info containing the setup data (list)19

Returns:20

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)21

See PMIx_server_setup_local_support for details.22

A.5.18 Server.iof_deliver23

Summary24
Function by which the host environment can pass forwarded IO to the PMIx server library for25
distribution to its clients.26

APPENDIX A. PYTHON BINDINGS 515

Format1 Python
rc = myserver.iof_deliver(source:dict, channel:integer,2

data:dict, directives:list)3

Python

IN source4
Python proc dictionary identifying the process who generated the data (dict)5

IN channel6
Python channel bitmask identifying IO channel of the provided data (integer)7

IN data8
Python byteobject containing the data (dict)9

IN directives10
Python list of info containing directives (list)11

Returns:12

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)13

See PMIx_server_IOF_deliver for details.14

A.5.19 Server.collect_inventory15

Summary16
Collect inventory of resources on a node.17

Format18 PMIx v4.0 Python
rc,info = myserver.collect_inventory(directives:list)19

Python

IN directives20
Optional Python list of info containing directives (list)21

Returns:22

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)23

• info - Python list of info containing the returned data (list)24

See PMIx_server_collect_inventory for details.25

A.5.20 Server.deliver_inventory26

Summary27
Pass collected inventory to the PMIx server library for storage.28

516 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc = myserver.deliver_inventory(info:list, directives:list)2

Python

IN info3
- Python list of info dictionaries containing the inventory data (list)4

IN directives5
Python list of info dictionaries containing directives (list)6

Returns:7

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)8

See PMIx_server_deliver_inventory for details.9

A.5.21 Server.define_process_set10

Summary11
Add members to a PMIx process set.12

Format13 PMIx v4.0 Python
rc = myserver.define_process_set(members:list, name:str)14

Python

IN members15
- List of Python proc dictionaries identifying the processes to be added to the process set16
(list)17

IN name18
- Name of the process set (str)19

Returns:20

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)21

See PMIx_server_define_process_set for details.22

A.5.22 Server.delete_process_set23

Summary24
Delete a PMIx process set.25

APPENDIX A. PYTHON BINDINGS 517

Format1 Python
rc = myserver.delete_process_set(name:str)2

Python
IN name3

- Name of the process set (str)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

See PMIx_server_delete_process_set for details.7

A.5.23 Server.register_resources8

Summary9
Register non-namespace related information with the local PMIx server library.10

Format11 PMIx v4.0 Python
rc = myserver.register_resources(info:list)12

Python
IN info13

- List of Python info dictionaries list)14

Returns:15

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)16

See PMIx_server_register_resources for details.17

A.5.24 Server.deregister_resources18

Summary19
Deregister non-namespace related information with the local PMIx server library.20

Format21 PMIx v4.0 Python
rc = myserver.deregister_resources(info:list)22

Python
IN info23

- List of Python info dictionaries list)24

Returns:25

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)26

See PMIx_server_deregister_resources for details.27

518 PMIx Standard – Version 4.1 – October 2021

A.6 PMIxTool1

The tool Python class inherits the Python "server" class as its parent. Thus, it includes all client and2
server functions in addition to the ones defined in this section.3

A.6.1 Tool.init4

Summary5
Initialize the PMIx tool library after obtaining a new PMIxTool object.6

Format7 PMIx v4.0 Python
rc,proc = mytool.init(info:list)8

Python

IN info9
List of Python info directives (list)10

Returns:11

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)12

• proc - a Python proc (dict)13

See PMIx_tool_init for description of all relevant attributes and behaviors.14

A.6.2 Tool.finalize15

Summary16
Finalize the PMIx tool library, closing the connection to the server.17

Format18 PMIx v4.0 Python
rc = mytool.finalize()19

Python

Returns:20

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)21

See PMIx_tool_finalize for description of all relevant attributes and behaviors.22

A.6.3 Tool.disconnect23

Summary24
Disconnect the PMIx tool from the specified server connection while leaving the tool library25
initialized.26

APPENDIX A. PYTHON BINDINGS 519

Format1 Python
rc = mytool.disconnect(server:dict)2

Python

IN server3
Process identifier of server from which the tool is to be disconnected (proc)4

Returns:5

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)6

See PMIx_tool_disconnect for details.7

A.6.4 Tool.attach_to_server8

Summary9
Establish a connection to a PMIx server.10

Format11 PMIx v4.0 Python
rc,proc,server = mytool.connect_to_server(info:list)12

Python

IN info13
List of Python info dictionaries (list)14

Returns:15

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)16

• proc - a Python proc containing the tool’s identifier (dict)17

• server - a Python proc containing the identifier of the server to which the tool attached (dict)18

See PMIx_tool_attach_to_server for details.19

A.6.5 Tool.get_servers20

Summary21
Get a list containing the proc process identifiers of all servers to which the tool is currently22
connected.23

520 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc,servers = mytool.get_servers()2

Python

Returns:3

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)4

• servers - a list of Python proc containing the identifiers of the servers to which the tool is5
currently attached (dict)6

See PMIx_tool_get_servers for details.7

A.6.6 Tool.set_server8

Summary9
Designate a server as the tool’s primary server.10

Format11 PMIx v4.0 Python
rc = mytool.set_server(proc:dict, info:list)12

Python

IN proc13
Python proc containing the identifier of the servers to which the tool is to attach (list)14

IN info15
List of Python info dictionaries (list)16

Returns:17

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)18

See PMIx_tool_set_server for details.19

A.6.7 Tool.iof_pull20

Summary21
Register to receive output forwarded from a remote process.22

APPENDIX A. PYTHON BINDINGS 521

Format1 Python
rc,id = mytool.iof_pull(sources:list, channel:integer,2

directives:list, cbfunc)3

Python

IN sources4
List of Python proc dictionaries of processes whose IO is being requested (list)5

IN channel6
Python channel bitmask identifying IO channels to be forwarded (integer)7

IN directives8
List of Python info dictionaries describing request (list)9

IN cbfunc10
Python iofcbfunc to receive IO payloads (func)11

Returns:12

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)13

• id - PMIx reference identifier for request (integer)14

See PMIx_IOF_pull for description of all relevant attributes and behaviors.15

A.6.8 Tool.iof_deregister16

Summary17
Deregister from output forwarded from a remote process.18

Format19 PMIx v4.0 Python
rc = mytool.iof_deregister(id:integer, directives:list)20

Python

IN id21
PMIx reference identifier returned by pull request (list)22

IN directives23
List of Python info dictionaries describing request (list)24

Returns:25

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)26

See PMIx_IOF_deregister for description of all relevant attributes and behaviors.27

A.6.9 Tool.iof_push28

Summary29
Push data collected locally (typically from stdin) to stdin of target recipients.30

522 PMIx Standard – Version 4.1 – October 2021

Format1 Python
rc = mytool.iof_push(targets:list, data:dict, directives:list)2

Python

IN sources3
List of Python proc of target processes (list)4

IN data5
Python byteobject containing data to be delivered (dict)6

IN directives7
Optional list of Python info describing request (list)8

Returns:9

• rc - PMIX_SUCCESS or a negative value corresponding to a PMIx error constant (integer)10

See PMIx_IOF_push for description of all relevant attributes and behaviors.11

A.7 Example Usage12

The following examples are provided to illustrate the use of the Python bindings.13

A.7.1 Python Client14

The following example contains a client program that illustrates a fairly common usage pattern.15
The program instantiates and initializes the PMIxClient class, posts some data that is to be shared16
across all processes in the job, executes a “fence” that circulates the data, and then retrieves a value17
posted by one of its peers. Note that the example has been formatted to fit the document layout.18

Python
from pmix import *19

20
def main():21

Instantiate a client object22
myclient = PMIxClient()23
print("Testing PMIx ", myclient.get_version())24

25
Initialize the PMIx client library, declaring the programming model26
as “TEST” and the library name as “PMIX”, just for the example27
info = [’key’:PMIX_PROGRAMMING_MODEL,28

’value’:’TEST’, ’val_type’:PMIX_STRING,29
’key’:PMIX_MODEL_LIBRARY_NAME,30
’value’:’PMIX’, ’val_type’:PMIX_STRING]31

rc,myname = myclient.init(info)32

APPENDIX A. PYTHON BINDINGS 523

if PMIX_SUCCESS != rc:1
print("FAILED TO INIT WITH ERROR", myclient.error_string(rc))2
exit(1)3

4
try posting a value5
rc = myclient.put(PMIX_GLOBAL, "mykey",6

’value’:1, ’val_type’:PMIX_INT32)7
if PMIX_SUCCESS != rc:8

print("PMIx_Put FAILED WITH ERROR", myclient.error_string(rc))9
cleanly finalize10
myclient.finalize()11
exit(1)12

13
commit it14
rc = myclient.commit()15
if PMIX_SUCCESS != rc:16

print("PMIx_Commit FAILED WITH ERROR",17
myclient.error_string(rc))18

cleanly finalize19
myclient.finalize()20
exit(1)21

22
execute fence across all processes in my job23
procs = []24
info = []25
rc = myclient.fence(procs, info)26
if PMIX_SUCCESS != rc:27

print("PMIx_Fence FAILED WITH ERROR", myclient.error_string(rc))28
cleanly finalize29
myclient.finalize()30
exit(1)31

32
Get a value from a peer33
if 0 != myname[’rank’]:34

info = []35
rc, get_val = myclient.get(’nspace’:"testnspace", ’rank’: 0,36

"mykey", info)37
if PMIX_SUCCESS != rc:38

print("PMIx_Commit FAILED WITH ERROR",39
myclient.error_string(rc))40

cleanly finalize41
myclient.finalize()42
exit(1)43

524 PMIx Standard – Version 4.1 – October 2021

print("Get value returned: ", get_val)1
2

test a fence that should return not_supported because3
we pass a required attribute that the server is known4
not to support5
procs = []6
info = [’key’: ’ARBIT’, ’flags’: PMIX_INFO_REQD,7

’value’:10, ’val_type’:PMIX_INT]8
rc = myclient.fence(procs, info)9
if PMIX_SUCCESS == rc:10

print("PMIx_Fence SUCCEEDED BUT SHOULD HAVE FAILED")11
cleanly finalize12
myclient.finalize()13
exit(1)14

15
Publish something16
info = [’key’: ’ARBITRARY’, ’value’:10, ’val_type’:PMIX_INT]17
rc = myclient.publish(info)18
if PMIX_SUCCESS != rc:19

print("PMIx_Publish FAILED WITH ERROR",20
myclient.error_string(rc))21

cleanly finalize22
myclient.finalize()23
exit(1)24

25
finalize26
info = []27
myclient.finalize(info)28
print("Client finalize complete")29

30
Python main program entry point31
if __name__ == ’__main__’:32

main()33

Python

A.7.2 Python Server34

The following example contains a minimum-level server host program that instantiates and35
initializes the PMIxServer class. The program illustrates passing several server module functions to36
the bindings and includes code to setup and spawn a simple client application, waiting until the37
spawned client terminates before finalizing and exiting itself. Note that the example has been38
formatted to fit the document layout.39

APPENDIX A. PYTHON BINDINGS 525

Python
from pmix import *1
import signal, time2
import os3
import select4
import subprocess5

6
def clientconnected(proc:tuple is not None):7

print("CLIENT CONNECTED", proc)8
return PMIX_OPERATION_SUCCEEDED9

10
def clientfinalized(proc:tuple is not None):11

print("CLIENT FINALIZED", proc)12
return PMIX_OPERATION_SUCCEEDED13

14
def clientfence(procs:list, directives:list, data:bytearray):15

check directives16
if directives is not None:17

for d in directives:18
these are each an info dict19
if "pmix" not in d[’key’]:20

we do not support such directives - see if21
it is required22
try:23

if d[’flags’] & PMIX_INFO_REQD:24
return an error25
return PMIX_ERR_NOT_SUPPORTED26

except:27
#it can be ignored28
pass29

return PMIX_OPERATION_SUCCEEDED30
31

def main():32
try:33

myserver = PMIxServer()34
except:35

print("FAILED TO CREATE SERVER")36
exit(1)37

print("Testing server version ", myserver.get_version())38
39

args = [’key’:PMIX_SERVER_SCHEDULER,40
’value’:’T’, ’val_type’:PMIX_BOOL]41

map = ’clientconnected’: clientconnected,42

526 PMIx Standard – Version 4.1 – October 2021

’clientfinalized’: clientfinalized,1
’fencenb’: clientfence2

my_result = myserver.init(args, map)3
4

get our environment as a base5
env = os.environ.copy()6

7
register an nspace for the client app8
(rc, regex) = myserver.generate_regex("test000,test001,test002")9
(rc, ppn) = myserver.generate_ppn("0")10
kvals = [’key’:PMIX_NODE_MAP,11

’value’:regex, ’val_type’:PMIX_STRING,12
’key’:PMIX_PROC_MAP,13
’value’:ppn, ’val_type’:PMIX_STRING,14

’key’:PMIX_UNIV_SIZE,15
’value’:1, ’val_type’:PMIX_UINT32,16

’key’:PMIX_JOB_SIZE,17
’value’:1, ’val_type’:PMIX_UINT32]18

rc = foo.register_nspace("testnspace", 1, kvals)19
print("RegNspace ", rc)20

21
register a client22
uid = os.getuid()23
gid = os.getgid()24
rc = myserver.register_client(’nspace’:"testnspace", ’rank’:0,25

uid, gid)26
print("RegClient ", rc)27
setup the fork28
rc = myserver.setup_fork(’nspace’:"testnspace", ’rank’:0, env)29
print("SetupFrk", rc)30

31
setup the client argv32
args = ["./client.py"]33
open a subprocess with stdout and stderr34
as distinct pipes so we can capture their35
output as the process runs36
p = subprocess.Popen(args, env=env,37

stdout=subprocess.PIPE, stderr=subprocess.PIPE)38
define storage to catch the output39
stdout = []40
stderr = []41
loop until the pipes close42
while True:43

APPENDIX A. PYTHON BINDINGS 527

reads = [p.stdout.fileno(), p.stderr.fileno()]1
ret = select.select(reads, [], [])2

3
stdout_done = True4
stderr_done = True5

6
for fd in ret[0]:7

if the data8
if fd == p.stdout.fileno():9

read = p.stdout.readline()10
if read:11

read = read.decode(’utf-8’).rstrip()12
print(’stdout: ’ + read)13
stdout_done = False14

elif fd == p.stderr.fileno():15
read = p.stderr.readline()16
if read:17

read = read.decode(’utf-8’).rstrip()18
print(’stderr: ’ + read)19
stderr_done = False20

21
if stdout_done and stderr_done:22

break23
print("FINALIZING")24
myserver.finalize()25

26
27

if __name__ == ’__main__’:28
main()29

Python

528 PMIx Standard – Version 4.1 – October 2021

APPENDIX B

Revision History

B.1 Version 1.0: June 12, 20151

The PMIx version 1.0 ad hoc standard was defined in a set of header files as part of the v1.0.02
release of the OpenPMIx library prior to the creation of the formal PMIx 2.0 standard. Below are a3
summary listing of the interfaces defined in the 1.0 headers.4

• Client APIs5

– PMIx_Init, PMIx_Initialized, PMIx_Abort, PMIx_Finalize6
– PMIx_Put, PMIx_Commit,7
– PMIx_Fence, PMIx_Fence_nb8
– PMIx_Get, PMIx_Get_nb9
– PMIx_Publish, PMIx_Publish_nb10
– PMIx_Lookup, PMIx_Lookup_nb11
– PMIx_Unpublish, PMIx_Unpublish_nb12
– PMIx_Spawn, PMIx_Spawn_nb13
– PMIx_Connect, PMIx_Connect_nb14
– PMIx_Disconnect, PMIx_Disconnect_nb15
– PMIx_Resolve_nodes, PMIx_Resolve_peers16

• Server APIs17

– PMIx_server_init, PMIx_server_finalize18
– PMIx_generate_regex, PMIx_generate_ppn19
– PMIx_server_register_nspace, PMIx_server_deregister_nspace20
– PMIx_server_register_client, PMIx_server_deregister_client21
– PMIx_server_setup_fork, PMIx_server_dmodex_request22

• Common APIs23

– PMIx_Get_version, PMIx_Store_internal, PMIx_Error_string24
– PMIx_Register_errhandler, PMIx_Deregister_errhandler, PMIx_Notify_error25

The PMIx_Init API was subsequently modified in the v1.1.0 release of that library.26

529

B.2 Version 2.0: Sept. 20181

The following APIs were introduced in v2.0 of the PMIx Standard:2

• Client APIs3

– PMIx_Query_info_nb, PMIx_Log_nb4
– PMIx_Allocation_request_nb, PMIx_Job_control_nb,5
PMIx_Process_monitor_nb, PMIx_Heartbeat6

• Server APIs7

– PMIx_server_setup_application, PMIx_server_setup_local_support8

• Tool APIs9

– PMIx_tool_init, PMIx_tool_finalize10

• Common APIs11

– PMIx_Register_event_handler, PMIx_Deregister_event_handler12
– PMIx_Notify_event13
– PMIx_Proc_state_string, PMIx_Scope_string14
– PMIx_Persistence_string, PMIx_Data_range_string15
– PMIx_Info_directives_string, PMIx_Data_type_string16
– PMIx_Alloc_directive_string17
– PMIx_Data_pack, PMIx_Data_unpack, PMIx_Data_copy18
– PMIx_Data_print, PMIx_Data_copy_payload19

B.2.1 Removed/Modified APIs20

The PMIx_Init API was modified in v2.0 of the standard from its ad hoc v1.0 signature to21
include passing of a pmix_info_t array for flexibility and “future-proofing” of the API. In22
addition, the PMIx_Notify_error, PMIx_Register_errhandler, and23
PMIx_Deregister_errhandler APIs were replaced. This pre-dated official adoption of24
PMIx as a Standard.25

B.2.2 Deprecated constants26

The following constants were deprecated in v2.0:27

PMIX_MODEX28
PMIX_INFO_ARRAY29

530 PMIx Standard – Version 4.1 – October 2021

B.2.3 Deprecated attributes1

The following attributes were deprecated in v2.0:2

PMIX_ERROR_NAME "pmix.errname" (pmix_status_t)3
Specific error to be notified4

PMIX_ERROR_GROUP_COMM "pmix.errgroup.comm" (bool)5
Set true to get comm errors notification6

PMIX_ERROR_GROUP_ABORT "pmix.errgroup.abort" (bool)7
Set true to get abort errors notification8

PMIX_ERROR_GROUP_MIGRATE "pmix.errgroup.migrate" (bool)9
Set true to get migrate errors notification10

PMIX_ERROR_GROUP_RESOURCE "pmix.errgroup.resource" (bool)11
Set true to get resource errors notification12

PMIX_ERROR_GROUP_SPAWN "pmix.errgroup.spawn" (bool)13
Set true to get spawn errors notification14

PMIX_ERROR_GROUP_NODE "pmix.errgroup.node" (bool)15
Set true to get node status notification16

PMIX_ERROR_GROUP_LOCAL "pmix.errgroup.local" (bool)17
Set true to get local errors notification18

PMIX_ERROR_GROUP_GENERAL "pmix.errgroup.gen" (bool)19
Set true to get notified of generic errors20

PMIX_ERROR_HANDLER_ID "pmix.errhandler.id" (int)21
Errhandler reference id of notification being reported22

B.3 Version 2.1: Dec. 201823

The v2.1 update includes clarifications and corrections from the v2.0 document, plus addition of24
examples:25

• Clarify description of PMIx_Connect and PMIx_Disconnect APIs.26
• Explain that values for the PMIX_COLLECTIVE_ALGO are environment-dependent27
• Identify the namespace/rank values required for retrieving attribute-associated information using28
the PMIx_Get API29

• Provide definitions for session, job, application, and other terms used throughout the document30
• Clarify definitions of PMIX_UNIV_SIZE versus PMIX_JOB_SIZE31
• Clarify server module function return values32
• Provide examples of the use of PMIx_Get for retrieval of information33
• Clarify the use of PMIx_Get versus PMIx_Query_info_nb34
• Clarify return values for non-blocking APIs and emphasize that callback functions must not be35
invoked prior to return from the API36

• Provide detailed example for construction of the PMIx_server_register_nspace input37
information array38

APPENDIX B. REVISION HISTORY 531

• Define information levels (e.g., session vs job) and associated attributes for both storing and1
retrieving values2

• Clarify roles of PMIx server library and host environment for collective operations3
• Clarify definition of PMIX_UNIV_SIZE4

B.4 Version 2.2: Jan 20195

The v2.2 update includes the following clarifications and corrections from the v2.1 document:6

• Direct modex upcall function (pmix_server_dmodex_req_fn_t) cannot complete7
atomically as the API cannot return the requested information except via the provided callback8
function9

• Add missing pmix_data_array_t definition and support macros10
• Add a rule divider between implementer and host environment required attributes for clarity11
• Add PMIX_QUERY_QUALIFIERS_CREATE macro to simplify creation of pmix_query_t12

qualifiers13
• Add PMIX_APP_INFO_CREATE macro to simplify creation of pmix_app_t directives14
• Add flag and PMIX_INFO_IS_END macro for marking and detecting the end of a15
pmix_info_t array16

• Clarify the allowed hierarchical nesting of the PMIX_SESSION_INFO_ARRAY,17
PMIX_JOB_INFO_ARRAY, and associated attributes18

B.5 Version 3.0: Dec. 201819

The following APIs were introduced in v3.0 of the PMIx Standard:20

• Client APIs21

– PMIx_Log, PMIx_Job_control22
– PMIx_Allocation_request, PMIx_Process_monitor23
– PMIx_Get_credential, PMIx_Validate_credential24

• Server APIs25

– PMIx_server_IOF_deliver26
– PMIx_server_collect_inventory, PMIx_server_deliver_inventory27

• Tool APIs28

– PMIx_IOF_pull, PMIx_IOF_push, PMIx_IOF_deregister29
– PMIx_tool_connect_to_server30

• Common APIs31

– PMIx_IOF_channel_string32

532 PMIx Standard – Version 4.1 – October 2021

The document added a chapter on security credentials, a new section for IO forwarding to the1
Process Management chapter, and a few blocking forms of previously-existing non-blocking APIs.2
Attributes supporting the new APIs were introduced, as well as additional attributes for a few3
existing functions.4

B.5.1 Removed constants5

The following constants were removed in v3.0:6

PMIX_MODEX7
PMIX_INFO_ARRAY8

B.5.2 Deprecated attributes9

The following attributes were deprecated in v3.0:10

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)11
If true, indicates that the requested choice of algorithm is mandatory.12

B.5.3 Removed attributes13

The following attributes were removed in v3.0:14

PMIX_ERROR_NAME "pmix.errname" (pmix_status_t)15
Specific error to be notified16

PMIX_ERROR_GROUP_COMM "pmix.errgroup.comm" (bool)17
Set true to get comm errors notification18

PMIX_ERROR_GROUP_ABORT "pmix.errgroup.abort" (bool)19
Set true to get abort errors notification20

PMIX_ERROR_GROUP_MIGRATE "pmix.errgroup.migrate" (bool)21
Set true to get migrate errors notification22

PMIX_ERROR_GROUP_RESOURCE "pmix.errgroup.resource" (bool)23
Set true to get resource errors notification24

PMIX_ERROR_GROUP_SPAWN "pmix.errgroup.spawn" (bool)25
Set true to get spawn errors notification26

PMIX_ERROR_GROUP_NODE "pmix.errgroup.node" (bool)27
Set true to get node status notification28

PMIX_ERROR_GROUP_LOCAL "pmix.errgroup.local" (bool)29
Set true to get local errors notification30

PMIX_ERROR_GROUP_GENERAL "pmix.errgroup.gen" (bool)31
Set true to get notified of generic errors32

PMIX_ERROR_HANDLER_ID "pmix.errhandler.id" (int)33
Errhandler reference id of notification being reported34

APPENDIX B. REVISION HISTORY 533

B.6 Version 3.1: Jan. 20191

The v3.1 update includes clarifications and corrections from the v3.0 document:2

• Direct modex upcall function (pmix_server_dmodex_req_fn_t) cannot complete3
atomically as the API cannot return the requested information except via the provided callback4
function5

• Fix typo in name of PMIX_FWD_STDDIAG attribute6
• Correctly identify the information retrieval and storage attributes as “new” to v3 of the standard7
• Add missing pmix_data_array_t definition and support macros8
• Add a rule divider between implementer and host environment required attributes for clarity9
• Add PMIX_QUERY_QUALIFIERS_CREATE macro to simplify creation of pmix_query_t10
qualifiers11

• Add PMIX_APP_INFO_CREATE macro to simplify creation of pmix_app_t directives12
• Add new attributes to specify the level of information being requested where ambiguity may exist13
(see 6.1)14

• Add new attributes to assemble information by its level for storage where ambiguity may exist15
(see 16.2.3.1)16

• Add flag and PMIX_INFO_IS_END macro for marking and detecting the end of a17
pmix_info_t array18

• Clarify that PMIX_NUM_SLOTS is duplicative of (a) PMIX_UNIV_SIZE when used at the19
session level and (b) PMIX_MAX_PROCS when used at the job and application levels, but leave20
it in for backward compatibility.21

• Clarify difference between PMIX_JOB_SIZE and PMIX_MAX_PROCS22
• Clarify that PMIx_server_setup_application must be called per-job instead of23
per-application as the name implies. Unfortunately, this is a historical artifact. Note that both24
PMIX_NODE_MAP and PMIX_PROC_MAP must be included as input in the info array provided25
to that function. Further descriptive explanation of the “instant on” procedure will be provided in26
the next version of the PMIx Standard.27

• Clarify how the PMIx server expects data passed to the host by28
pmix_server_fencenb_fn_t should be aggregated across nodes, and provide a code29
snippet example30

B.7 Version 3.2: Oct. 202031

The v3.2 update includes clarifications and corrections from the v3.1 document:32

• Correct an error in the PMIx_Allocation_request function signature, and clarify the33
allocation ID attributes34

• Rename the PMIX_ALLOC_ID attribute to PMIX_ALLOC_REQ_ID to clarify that this is a35
string the user provides as a means to identify their request to query status36

534 PMIx Standard – Version 4.1 – October 2021

• Add a new PMIX_ALLOC_ID attribute that contains the identifier (provided by the host1
environment) for the resulting allocation which can later be used to reference the allocated2
resources in, for example, a call to PMIx_Spawn3

• Update the PMIx_generate_regex and PMIx_generate_ppn descriptions to clarify4
that the output from these generator functions may not be a NULL-terminated string, but instead5
could be a byte array of arbitrary binary content.6

• Add a new PMIX_REGEX constant that represents a regular expression data type.7

B.7.1 Deprecated constants8

The following constants were deprecated in v3.2:9

PMIX_ERR_DATA_VALUE_NOT_FOUND Data value not found10
PMIX_ERR_HANDSHAKE_FAILED Connection handshake failed11
PMIX_ERR_IN_ERRNO Error defined in errno12
PMIX_ERR_INVALID_ARG Invalid argument13
PMIX_ERR_INVALID_ARGS Invalid arguments14
PMIX_ERR_INVALID_KEY Invalid key15
PMIX_ERR_INVALID_KEY_LENGTH Invalid key length16
PMIX_ERR_INVALID_KEYVALP Invalid key/value pair17
PMIX_ERR_INVALID_LENGTH Invalid argument length18
PMIX_ERR_INVALID_NAMESPACE Invalid namespace19
PMIX_ERR_INVALID_NUM_ARGS Invalid number of arguments20
PMIX_ERR_INVALID_NUM_PARSED Invalid number parsed21
PMIX_ERR_INVALID_SIZE Invalid size22
PMIX_ERR_INVALID_VAL Invalid value23
PMIX_ERR_INVALID_VAL_LENGTH Invalid value length24
PMIX_ERR_NOT_IMPLEMENTED Not implemented25
PMIX_ERR_PACK_MISMATCH Pack mismatch26
PMIX_ERR_PROC_ENTRY_NOT_FOUND Process not found27
PMIX_ERR_PROC_REQUESTED_ABORT Process is already requested to abort28
PMIX_ERR_READY_FOR_HANDSHAKE Ready for handshake29
PMIX_ERR_SERVER_FAILED_REQUEST Failed to connect to the server30
PMIX_ERR_SERVER_NOT_AVAIL Server is not available31
PMIX_ERR_SILENT Silent error32
PMIX_GDS_ACTION_COMPLETE The Global Data Storage (GDS) action has completed33
PMIX_NOTIFY_ALLOC_COMPLETE Notify that a requested allocation operation is complete34

- the result of the request will be included in the info array35

APPENDIX B. REVISION HISTORY 535

B.7.2 Deprecated attributes1

The following attributes were deprecated in v3.2:2

PMIX_ARCH "pmix.arch" (uint32_t)3
Architecture flag.4

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)5
Comma-delimited list of algorithms to use for the collective operation. PMIx does not6
impose any requirements on a host environment’s collective algorithms. Thus, the7
acceptable values for this attribute will be environment-dependent - users are encouraged to8
check their host environment for supported values.9

PMIX_DSTPATH "pmix.dstpath" (char*)10
Path to shared memory data storage (dstore) files. Deprecated from Standard as being11
implementation specific.12

PMIX_HWLOC_HOLE_KIND "pmix.hwlocholek" (char*)13
Kind of VM “hole” HWLOC should use for shared memory14

PMIX_HWLOC_SHARE_TOPO "pmix.hwlocsh" (bool)15
Share the HWLOC topology via shared memory16

PMIX_HWLOC_SHMEM_ADDR "pmix.hwlocaddr" (size_t)17
Address of the HWLOC shared memory segment.18

PMIX_HWLOC_SHMEM_FILE "pmix.hwlocfile" (char*)19
Path to the HWLOC shared memory file.20

PMIX_HWLOC_SHMEM_SIZE "pmix.hwlocsize" (size_t)21
Size of the HWLOC shared memory segment.22

PMIX_HWLOC_XML_V1 "pmix.hwlocxml1" (char*)23
XML representation of local topology using HWLOC’s v1.x format.24

PMIX_HWLOC_XML_V2 "pmix.hwlocxml2" (char*)25
XML representation of local topology using HWLOC’s v2.x format.26

PMIX_LOCAL_TOPO "pmix.ltopo" (char*)27
XML representation of local node topology.28

PMIX_MAPPER "pmix.mapper" (char*)29
Mapping mechanism to use for placing spawned processes - when accessed using30
PMIx_Get, use the PMIX_RANK_WILDCARD value for the rank to discover the mapping31
mechanism used for the provided namespace.32

PMIX_MAP_BLOB "pmix.mblob" (pmix_byte_object_t)33
Packed blob of process location.34

PMIX_NON_PMI "pmix.nonpmi" (bool)35
Spawned processes will not call PMIx_Init.36

PMIX_PROC_BLOB "pmix.pblob" (pmix_byte_object_t)37
Packed blob of process data.38

PMIX_PROC_URI "pmix.puri" (char*)39
URI containing contact information for the specified process.40

PMIX_TOPOLOGY_FILE "pmix.topo.file" (char*)41
Full path to file containing XML topology description42

536 PMIx Standard – Version 4.1 – October 2021

PMIX_TOPOLOGY_SIGNATURE "pmix.toposig" (char*)1
Topology signature string.2

PMIX_TOPOLOGY_XML "pmix.topo.xml" (char*)3
XML-based description of topology4

B.8 Version 4.0: Dec. 20205

NOTE: The PMIx Standard document has undergone significant reorganization in an effort to6
become more user-friendly. Highlights include:7

• Moving all added, deprecated, and removed items to this revision log section to make them more8
visible9

• Co-locating constants and attribute definitions with the primary API that uses them - citations10
and hyperlinks are retained elsewhere11

• Splitting the Key-Value Management chapter into separate chapters on the use of reserved keys,12
non-reserved keys, and non-process-related key-value data exchange13

• Creating a new chapter on synchronization and data access methods14
• Removing references to specific implementations of PMIx and to implementation-specific15
features and/or behaviors16

In addition to the reorganization, the following changes were introduced in v4.0 of the PMIx17
Standard:18

• Clarified that the PMIx_Fence_nb operation can immediately return19
PMIX_OPERATION_SUCCEEDED in lieu of passing the request to a PMIx server if only the20
calling process is involved in the operation21

• Added the PMIx_Register_attributes API by which a host environment can register the22
attributes it supports for each server-to-host operation23

• Added the ability to query supported attributes from the PMIx tool, client and server libraries, as24
well as the host environment via the new pmix_regattr_t structure. Both human-readable25
and machine-parsable output is supported. New attributes to support this operation include:26

– PMIX_CLIENT_ATTRIBUTES, PMIX_SERVER_ATTRIBUTES,27
PMIX_TOOL_ATTRIBUTES, and PMIX_HOST_ATTRIBUTES to identify which library28
supports the attribute; and29

– PMIX_MAX_VALUE, PMIX_MIN_VALUE, and PMIX_ENUM_VALUE to provide30
machine-parsable description of accepted values31

• Add PMIX_APP_WILDCARD to reference all applications within a given job32
• Fix signature of blocking APIs PMIx_Allocation_request, PMIx_Job_control,33
PMIx_Process_monitor, PMIx_Get_credential, and34
PMIx_Validate_credential to allow return of results35

• Update description to provide an option for blocking behavior of the36
PMIx_Register_event_handler, PMIx_Deregister_event_handler,37
PMIx_Notify_event, PMIx_IOF_pull, PMIx_IOF_deregister, and38
PMIx_IOF_push APIs. The need for blocking forms of these functions was not initially39

APPENDIX B. REVISION HISTORY 537

anticipated but has emerged over time. For these functions, the return value is sufficient to1
provide the caller with information otherwise returned via callback. Thus, use of a NULL value2
as the callback function parameter was deemed a minimal disruption method for providing the3
desired capability4

• Added a chapter on fabric support that includes new APIs, datatypes, and attributes5
• Added a chapter on process sets and groups that includes new APIs and attributes6
• Added APIs and a new datatypes to support generation and parsing of PMIx locality and cpuset7
strings8

• Added a new chapter on tools that provides deeper explanation on their operation and collecting9
all tool-relevant definitions into one location. Also introduced two new APIs and removed10
restriction that limited tools to being connected to only one server at a time.11

• Extended behavior of PMIx_server_init to scalably expose the topology description to the12
local clients. This includes creating any required shared memory backing stores and/or XML13
representations, plus ensuring that all necessary key-value pairs for clients to access the14
description are included in the job-level information provided to each client.15

• Added a new API by which the host can manually progress the PMIx library in lieu of the16
library’s own progress thread. s17

The above changes included introduction of the following APIs and data types:18

• Client APIs19

– PMIx_Group_construct, PMIx_Group_construct_nb20
– PMIx_Group_destruct, PMIx_Group_destruct_nb21
– PMIx_Group_invite, PMIx_Group_invite_nb22
– PMIx_Group_join, PMIx_Group_join_nb23
– PMIx_Group_leave, PMIx_Group_leave_nb24
– PMIx_Get_relative_locality, PMIx_Load_topology25
– PMIx_Parse_cpuset_string, PMIx_Get_cpuset26
– PMIx_Link_state_string, PMIx_Job_state_string27
– PMIx_Device_type_string28
– PMIx_Fabric_register, PMIx_Fabric_register_nb29
– PMIx_Fabric_update, PMIx_Fabric_update_nb30
– PMIx_Fabric_deregister, PMIx_Fabric_deregister_nb31
– PMIx_Compute_distances, PMIx_Compute_distances_nb32
– PMIx_Get_attribute_string, PMIx_Get_attribute_name33
– PMIx_Progress34

• Server APIs35

– PMIx_server_generate_locality_string36
– PMIx_Register_attributes37
– PMIx_server_define_process_set, PMIx_server_delete_process_set38
– pmix_server_grp_fn_t, pmix_server_fabric_fn_t39
– pmix_server_client_connected2_fn_t40

538 PMIx Standard – Version 4.1 – October 2021

– PMIx_server_generate_cpuset_string1
– PMIx_server_register_resources, PMIx_server_deregister_resources2

• Tool APIs3

– PMIx_tool_disconnect4
– PMIx_tool_set_server5
– PMIx_tool_attach_to_server6
– PMIx_tool_get_servers7

• Data types8

– pmix_regattr_t9
– pmix_cpuset_t10
– pmix_topology_t11
– pmix_locality_t12
– pmix_bind_envelope_t13
– pmix_group_opt_t14
– pmix_group_operation_t15
– pmix_fabric_t16
– pmix_device_distance_t17
– pmix_coord_t18
– pmix_coord_view_t19
– pmix_geometry_t20
– pmix_link_state_t21
– pmix_job_state_t22
– pmix_device_type_t23

• Callback functions24

– pmix_device_dist_cbfunc_t25

B.8.1 Added Constants26

General error constants27
PMIX_ERR_EXISTS_OUTSIDE_SCOPE28
PMIX_ERR_PARAM_VALUE_NOT_SUPPORTED29
PMIX_ERR_EMPTY30

31

APPENDIX B. REVISION HISTORY 539

Data type constants1
PMIX_COORD2
PMIX_REGATTR3
PMIX_REGEX4
PMIX_JOB_STATE5
PMIX_LINK_STATE6
PMIX_PROC_CPUSET7
PMIX_GEOMETRY8
PMIX_DEVICE_DIST9
PMIX_ENDPOINT10
PMIX_TOPO11
PMIX_DEVTYPE12
PMIX_LOCTYPE13
PMIX_DATA_TYPE_MAX14
PMIX_COMPRESSED_BYTE_OBJECT15

16

Info directives17
PMIX_INFO_REQD_PROCESSED18

19

Server constants20
PMIX_ERR_REPEAT_ATTR_REGISTRATION21

22

Job-Mgmt constants23
PMIX_ERR_CONFLICTING_CLEANUP_DIRECTIVES24

25

Publish constants26
PMIX_ERR_DUPLICATE_KEY27

28

Tool constants29
PMIX_LAUNCHER_READY30
PMIX_ERR_IOF_FAILURE31
PMIX_ERR_IOF_COMPLETE32
PMIX_EVENT_JOB_START33
PMIX_LAUNCH_COMPLETE34
PMIX_EVENT_JOB_END35
PMIX_EVENT_SESSION_START36
PMIX_EVENT_SESSION_END37
PMIX_ERR_PROC_TERM_WO_SYNC38
PMIX_ERR_JOB_CANCELED39
PMIX_ERR_JOB_ABORTED40

540 PMIx Standard – Version 4.1 – October 2021

PMIX_ERR_JOB_KILLED_BY_CMD1
PMIX_ERR_JOB_ABORTED_BY_SIG2
PMIX_ERR_JOB_TERM_WO_SYNC3
PMIX_ERR_JOB_SENSOR_BOUND_EXCEEDED4
PMIX_ERR_JOB_NON_ZERO_TERM5
PMIX_ERR_JOB_ABORTED_BY_SYS_EVENT6
PMIX_DEBUG_WAITING_FOR_NOTIFY7
PMIX_DEBUGGER_RELEASE8

9

Fabric constants10
PMIX_FABRIC_UPDATE_PENDING11
PMIX_FABRIC_UPDATED12
PMIX_FABRIC_UPDATE_ENDPOINTS13
PMIX_COORD_VIEW_UNDEF14
PMIX_COORD_LOGICAL_VIEW15
PMIX_COORD_PHYSICAL_VIEW16
PMIX_LINK_STATE_UNKNOWN17
PMIX_LINK_DOWN18
PMIX_LINK_UP19
PMIX_FABRIC_REQUEST_INFO20
PMIX_FABRIC_UPDATE_INFO21

22

Sets-Groups constants23
PMIX_PROCESS_SET_DEFINE24
PMIX_PROCESS_SET_DELETE25
PMIX_GROUP_INVITED26
PMIX_GROUP_LEFT27
PMIX_GROUP_MEMBER_FAILED28
PMIX_GROUP_INVITE_ACCEPTED29
PMIX_GROUP_INVITE_DECLINED30
PMIX_GROUP_INVITE_FAILED31
PMIX_GROUP_MEMBERSHIP_UPDATE32
PMIX_GROUP_CONSTRUCT_ABORT33
PMIX_GROUP_CONSTRUCT_COMPLETE34
PMIX_GROUP_LEADER_FAILED35
PMIX_GROUP_LEADER_SELECTED36
PMIX_GROUP_CONTEXT_ID_ASSIGNED37

38

Process-Mgmt constants39
PMIX_ERR_JOB_ALLOC_FAILED40
PMIX_ERR_JOB_APP_NOT_EXECUTABLE41

APPENDIX B. REVISION HISTORY 541

PMIX_ERR_JOB_NO_EXE_SPECIFIED1
PMIX_ERR_JOB_FAILED_TO_MAP2
PMIX_ERR_JOB_FAILED_TO_LAUNCH3
PMIX_LOCALITY_UNKNOWN4
PMIX_LOCALITY_NONLOCAL5
PMIX_LOCALITY_SHARE_HWTHREAD6
PMIX_LOCALITY_SHARE_CORE7
PMIX_LOCALITY_SHARE_L1CACHE8
PMIX_LOCALITY_SHARE_L2CACHE9
PMIX_LOCALITY_SHARE_L3CACHE10
PMIX_LOCALITY_SHARE_PACKAGE11
PMIX_LOCALITY_SHARE_NUMA12
PMIX_LOCALITY_SHARE_NODE13

14

Events15
PMIX_EVENT_SYS_BASE16
PMIX_EVENT_NODE_DOWN17
PMIX_EVENT_NODE_OFFLINE18
PMIX_EVENT_SYS_OTHER19

20

B.8.2 Added Attributes21

Sync-Access attributes22
PMIX_COLLECT_GENERATED_JOB_INFO "pmix.collect.gen" (bool)23

Collect all job-level information (i.e., reserved keys) that was locally generated by PMIx24
servers. Some job-level information (e.g., distance between processes and fabric devices) is25
best determined on a distributed basis as it primarily pertains to local processes. Should26
remote processes need to access the information, it can either be obtained collectively using27
the PMIx_Fence operation with this directive, or can be retrieved one peer at a time using28
PMIx_Get without first having performed the job-wide collection.29

PMIX_ALL_CLONES_PARTICIPATE "pmix.clone.part" (bool)30
All clones of the calling process must participate in the collective operation.31

PMIX_GET_POINTER_VALUES "pmix.get.pntrs" (bool)32
Request that any pointers in the returned value point directly to values in the key-value store.33
The user must not release any returned data pointers.34

PMIX_GET_STATIC_VALUES "pmix.get.static" (bool)35
Request that the data be returned in the provided storage location. The caller is responsible36
for destructing the pmix_value_t using the PMIX_VALUE_DESTRUCT macro when37
done.38

PMIX_GET_REFRESH_CACHE "pmix.get.refresh" (bool)39

542 PMIx Standard – Version 4.1 – October 2021

When retrieving data for a remote process, refresh the existing local data cache for the1
process in case new values have been put and committed by the process since the last refresh.2
Local process information is assumed to be automatically updated upon posting by the3
process. A NULL key will cause all values associated with the process to be refreshed -4
otherwise, only the indicated key will be updated. A process rank of5
PMIX_RANK_WILDCARD can be used to update job-related information in dynamic6
environments. The user is responsible for subsequently updating refreshed values they may7
have cached in their own local memory.8

PMIX_QUERY_RESULTS "pmix.qry.res" (pmix_data_array_t)9
Contains an array of query results for a given pmix_query_t passed to the10
PMIx_Query_info APIs. If qualifiers were included in the query, then the first element11
of the array shall be the PMIX_QUERY_QUALIFIERS attribute containing those qualifiers.12
Each of the remaining elements of the array is a pmix_info_t containing the query key13
and the corresponding value returned by the query. This attribute is solely for reporting14
purposes and cannot be used in PMIx_Get or other query operations.15

PMIX_QUERY_QUALIFIERS "pmix.qry.quals" (pmix_data_array_t)16
Contains an array of qualifiers that were included in the query that produced the provided17
results. This attribute is solely for reporting purposes and cannot be used in PMIx_Get or18
other query operations.19

PMIX_QUERY_SUPPORTED_KEYS "pmix.qry.keys" (char*)20
Returns comma-delimited list of keys supported by the query function. NO QUALIFIERS.21

PMIX_QUERY_SUPPORTED_QUALIFIERS "pmix.qry.quals" (char*)22
Return comma-delimited list of qualifiers supported by a query on the provided key, instead23
of actually performing the query on the key. NO QUALIFIERS.24

PMIX_QUERY_NAMESPACE_INFO "pmix.qry.nsinfo" (pmix_data_array_t*)25
Return an array of active namespace information - each element will itself contain an array26
including the namespace plus the command line of the application executing within it.27
OPTIONAL QUALIFIERS: PMIX_NSPACE of specific namespace whose info is being28
requested.29

PMIX_QUERY_ATTRIBUTE_SUPPORT "pmix.qry.attrs" (bool)30
Query list of supported attributes for specified APIs. REQUIRED QUALIFIERS: one or31
more of PMIX_CLIENT_FUNCTIONS, PMIX_SERVER_FUNCTIONS,32
PMIX_TOOL_FUNCTIONS, and PMIX_HOST_FUNCTIONS.33

PMIX_QUERY_AVAIL_SERVERS "pmix.qry.asrvrs" (pmix_data_array_t*)34
Return an array of pmix_info_t, each element itself containing a35
PMIX_SERVER_INFO_ARRAY entry holding all available data for a server on this node to36
which the caller might be able to connect.37

PMIX_SERVER_INFO_ARRAY "pmix.srv.arr" (pmix_data_array_t)38

APPENDIX B. REVISION HISTORY 543

Array of pmix_info_t about a given server, starting with its PMIX_NSPACE and1
including at least one of the rendezvous-required pieces of information.2

PMIX_CLIENT_FUNCTIONS "pmix.client.fns" (bool)3
Request a list of functions supported by the PMIx client library.4

PMIX_CLIENT_ATTRIBUTES "pmix.client.attrs" (bool)5
Request attributes supported by the PMIx client library.6

PMIX_SERVER_FUNCTIONS "pmix.srvr.fns" (bool)7
Request a list of functions supported by the PMIx server library.8

PMIX_SERVER_ATTRIBUTES "pmix.srvr.attrs" (bool)9
Request attributes supported by the PMIx server library.10

PMIX_HOST_FUNCTIONS "pmix.srvr.fns" (bool)11
Request a list of functions supported by the host environment.12

PMIX_HOST_ATTRIBUTES "pmix.host.attrs" (bool)13
Request attributes supported by the host environment.14

PMIX_TOOL_FUNCTIONS "pmix.tool.fns" (bool)15
Request a list of functions supported by the PMIx tool library.16

PMIX_TOOL_ATTRIBUTES "pmix.setup.env" (bool)17
Request attributes supported by the PMIx tool library functions.18

Server attributes19
PMIX_TOPOLOGY2 "pmix.topo2" (pmix_topology_t)20

Provide a pointer to an implementation-specific description of the local node topology.21

PMIX_SERVER_SHARE_TOPOLOGY "pmix.srvr.share" (bool)22
The PMIx server is to share its copy of the local node topology (whether given to it or23
self-discovered) with any clients.24

PMIX_SERVER_SESSION_SUPPORT "pmix.srvr.sess" (bool)25
The host RM wants to declare itself as being the local session server for PMIx connection26
requests.27

PMIX_SERVER_START_TIME "pmix.srvr.strtime" (char*)28
Time when the server started - i.e., when the server created it’s rendezvous file (given in29
ctime string format).30

PMIX_SERVER_SCHEDULER "pmix.srv.sched" (bool)31
Server is supporting system scheduler and desires access to appropriate WLM-supporting32
features. Indicates that the library is to be initialized for scheduler support.33

PMIX_JOB_INFO_ARRAY "pmix.job.arr" (pmix_data_array_t)34

544 PMIx Standard – Version 4.1 – October 2021

Provide an array of pmix_info_t containing job-realm information. The1
PMIX_SESSION_ID attribute of the session containing the job is required to be included in2
the array whenever the PMIx server library may host multiple sessions (e.g., when executing3
with a host RM daemon). As information is registered one job (aka namespace) at a time via4
the PMIx_server_register_nspace API, there is no requirement that the array5
contain either the PMIX_NSPACE or PMIX_JOBID attributes when used in that context6
(though either or both of them may be included). At least one of the job identifiers must be7
provided in all other contexts where the job being referenced is ambiguous.8

PMIX_APP_INFO_ARRAY "pmix.app.arr" (pmix_data_array_t)9
Provide an array of pmix_info_t containing application-realm information. The10
PMIX_NSPACE or PMIX_JOBID attributes of the job containing the application, plus its11
PMIX_APPNUM attribute, must to be included in the array when the array is not included as12
part of a call to PMIx_server_register_nspace - i.e., when the job containing the13
application is ambiguous. The job identification is otherwise optional.14

PMIX_PROC_INFO_ARRAY "pmix.pdata" (pmix_data_array_t)15
Provide an array of pmix_info_t containing process-realm information. The16
PMIX_RANK and PMIX_NSPACE attributes, or the PMIX_PROCID attribute, are required17
to be included in the array when the array is not included as part of a call to18
PMIx_server_register_nspace - i.e., when the job containing the process is19
ambiguous. All three may be included if desired. When the array is included in some20
broader structure that identifies the job, then only the PMIX_RANK or the PMIX_PROCID21
attribute must be included (the others are optional).22

PMIX_NODE_INFO_ARRAY "pmix.node.arr" (pmix_data_array_t)23
Provide an array of pmix_info_t containing node-realm information. At a minimum,24
either the PMIX_NODEID or PMIX_HOSTNAME attribute is required to be included in the25
array, though both may be included.26

PMIX_MAX_VALUE "pmix.descr.maxval" (varies)27
Used in pmix_regattr_t to describe the maximum valid value for the associated28
attribute.29

PMIX_MIN_VALUE "pmix.descr.minval" (varies)30
Used in pmix_regattr_t to describe the minimum valid value for the associated31
attribute.32

PMIX_ENUM_VALUE "pmix.descr.enum" (char*)33
Used in pmix_regattr_t to describe accepted values for the associated attribute.34
Numerical values shall be presented in a form convertible to the attribute’s declared data35
type. Named values (i.e., values defined by constant names via a typical C-language enum36
declaration) must be provided as their numerical equivalent.37

PMIX_HOMOGENEOUS_SYSTEM "pmix.homo" (bool)38
The nodes comprising the session are homogeneous - i.e., they each contain the same39
number of identical packages, fabric interfaces, GPUs, and other devices.40

APPENDIX B. REVISION HISTORY 545

PMIX_REQUIRED_KEY "pmix.req.key" (char*)1
Identifies a key that must be included in the requested information. If the specified key is not2
already available, then the PMIx servers are required to delay response to the dmodex3
request until either the key becomes available or the request times out.4

Job-Mgmt attributes5
PMIX_ALLOC_ID "pmix.alloc.id" (char*)6

A string identifier (provided by the host environment) for the resulting allocation which can7
later be used to reference the allocated resources in, for example, a call to PMIx_Spawn.8

PMIX_ALLOC_QUEUE "pmix.alloc.queue" (char*)9
Name of the WLM queue to which the allocation request is to be directed, or the queue being10
referenced in a query.11

Publish attributes12
PMIX_ACCESS_PERMISSIONS "pmix.aperms" (pmix_data_array_t)13

Define access permissions for the published data. The value shall contain an array of14
pmix_info_t structs containing the specified permissions.15

PMIX_ACCESS_USERIDS "pmix.auids" (pmix_data_array_t)16
Array of effective UIDs that are allowed to access the published data.17

PMIX_ACCESS_GRPIDS "pmix.agids" (pmix_data_array_t)18
Array of effective GIDs that are allowed to access the published data.19

Reserved keys20
PMIX_NUM_ALLOCATED_NODES "pmix.num.anodes" (uint32_t)21

Number of nodes in the specified realm regardless of whether or not they currently host22
processes. Defaults to the job realm.23

PMIX_NUM_NODES "pmix.num.nodes" (uint32_t)24
Number of nodes currently hosting processes in the specified realm. Defaults to the job25
realm.26

PMIX_CMD_LINE "pmix.cmd.line" (char*)27
Command line used to execute the specified job (e.g., "mpirun -n 2 –map-by foo ./myapp : -n28
4 ./myapp2").29

PMIX_APP_ARGV "pmix.app.argv" (char*)30
Consolidated argv passed to the spawn command for the given application (e.g., "./myapp31
arg1 arg2 arg3").32

PMIX_PACKAGE_RANK "pmix.pkgrank" (uint16_t)33
Rank of the specified process on the package where this process resides - refers to the34
numerical location (starting from zero) of the process on its package when counting only35
those processes from the same job that share the package, ordered by their overall rank36
within that job. Note that processes that are not bound to PUs within a single specific37
package cannot have a package rank.38

546 PMIx Standard – Version 4.1 – October 2021

PMIX_REINCARNATION "pmix.reinc" (uint32_t)1
Number of times this process has been re-instantiated - i.e, a value of zero indicates that the2
process has never been restarted. 53

PMIX_HOSTNAME_ALIASES "pmix.alias" (char*)4
Comma-delimited list of names by which the target node is known.5

PMIX_HOSTNAME_KEEP_FQDN "pmix.fqdn" (bool)6
FQDNs are being retained by the PMIx library.7

PMIX_CPUSET_BITMAP "pmix.bitmap" (pmix_cpuset_t*)8
Bitmap applied to the process upon launch.9

PMIX_EXTERNAL_PROGRESS "pmix.evext" (bool)10
The host shall progress the PMIx library via calls to PMIx_Progress11

PMIX_NODE_MAP_RAW "pmix.nmap.raw" (char*)12
Comma-delimited list of nodes containing procs within the specified realm. Defaults to the13
job realm.14

PMIX_PROC_MAP_RAW "pmix.pmap.raw" (char*)15
Semi-colon delimited list of strings, each string containing a comma-delimited list of ranks16
on the corresponding node within the specified realm. Defaults to the job realm.17

Tool attributes18
PMIX_TOOL_CONNECT_OPTIONAL "pmix.tool.conopt" (bool)19

The tool shall connect to a server if available, but otherwise continue to operate20
unconnected.21

PMIX_TOOL_ATTACHMENT_FILE "pmix.tool.attach" (char*)22
Pathname of file containing connection information to be used for attaching to a specific23
server.24

PMIX_LAUNCHER_RENDEZVOUS_FILE "pmix.tool.lncrnd" (char*)25
Pathname of file where the launcher is to store its connection information so that the26
spawning tool can connect to it.27

PMIX_PRIMARY_SERVER "pmix.pri.srvr" (bool)28
The server to which the tool is connecting shall be designated the primary server once29
connection has been accomplished.30

PMIX_NOHUP "pmix.nohup" (bool)31
Any processes started on behalf of the calling tool (or the specified namespace, if such32
specification is included in the list of attributes) should continue after the tool disconnects33
from its server.34

PMIX_LAUNCHER_DAEMON "pmix.lnch.dmn" (char*)35

APPENDIX B. REVISION HISTORY 547

Path to executable that is to be used as the backend daemon for the launcher. This replaces1
the launcher’s own daemon with the specified executable. Note that the user is therefore2
responsible for ensuring compatibility of the specified executable and the host launcher.3

PMIX_FORKEXEC_AGENT "pmix.frkex.agnt" (char*)4
Path to executable that the launcher’s backend daemons are to fork/exec in place of the actual5
application processes. The fork/exec agent shall connect back (as a PMIx tool) to the6
launcher’s daemon to receive its spawn instructions, and is responsible for starting the actual7
application process it replaced. See Section 17.4.3 for details.8

PMIX_EXEC_AGENT "pmix.exec.agnt" (char*)9
Path to executable that the launcher’s backend daemons are to fork/exec in place of the actual10
application processes. The launcher’s daemon shall pass the full command line of the11
application on the command line of the exec agent, which shall not connect back to the12
launcher’s daemon. The exec agent is responsible for exec’ing the specified application13
process in its own place. See Section 17.4.3 for details.14

PMIX_IOF_PUSH_STDIN "pmix.iof.stdin" (bool)15
Requests that the PMIx library collect the stdin of the requester and forward it to the16
processes specified in the PMIx_IOF_push call. All collected data is sent to the same17
targets until stdin is closed, or a subsequent call to PMIx_IOF_push is made that18
includes the PMIX_IOF_COMPLETE attribute indicating that forwarding of stdin is to be19
terminated.20

PMIX_IOF_COPY "pmix.iof.cpy" (bool)21
Requests that the host environment deliver a copy of the specified output stream(s) to the22
tool, letting the stream(s) continue to also be delivered to the default location. This allows the23
tool to tap into the output stream(s) without redirecting it from its current final destination.24

PMIX_IOF_REDIRECT "pmix.iof.redir" (bool)25
Requests that the host environment intercept the specified output stream(s) and deliver it to26
the requesting tool instead of its current final destination. This might be used, for example,27
during a debugging procedure to avoid injection of debugger-related output into the28
application’s results file. The original output stream(s) destination is restored upon29
termination of the tool.30

PMIX_DEBUG_TARGET "pmix.dbg.tgt" (pmix_proc_t*)31
Identifier of process(es) to be debugged - a rank of PMIX_RANK_WILDCARD indicates that32
all processes in the specified namespace are to be included.33

PMIX_DEBUG_DAEMONS_PER_PROC "pmix.dbg.dpproc" (uint16_t)34
Number of debugger daemons to be spawned per application process. The launcher is to pass35
the identifier of the namespace to be debugged by including the PMIX_DEBUG_TARGET36
attribute in the daemon’s job-level information. The debugger daemons spawned on a given37
node are responsible for self-determining their specific target process(es) - e.g., by38
referencing their own PMIX_LOCAL_RANK in the daemon debugger job versus the39
corresponding PMIX_LOCAL_RANK of the target processes on the node.40

548 PMIx Standard – Version 4.1 – October 2021

PMIX_DEBUG_DAEMONS_PER_NODE "pmix.dbg.dpnd" (uint16_t)1
Number of debugger daemons to be spawned on each node where the target job is executing.2
The launcher is to pass the identifier of the namespace to be debugged by including the3
PMIX_DEBUG_TARGET attribute in the daemon’s job-level information. The debugger4
daemons spawned on a given node are responsible for self-determining their specific target5
process(es) - e.g., by referencing their own PMIX_LOCAL_RANK in the daemon debugger6
job versus the corresponding PMIX_LOCAL_RANK of the target processes on the node.7

PMIX_WAIT_FOR_CONNECTION "pmix.wait.conn" (bool)8
Wait until the specified process has connected to the requesting tool or server, or the9
operation times out (if the PMIX_TIMEOUT directive is included in the request).10

PMIX_LAUNCH_DIRECTIVES "pmix.lnch.dirs" (pmix_data_array_t*)11
Array of pmix_info_t containing directives for the launcher - a convenience attribute for12
retrieving all directives with a single call to PMIx_Get.13

Fabric attributes14
PMIX_SERVER_SCHEDULER "pmix.srv.sched" (bool)15

Server is supporting system scheduler and desires access to appropriate WLM-supporting16
features. Indicates that the library is to be initialized for scheduler support.17

PMIX_FABRIC_COST_MATRIX "pmix.fab.cm" (pointer)18
Pointer to a two-dimensional square array of point-to-point relative communication costs19
expressed as uint16_t values.20

PMIX_FABRIC_GROUPS "pmix.fab.grps" (string)21
A string delineating the group membership of nodes in the overall system, where each fabric22
group consists of the group number followed by a colon and a comma-delimited list of nodes23
in that group, with the groups delimited by semi-colons (e.g.,24
0:node000,node002,node004,node006;1:node001,node003,25
node005,node007)26

PMIX_FABRIC_VENDOR "pmix.fab.vndr" (string)27
Name of the vendor (e.g., Amazon, Mellanox, HPE, Intel) for the specified fabric.28

PMIX_FABRIC_IDENTIFIER "pmix.fab.id" (string)29
An identifier for the specified fabric (e.g., MgmtEthernet, Slingshot-11, OmniPath-1).30

PMIX_FABRIC_INDEX "pmix.fab.idx" (size_t)31
The index of the fabric as returned in pmix_fabric_t.32

PMIX_FABRIC_NUM_DEVICES "pmix.fab.nverts" (size_t)33
Total number of fabric devices in the overall system - corresponds to the number of rows or34
columns in the cost matrix.35

PMIX_FABRIC_COORDINATES "pmix.fab.coords" (pmix_data_array_t)36

APPENDIX B. REVISION HISTORY 549

Array of pmix_geometry_t fabric coordinates for devices on the specified node. The1
array will contain the coordinates of all devices on the node, including values for all2
supported coordinate views. The information for devices on the local node shall be provided3
if the node is not specified in the request.4

PMIX_FABRIC_DIMS "pmix.fab.dims" (uint32_t)5
Number of dimensions in the specified fabric plane/view. If no plane is specified in a6
request, then the dimensions of all planes in the overall system will be returned as a7
pmix_data_array_t containing an array of uint32_t values. Default is to provide8
dimensions in logical view.9

PMIX_FABRIC_ENDPT "pmix.fab.endpt" (pmix_data_array_t)10
Fabric endpoints for a specified process. As multiple endpoints may be assigned to a given11
process (e.g., in the case where multiple devices are associated with a package to which the12
process is bound), the returned values will be provided in a pmix_data_array_t of13
pmix_endpoint_t elements.14

PMIX_FABRIC_SHAPE "pmix.fab.shape" (pmix_data_array_t*)15
The size of each dimension in the specified fabric plane/view, returned in a16
pmix_data_array_t containing an array of uint32_t values. The size is defined as17
the number of elements present in that dimension - e.g., the number of devices in one18
dimension of a physical view of a fabric plane. If no plane is specified, then the shape of19
each plane in the overall system will be returned in a pmix_data_array_t array where20
each element is itself a two-element array containing the PMIX_FABRIC_PLANE followed21
by that plane’s fabric shape. Default is to provide the shape in logical view.22

PMIX_FABRIC_SHAPE_STRING "pmix.fab.shapestr" (string)23
Network shape expressed as a string (e.g., "10x12x2"). If no plane is specified, then the24
shape of each plane in the overall system will be returned in a pmix_data_array_t array25
where each element is itself a two-element array containing the PMIX_FABRIC_PLANE26
followed by that plane’s fabric shape string. Default is to provide the shape in logical view.27

PMIX_SWITCH_PEERS "pmix.speers" (pmix_data_array_t)28
Peer ranks that share the same switch as the process specified in the call to PMIx_Get.29
Returns a pmix_data_array_t array of pmix_info_t results, each element30
containing the PMIX_SWITCH_PEERS key with a three-element pmix_data_array_t31
array of pmix_info_t containing the PMIX_DEVICE_ID of the local fabric device, the32
PMIX_FABRIC_SWITCH identifying the switch to which it is connected, and a33
comma-delimited string of peer ranks sharing the switch to which that device is connected.34

PMIX_FABRIC_PLANE "pmix.fab.plane" (string)35
ID string of a fabric plane (e.g., CIDR for Ethernet). When used as a modifier in a request36
for information, specifies the plane whose information is to be returned. When used directly37
as a key in a request, returns a pmix_data_array_t of string identifiers for all fabric38
planes in the overall system.39

PMIX_FABRIC_SWITCH "pmix.fab.switch" (string)40

550 PMIx Standard – Version 4.1 – October 2021

ID string of a fabric switch. When used as a modifier in a request for information, specifies1
the switch whose information is to be returned. When used directly as a key in a request,2
returns a pmix_data_array_t of string identifiers for all fabric switches in the overall3
system.4

PMIX_FABRIC_DEVICE "pmix.fabdev" (pmix_data_array_t)5
An array of pmix_info_t describing a particular fabric device using one or more of the6
attributes defined below. The first element in the array shall be the PMIX_DEVICE_ID of7
the device.8

PMIX_FABRIC_DEVICE_INDEX "pmix.fabdev.idx" (uint32_t)9
Index of the device within an associated communication cost matrix.10

PMIX_FABRIC_DEVICE_NAME "pmix.fabdev.nm" (string)11
The operating system name associated with the device. This may be a logical fabric interface12
name (e.g. "eth0" or "eno1") or an absolute filename.13

PMIX_FABRIC_DEVICE_VENDOR "pmix.fabdev.vndr" (string)14
Indicates the name of the vendor that distributes the device.15

PMIX_FABRIC_DEVICE_BUS_TYPE "pmix.fabdev.btyp" (string)16
The type of bus to which the device is attached (e.g., "PCI", "GEN-Z").17

PMIX_FABRIC_DEVICE_VENDORID "pmix.fabdev.vendid" (string)18
This is a vendor-provided identifier for the device or product.19

PMIX_FABRIC_DEVICE_DRIVER "pmix.fabdev.driver" (string)20
The name of the driver associated with the device.21

PMIX_FABRIC_DEVICE_FIRMWARE "pmix.fabdev.fmwr" (string)22
The device’s firmware version.23

PMIX_FABRIC_DEVICE_ADDRESS "pmix.fabdev.addr" (string)24
The primary link-level address associated with the device, such as a MAC address. If25
multiple addresses are available, only one will be reported.26

PMIX_FABRIC_DEVICE_COORDINATES "pmix.fab.coord" (pmix_geometry_t)27
The pmix_geometry_t fabric coordinates for the device, including values for all28
supported coordinate views.29

PMIX_FABRIC_DEVICE_MTU "pmix.fabdev.mtu" (size_t)30
The maximum transfer unit of link level frames or packets, in bytes.31

PMIX_FABRIC_DEVICE_SPEED "pmix.fabdev.speed" (size_t)32
The active link data rate, given in bits per second.33

PMIX_FABRIC_DEVICE_STATE "pmix.fabdev.state" (pmix_link_state_t)34
The last available physical port state for the specified device. Possible values are35
PMIX_LINK_STATE_UNKNOWN, PMIX_LINK_DOWN, and PMIX_LINK_UP, to indicate36
if the port state is unknown or not applicable (unknown), inactive (down), or active (up).37

APPENDIX B. REVISION HISTORY 551

PMIX_FABRIC_DEVICE_TYPE "pmix.fabdev.type" (string)1
Specifies the type of fabric interface currently active on the device, such as Ethernet or2
InfiniBand.3

PMIX_FABRIC_DEVICE_PCI_DEVID "pmix.fabdev.pcidevid" (string)4
A node-level unique identifier for a PCI device. Provided only if the device is located on a5
PCI bus. The identifier is constructed as a four-part tuple delimited by colons comprised of6
the PCI 16-bit domain, 8-bit bus, 8-bit device, and 8-bit function IDs, each expressed in7
zero-extended hexadecimal form. Thus, an example identifier might be "abc1:0f:23:01". The8
combination of node identifier (PMIX_HOSTNAME or PMIX_NODEID) and9
PMIX_FABRIC_DEVICE_PCI_DEVID shall be unique within the overall system.10

Device attributes11
PMIX_DEVICE_DISTANCES "pmix.dev.dist" (pmix_data_array_t)12

Return an array of pmix_device_distance_t containing the minimum and maximum13
distances of the given process location to all devices of the specified type on the local node.14

PMIX_DEVICE_TYPE "pmix.dev.type" (pmix_device_type_t)15
Bitmask specifying the type(s) of device(s) whose information is being requested. Only used16
as a directive/qualifier.17

PMIX_DEVICE_ID "pmix.dev.id" (string)18
System-wide UUID or node-local OS name of a particular device.19

Sets-Groups attributes20
PMIX_QUERY_NUM_PSETS "pmix.qry.psetnum" (size_t)21

Return the number of process sets defined in the specified range (defaults to22
PMIX_RANGE_SESSION).23

PMIX_QUERY_PSET_NAMES "pmix.qry.psets" (pmix_data_array_t*)24
Return a pmix_data_array_t containing an array of strings of the process set names25
defined in the specified range (defaults to PMIX_RANGE_SESSION).26

PMIX_QUERY_PSET_MEMBERSHIP "pmix.qry.pmems" (pmix_data_array_t*)27
Return an array of pmix_proc_t containing the members of the specified process set.28

PMIX_PSET_NAME "pmix.pset.nm" (char*)29
The name of the newly defined process set.30

PMIX_PSET_MEMBERS "pmix.pset.mems" (pmix_data_array_t*)31
An array of pmix_proc_t containing the members of the newly defined process set.32

PMIX_PSET_NAMES "pmix.pset.nms" (pmix_data_array_t*)33
Returns an array of char* string names of the process sets in which the given process is a34
member.35

PMIX_QUERY_NUM_GROUPS "pmix.qry.pgrpnum" (size_t)36
Return the number of process groups defined in the specified range (defaults to session).37
OPTIONAL QUALIFERS: PMIX_RANGE.38

552 PMIx Standard – Version 4.1 – October 2021

PMIX_QUERY_GROUP_NAMES "pmix.qry.pgrp" (pmix_data_array_t*)1
Return a pmix_data_array_t containing an array of string names of the process groups2
defined in the specified range (defaults to session). OPTIONAL QUALIFERS:3
PMIX_RANGE.4

PMIX_QUERY_GROUP_MEMBERSHIP5
"pmix.qry.pgrpmems" (pmix_data_array_t*)6

Return a pmix_data_array_t of pmix_proc_t containing the members of the7
specified process group. REQUIRED QUALIFIERS: PMIX_GROUP_ID.8

PMIX_GROUP_ID "pmix.grp.id" (char*)9
User-provided group identifier - as the group identifier may be used in PMIx operations, the10
user is required to ensure that the provided ID is unique within the scope of the host11
environment (e.g., by including some user-specific or application-specific prefix or suffix to12
the string).13

PMIX_GROUP_LEADER "pmix.grp.ldr" (bool)14
This process is the leader of the group.15

PMIX_GROUP_OPTIONAL "pmix.grp.opt" (bool)16
Participation is optional - do not return an error if any of the specified processes terminate17
without having joined. The default is false.18

PMIX_GROUP_NOTIFY_TERMINATION "pmix.grp.notterm" (bool)19
Notify remaining members when another member terminates without first leaving the group.20

21

PMIX_GROUP_FT_COLLECTIVE "pmix.grp.ftcoll" (bool)22
Adjust internal tracking on-the-fly for terminated processes during a PMIx group collective23
operation.24

PMIX_GROUP_ASSIGN_CONTEXT_ID "pmix.grp.actxid" (bool)25
Requests that the RM assign a new context identifier to the newly created group. The26
identifier is an unsigned, size_t value that the RM guarantees to be unique across the range27
specified in the request. Thus, the value serves as a means of identifying the group within28
that range. If no range is specified, then the request defaults to PMIX_RANGE_SESSION.29

PMIX_GROUP_LOCAL_ONLY "pmix.grp.lcl" (bool)30
Group operation only involves local processes. PMIx implementations are required to31
automatically scan an array of group members for local vs remote processes - if only local32
processes are detected, the implementation need not execute a global collective for the33
operation unless a context ID has been requested from the host environment. This can result34
in significant time savings. This attribute can be used to optimize the operation by indicating35
whether or not only local processes are represented, thus allowing the implementation to36
bypass the scan.37

PMIX_GROUP_CONTEXT_ID "pmix.grp.ctxid" (size_t)38
Context identifier assigned to the group by the host RM.39

APPENDIX B. REVISION HISTORY 553

PMIX_GROUP_ENDPT_DATA "pmix.grp.endpt" (pmix_byte_object_t)1
Data collected during group construction to ensure communication between group members2
is supported upon completion of the operation.3

PMIX_GROUP_NAMES "pmix.pgrp.nm" (pmix_data_array_t*)4
Returns an array of char* string names of the process groups in which the given process is5
a member.6

Process Mgmt attributes7
PMIX_OUTPUT_TO_DIRECTORY "pmix.outdir" (char*)8

Direct output into files of form "<directory>/<jobid>/rank.<rank>/9
stdout[err]" - can be assigned to the entire job (by including attribute in the job_info10
array) or on a per-application basis in the info array for each pmix_app_t.11

PMIX_TIMEOUT_STACKTRACES "pmix.tim.stack" (bool)12
Include process stacktraces in timeout report from a job.13

PMIX_TIMEOUT_REPORT_STATE "pmix.tim.state" (bool)14
Report process states in timeout report from a job.15

PMIX_NOTIFY_JOB_EVENTS "pmix.note.jev" (bool)16
Requests that the launcher generate the PMIX_EVENT_JOB_START,17
PMIX_LAUNCH_COMPLETE, and PMIX_EVENT_JOB_END events. Each event is to18
include at least the namespace of the corresponding job and a PMIX_EVENT_TIMESTAMP19
indicating the time the event occurred. Note that the requester must register for these20
individual events, or capture and process them by registering a default event handler instead21
of individual handlers and then process the events based on the returned status code. Another22
common method is to register one event handler for all job-related events, with a separate23
handler for non-job events - see PMIx_Register_event_handler for details.24

PMIX_NOTIFY_PROC_TERMINATION "pmix.noteproc" (bool)25
Requests that the launcher generate the PMIX_EVENT_PROC_TERMINATED event26
whenever a process either normally or abnormally terminates.27

PMIX_NOTIFY_PROC_ABNORMAL_TERMINATION "pmix.noteabproc" (bool)28
Requests that the launcher generate the PMIX_EVENT_PROC_TERMINATED event only29
when a process abnormally terminates.30

PMIX_LOG_PROC_TERMINATION "pmix.logproc" (bool)31
Requests that the launcher log the PMIX_EVENT_PROC_TERMINATED event whenever a32
process either normally or abnormally terminates.33

PMIX_LOG_PROC_ABNORMAL_TERMINATION "pmix.logabproc" (bool)34
Requests that the launcher log the PMIX_EVENT_PROC_TERMINATED event only when a35
process abnormally terminates.36

PMIX_LOG_JOB_EVENTS "pmix.log.jev" (bool)37

554 PMIx Standard – Version 4.1 – October 2021

Requests that the launcher log the PMIX_EVENT_JOB_START,1
PMIX_LAUNCH_COMPLETE, and PMIX_EVENT_JOB_END events using PMIx_Log,2
subject to the logging attributes of Section 12.4.3.3

PMIX_LOG_COMPLETION "pmix.logcomp" (bool)4
Requests that the launcher log the PMIX_EVENT_JOB_END event for normal or abnormal5
termination of the spawned job using PMIx_Log, subject to the logging attributes of6
Section 12.4.3. The event shall include the returned status code7
(PMIX_JOB_TERM_STATUS) for the corresponding job; the identity (PMIX_PROCID)8
and exit status (PMIX_EXIT_CODE) of the first failed process, if applicable; and a9
PMIX_EVENT_TIMESTAMP indicating the time the termination occurred.10

PMIX_FIRST_ENVAR "pmix.envar.first" (pmix_envar_t*)11
Ensure the given value appears first in the specified envar using the separator character,12
creating the envar if it doesn’t already exist13

Event attributes14
PMIX_EVENT_TIMESTAMP "pmix.evtstamp" (time_t)15

System time when the associated event occurred.16

B.8.3 Added Environmental Variables17

Tool environmental variables18
PMIX_LAUNCHER_RNDZ_URI19
PMIX_LAUNCHER_RNDZ_FILE20
PMIX_KEEPALIVE_PIPE21

22

B.8.4 Added Macros23

PMIX_CHECK_RESERVED_KEY PMIX_INFO_WAS_PROCESSED PMIX_INFO_PROCESSED24
PMIX_INFO_LIST_START PMIX_INFO_LIST_ADD PMIX_INFO_LIST_XFER25
PMIX_INFO_LIST_CONVERT PMIX_INFO_LIST_RELEASE26

B.8.5 Deprecated APIs27

pmix_evhdlr_reg_cbfunc_t Renamed to pmix_hdlr_reg_cbfunc_t28

The pmix_server_client_connected_fn_t server module entry point has been29
deprecated in favor of pmix_server_client_connected2_fn_t30

PMIx_tool_connect_to_server Replaced by PMIx_tool_attach_to_server to31
allow return of the process identifier of the server to which the tool has attached.32

APPENDIX B. REVISION HISTORY 555

B.8.6 Deprecated constants1

The following constants were deprecated in v4.0:2

PMIX_ERR_DEBUGGER_RELEASE Renamed to PMIX_DEBUGGER_RELEASE3
PMIX_ERR_JOB_TERMINATED Renamed to PMIX_EVENT_JOB_END4
PMIX_EXISTS Renamed to PMIX_ERR_EXISTS5
PMIX_ERR_PROC_ABORTED Consolidated with PMIX_EVENT_PROC_TERMINATED6
PMIX_ERR_PROC_ABORTING Consolidated with PMIX_EVENT_PROC_TERMINATED7
PMIX_ERR_LOST_CONNECTION_TO_SERVER Consolidated into8

PMIX_ERR_LOST_CONNECTION9
PMIX_ERR_LOST_PEER_CONNECTION Consolidated into10

PMIX_ERR_LOST_CONNECTION11
PMIX_ERR_LOST_CONNECTION_TO_CLIENT Consolidated into12

PMIX_ERR_LOST_CONNECTION13
PMIX_ERR_INVALID_TERMINATION Renamed to PMIX_ERR_JOB_TERM_WO_SYNC14
PMIX_PROC_TERMINATED Renamed to PMIX_EVENT_PROC_TERMINATED15
PMIX_ERR_NODE_DOWN Renamed to PMIX_EVENT_NODE_DOWN16
PMIX_ERR_NODE_OFFLINE Renamed to PMIX_EVENT_NODE_OFFLINE17
PMIX_ERR_SYS_OTHER Renamed to PMIX_EVENT_SYS_OTHER18
PMIX_CONNECT_REQUESTED Connection has been requested by a PMIx-based tool -19

deprecated as not required.20
PMIX_PROC_HAS_CONNECTED A tool or client has connected to the PMIx server -21

deprecated in favor of the new pmix_server_client_connected2_fn_t server22
module API23

B.8.7 Removed constants24

The following constants were removed from the PMIx Standard in v4.0 as they are internal to a25
particular PMIx implementation.26

PMIX_ERR_HANDSHAKE_FAILED Connection handshake failed27
PMIX_ERR_READY_FOR_HANDSHAKE Ready for handshake28
PMIX_ERR_IN_ERRNO Error defined in errno29
PMIX_ERR_INVALID_VAL_LENGTH Invalid value length30
PMIX_ERR_INVALID_LENGTH Invalid argument length31
PMIX_ERR_INVALID_NUM_ARGS Invalid number of arguments32
PMIX_ERR_INVALID_ARGS Invalid arguments33
PMIX_ERR_INVALID_NUM_PARSED Invalid number parsed34
PMIX_ERR_INVALID_KEYVALP Invalid key/value pair35
PMIX_ERR_INVALID_SIZE Invalid size36
PMIX_ERR_PROC_REQUESTED_ABORT Process is already requested to abort37
PMIX_ERR_SERVER_FAILED_REQUEST Failed to connect to the server38
PMIX_ERR_PROC_ENTRY_NOT_FOUND Process not found39

556 PMIx Standard – Version 4.1 – October 2021

PMIX_ERR_INVALID_ARG Invalid argument1
PMIX_ERR_INVALID_KEY Invalid key2
PMIX_ERR_INVALID_KEY_LENGTH Invalid key length3
PMIX_ERR_INVALID_VAL Invalid value4
PMIX_ERR_INVALID_NAMESPACE Invalid namespace5
PMIX_ERR_SERVER_NOT_AVAIL Server is not available6
PMIX_ERR_SILENT Silent error7
PMIX_ERR_PACK_MISMATCH Pack mismatch8
PMIX_ERR_DATA_VALUE_NOT_FOUND Data value not found9
PMIX_ERR_NOT_IMPLEMENTED Not implemented10
PMIX_GDS_ACTION_COMPLETE The GDS action has completed11
PMIX_NOTIFY_ALLOC_COMPLETE Notify that a requested allocation operation is complete12

- the result of the request will be included in the info array13

B.8.8 Deprecated attributes14

The following attributes were deprecated in v4.0:15

PMIX_TOPOLOGY "pmix.topo" (hwloc_topology_t)16
Renamed to PMIX_TOPOLOGY2.17

PMIX_DEBUG_JOB "pmix.dbg.job" (char*)18
Renamed to PMIX_DEBUG_TARGET)19

PMIX_RECONNECT_SERVER "pmix.tool.recon" (bool)20
Renamed to the PMIx_tool_connect_to_server API21

PMIX_ALLOC_NETWORK "pmix.alloc.net" (array)22
Renamed to PMIX_ALLOC_FABRIC23

PMIX_ALLOC_NETWORK_ID "pmix.alloc.netid" (char*)24
Renamed to PMIX_ALLOC_FABRIC_ID25

PMIX_ALLOC_NETWORK_QOS "pmix.alloc.netqos" (char*)26
Renamed to PMIX_ALLOC_FABRIC_QOS27

PMIX_ALLOC_NETWORK_TYPE "pmix.alloc.nettype" (char*)28
Renamed to PMIX_ALLOC_FABRIC_TYPE29

PMIX_ALLOC_NETWORK_PLANE "pmix.alloc.netplane" (char*)30
Renamed to PMIX_ALLOC_FABRIC_PLANE31

PMIX_ALLOC_NETWORK_ENDPTS "pmix.alloc.endpts" (size_t)32
Renamed to PMIX_ALLOC_FABRIC_ENDPTS33

PMIX_ALLOC_NETWORK_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)34
Renamed to PMIX_ALLOC_FABRIC_ENDPTS_NODE35

PMIX_ALLOC_NETWORK_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)36
Renamed to PMIX_ALLOC_FABRIC_SEC_KEY37

PMIX_PROC_DATA "pmix.pdata" (pmix_data_array_t)38
Renamed to PMIX_PROC_INFO_ARRAY39

PMIX_LOCALITY "pmix.loc" (pmix_locality_t)40

APPENDIX B. REVISION HISTORY 557

Relative locality of the specified process to the requester, expressed as a bitmask as per the1
description in the pmix_locality_t section. This value is unique to the requesting2
process and thus cannot be communicated by the server as part of the job-level information.3
Its use has been replaced by the PMIx_Get_relative_locality function.4

B.8.9 Removed attributes5

The following attributes were removed from the PMIx Standard in v4.0 as they are internal to a6
particular PMIx implementation. Users are referred to the PMIx_Load_topology API for7
obtaining the local topology description.8

PMIX_LOCAL_TOPO "pmix.ltopo" (char*)9
XML representation of local node topology.10

PMIX_TOPOLOGY_XML "pmix.topo.xml" (char*)11
XML-based description of topology12

PMIX_TOPOLOGY_FILE "pmix.topo.file" (char*)13
Full path to file containing XML topology description14

PMIX_TOPOLOGY_SIGNATURE "pmix.toposig" (char*)15
Topology signature string.16

PMIX_HWLOC_SHMEM_ADDR "pmix.hwlocaddr" (size_t)17
Address of the HWLOC shared memory segment.18

PMIX_HWLOC_SHMEM_SIZE "pmix.hwlocsize" (size_t)19
Size of the HWLOC shared memory segment.20

PMIX_HWLOC_SHMEM_FILE "pmix.hwlocfile" (char*)21
Path to the HWLOC shared memory file.22

PMIX_HWLOC_XML_V1 "pmix.hwlocxml1" (char*)23
XML representation of local topology using HWLOC’s v1.x format.24

PMIX_HWLOC_XML_V2 "pmix.hwlocxml2" (char*)25
XML representation of local topology using HWLOC’s v2.x format.26

PMIX_HWLOC_SHARE_TOPO "pmix.hwlocsh" (bool)27
Share the HWLOC topology via shared memory28

PMIX_HWLOC_HOLE_KIND "pmix.hwlocholek" (char*)29
Kind of VM “hole” HWLOC should use for shared memory30

PMIX_DSTPATH "pmix.dstpath" (char*)31
Path to shared memory data storage (dstore) files. Deprecated from Standard as being32
implementation specific.33

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)34
Comma-delimited list of algorithms to use for the collective operation. PMIx does not35
impose any requirements on a host environment’s collective algorithms. Thus, the36
acceptable values for this attribute will be environment-dependent - users are encouraged to37
check their host environment for supported values.38

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)39
If true, indicates that the requested choice of algorithm is mandatory.40

PMIX_PROC_BLOB "pmix.pblob" (pmix_byte_object_t)41

558 PMIx Standard – Version 4.1 – October 2021

Packed blob of process data.1
PMIX_MAP_BLOB "pmix.mblob" (pmix_byte_object_t)2

Packed blob of process location.3
PMIX_MAPPER "pmix.mapper" (char*)4

Mapping mechanism to use for placing spawned processes - when accessed using5
PMIx_Get, use the PMIX_RANK_WILDCARD value for the rank to discover the mapping6
mechanism used for the provided namespace.7

PMIX_NON_PMI "pmix.nonpmi" (bool)8
Spawned processes will not call PMIx_Init.9

PMIX_PROC_URI "pmix.puri" (char*)10
URI containing contact information for the specified process.11

PMIX_ARCH "pmix.arch" (uint32_t)12
Architecture flag.13

B.9 Version 4.1: Oct. 202114

The v4.1 update includes clarifications and corrections from the v4.0 document:15

• Remove some stale language in Chapter 9.1.16
• Provisional Items:17

– Storage Chapter 18 on page 45518

B.9.1 Added Functions (Provisional)19

• PMIx_Data_load20
• PMIx_Data_unload21
• PMIx_Data_compress22
• PMIx_Data_decompress23

B.9.2 Added Data Structures (Provisional)24

• pmix_storage_medium_t25
• pmix_storage_accessibility_t26
• pmix_storage_persistence_t27
• pmix_storage_access_type_t28

B.9.3 Added Macros (Provisional)29

• PMIX_NSPACE_INVALID30
• PMIX_RANK_IS_VALID31
• PMIX_PROCID_INVALID32
• PMIX_PROCID_XFER33

APPENDIX B. REVISION HISTORY 559

B.9.4 Added Constants (Provisional)1

• PMIX_PROC_NSPACE2

Storage constants3
• PMIX_STORAGE_MEDIUM_UNKNOWN4
• PMIX_STORAGE_MEDIUM_TAPE5
• PMIX_STORAGE_MEDIUM_HDD6
• PMIX_STORAGE_MEDIUM_SSD7
• PMIX_STORAGE_MEDIUM_NVME8
• PMIX_STORAGE_MEDIUM_PMEM9
• PMIX_STORAGE_MEDIUM_RAM10
• PMIX_STORAGE_ACCESSIBILITY_NODE11
• PMIX_STORAGE_ACCESSIBILITY_SESSION12
• PMIX_STORAGE_ACCESSIBILITY_JOB13
• PMIX_STORAGE_ACCESSIBILITY_RACK14
• PMIX_STORAGE_ACCESSIBILITY_CLUSTER15
• PMIX_STORAGE_ACCESSIBILITY_REMOTE16
• PMIX_STORAGE_PERSISTENCE_TEMPORARY17
• PMIX_STORAGE_PERSISTENCE_NODE18
• PMIX_STORAGE_PERSISTENCE_SESSION19
• PMIX_STORAGE_PERSISTENCE_JOB20
• PMIX_STORAGE_PERSISTENCE_SCRATCH21
• PMIX_STORAGE_PERSISTENCE_PROJECT22
• PMIX_STORAGE_PERSISTENCE_ARCHIVE23
• PMIX_STORAGE_ACCESS_RD24
• PMIX_STORAGE_ACCESS_WR25
• PMIX_STORAGE_ACCESS_RDWR26

B.9.5 Added Attributes (Provisional)27

Storage attributes28
PMIX_STORAGE_ID "pmix.strg.id" (char*)29

An identifier for the storage system (e.g., lustre-fs1, daos-oss1, home-fs)30

PMIX_STORAGE_PATH "pmix.strg.path" (char*)31
Mount point path for the storage system (valid only for file-based storage systems)32

PMIX_STORAGE_TYPE "pmix.strg.type" (char*)33
Type of storage system (i.e., "lustre", "gpfs", "daos", "ext4")34

PMIX_STORAGE_VERSION "pmix.strg.ver" (char*)35
Version string for the storage system36

PMIX_STORAGE_MEDIUM "pmix.strg.medium" (pmix_storage_medium_t)37

560 PMIx Standard – Version 4.1 – October 2021

Types of storage mediums utilized by the storage system (e.g., SSDs, HDDs, tape)1

PMIX_STORAGE_ACCESSIBILITY2
"pmix.strg.access" (pmix_storage_accessibility_t)3

Accessibility level of the storage system (e.g., within same node, within same session)4

PMIX_STORAGE_PERSISTENCE5
"pmix.strg.persist" (pmix_storage_persistence_t)6

Persistence level of the storage system (e.g., sratch storage or achive storage)7

PMIX_QUERY_STORAGE_LIST "pmix.strg.list" (char*)8
Comma-delimited list of storage identifiers (i.e., PMIX_STORAGE_ID types) for available9
storage systems10

PMIX_STORAGE_CAPACITY_LIMIT "pmix.strg.caplim" (double)11
Overall limit on capacity (in bytes) for the storage system12

PMIX_STORAGE_CAPACITY_USED "pmix.strg.capuse" (double)13
Overall used capacity (in bytes) for the storage system14

PMIX_STORAGE_OBJECT_LIMIT "pmix.strg.objlim" (uint64_t)15
Overall limit on number of objects (e.g., inodes) for the storage system16

PMIX_STORAGE_OBJECTS_USED "pmix.strg.objuse" (uint64_t)17
Overall used number of objects (e.g., inodes) for the storage system18

PMIX_STORAGE_MINIMAL_XFER_SIZE "pmix.strg.minxfer" (double)19
Minimal transfer size (in bytes) for the storage system - this is the storage system’s atomic20
unit of transfer (e.g., block size)21

PMIX_STORAGE_SUGGESTED_XFER_SIZE "pmix.strg.sxfer" (double)22
Suggested transfer size (in bytes) for the storage system23

PMIX_STORAGE_BW_MAX "pmix.strg.bwmax" (double)24
Maximum bandwidth (in bytes/sec) for storage system - provided as the theoretical25
maximum or the maximum observed bandwidth value26

PMIX_STORAGE_BW_CUR "pmix.strg.bwcur" (double)27
Observed bandwidth (in bytes/sec) for storage system - provided as a recently observed28
bandwidth value, with the exact measurement interval depending on the storage system29
and/or PMIx library implementation30

PMIX_STORAGE_IOPS_MAX "pmix.strg.iopsmax" (double)31
Maximum IOPS (in I/O operations per second) for storage system - provided as the32
theoretical maximum or the maximum observed IOPS value33

PMIX_STORAGE_IOPS_CUR "pmix.strg.iopscur" (double)34
Observed IOPS (in I/O operations per second) for storage system - provided as a recently35
observed IOPS value, with the exact measurement interval depending on the storage system36
and/or PMIx library implementation37

APPENDIX B. REVISION HISTORY 561

PMIX_STORAGE_ACCESS_TYPE1
"pmix.strg.atype" (pmix_storage_access_type_t)2

Qualifier describing the type of storage access to return information for (e.g., for qualifying3
PMIX_STORAGE_BW_CUR, PMIX_STORAGE_IOPS_CUR, or4
PMIX_STORAGE_SUGGESTED_XFER_SIZE attributes)5

562 PMIx Standard – Version 4.1 – October 2021

APPENDIX C

Acknowledgements

This document represents the work of many people who have contributed to the PMIx community.1
Without the hard work and dedication of these people this document would not have been possible.2
The sections below list some of the active participants and organizations in the various PMIx3
standard iterations.4

C.1 Version 4.05

The following list includes some of the active participants in the PMIx v4 standardization process.6

• Ralph H. Castain and Danielle Sikich7

• Joshua Hursey and David Solt8

• Dirk Schubert9

• John DelSignore10

• Aurelien Bouteiller11

• Michael A Raymond12

• Howard Pritchard and Nathan Hjelm13

• Brice Goglin14

• Kathryn Mohror and Stephen Herbein15

• Thomas Naughton and Swaroop Pophale16

• William E. Allcock and Paul Rich17

• Michael Karo18

• Artem Polyakov19

The following institutions supported this effort through time and travel support for the people listed20
above.21

• Intel Corporation22

• IBM, Inc.23

• Allinea (ARM)24

563

• Perforce1

• University of Tennessee, Knoxville2

• The Exascale Computing Project, an initiative of the US Department of Energy3

• National Science Foundation4

• HPE Co.5

• Los Alamos National Laboratory6

• INRIA7

• Lawrence Livermore National Laboratory8

• Oak Ridge National Laboratory9

• Argonne National Laboratory10

• Altair11

• NVIDIA12

C.2 Version 3.013

The following list includes some of the active participants in the PMIx v3 standardization process.14

• Ralph H. Castain, Andrew Friedley, Brandon Yates15

• Joshua Hursey and David Solt16

• Aurelien Bouteiller and George Bosilca17

• Dirk Schubert18

• Kevin Harms19

• Artem Polyakov20

The following institutions supported this effort through time and travel support for the people listed21
above.22

• Intel Corporation23

• IBM, Inc.24

• University of Tennessee, Knoxville25

• The Exascale Computing Project, an initiative of the US Department of Energy26

• National Science Foundation27

• Argonne National Laboratory28

564 PMIx Standard – Version 4.1 – October 2021

• Allinea (ARM)1

• NVIDIA2

C.3 Version 2.03

The following list includes some of the active participants in the PMIx v2 standardization process.4

• Ralph H. Castain, Annapurna Dasari, Christopher A. Holguin, Andrew Friedley, Michael Klemm5
and Terry Wilmarth6

• Joshua Hursey, David Solt, Alexander Eichenberger, Geoff Paulsen, and Sameh Sharkawi7

• Aurelien Bouteiller and George Bosilca8

• Artem Polyakov, Igor Ivanov and Boris Karasev9

• Gilles Gouaillardet10

• Michael A Raymond and Jim Stoffel11

• Dirk Schubert12

• Moe Jette13

• Takahiro Kawashima and Shinji Sumimoto14

• Howard Pritchard15

• David Beer16

• Brice Goglin17

• Geoffroy Vallee, Swen Boehm, Thomas Naughton and David Bernholdt18

• Adam Moody and Martin Schulz19

• Ryan Grant and Stephen Olivier20

• Michael Karo21

The following institutions supported this effort through time and travel support for the people listed22
above.23

• Intel Corporation24

• IBM, Inc.25

• University of Tennessee, Knoxville26

• The Exascale Computing Project, an initiative of the US Department of Energy27

• National Science Foundation28

• Mellanox, Inc.29

APPENDIX C. ACKNOWLEDGEMENTS 565

• Research Organization for Information Science and Technology1

• HPE Co.2

• Allinea (ARM)3

• SchedMD, Inc.4

• Fujitsu Limited5

• Los Alamos National Laboratory6

• Adaptive Solutions, Inc.7

• INRIA8

• Oak Ridge National Laboratory9

• Lawrence Livermore National Laboratory10

• Sandia National Laboratory11

• Altair12

C.4 Version 1.013

The following list includes some of the active participants in the PMIx v1 standardization process.14

• Ralph H. Castain, Annapurna Dasari and Christopher A. Holguin15

• Joshua Hursey and David Solt16

• Aurelien Bouteiller and George Bosilca17

• Artem Polyakov, Elena Shipunova, Igor Ivanov, and Joshua Ladd18

• Gilles Gouaillardet19

• Gary Brown20

• Moe Jette21

The following institutions supported this effort through time and travel support for the people listed22
above.23

• Intel Corporation24

• IBM, Inc.25

• University of Tennessee, Knoxville26

• Mellanox, Inc.27

• Research Organization for Information Science and Technology28

566 PMIx Standard – Version 4.1 – October 2021

• Adaptive Solutions, Inc.1

• SchedMD, Inc.2

APPENDIX C. ACKNOWLEDGEMENTS 567

Bibliography

[1] Ralph H. Castain, David Solt, Joshua Hursey, and Aurelien Bouteiller. PMIx: Process
management for exascale environments. In Proceedings of the 24th European MPI Users’
Group Meeting, EuroMPI ’17, pages 14:1–14:10, New York, NY, USA, 2017. ACM.

[2] Balaji P. et al. PMI: A scalable parallel process-management interface for extreme-scale
systems. In Recent Advances in the Message Passing Interface, EuroMPI ’10, pages 31–41,
Berlin, Heidelberg, 2010. Springer.

568

Index

General terms and other items not induced in the other indices.

application, 6, 95, 107, 307, 309, 313, 531, 534
attribute, 8

client, 7, 59
clients, 7
clone, 7
clones, 7, 68, 71, 183, 185, 186, 188, 211, 214, 542

data realm, 98, 272, 273
data realms, 98
device, 8
devices, 8
Direct Modex, 260, 323

fabric, 7
fabric device, 8
fabric devices, 8
fabric plane, 8, 168, 173, 203, 206, 207, 277, 326
fabric planes, 8
fabrics, 7

host environment, 7

instant on, 8, 112, 259

job, 6, 7, 95, 100–104, 107, 297–301, 303, 307–309, 311, 313, 324, 326, 327, 514, 531, 532, 534,
545–547

key, 8

namespace, 6
node, 7, 95, 107, 168, 173, 203, 206, 207, 307, 326

package, 7, 105, 305, 546
peer, 7, 106, 303
peers, 7
process, 7, 95, 107, 168, 173, 203, 206, 207, 307, 326

569

processing unit, 7

rank, 7, 313
realm, 98
realms, 98
resource manager, 7
RM, 7

scheduler, 7, 275
session, 6, 95, 100, 107, 108, 297, 298, 307, 308, 531, 532, 534, 545

thread, 7
threads, 7

workflow, 7
workflows, 7, 395

570 PMIx Standard – Version 4.1 – October 2021

Index of APIs

PMIx_Abort, 25, 162, 163, 348, 350, 469, 484, 529
PMIxClient.abort (Python), 483

PMIx_Alloc_directive_string, 56, 504, 530
PMIxClient.alloc_directive_string (Python), 504

PMIx_Allocation_request, 96, 200, 200, 206, 492, 532, 534, 537
PMIxClient.allocation_request (Python), 491

PMIx_Allocation_request_nb, 203, 206, 208, 530
PMIx_Commit, 68, 70, 71, 113, 115, 115, 116, 323, 324, 351, 355, 485, 529

PMIxClient.commit (Python), 485
PMIx_Compute_distances, 194, 196, 501, 538

PMIxClient.compute_distances (Python), 501
PMIx_Compute_distances_nb, 195, 538
PMIx_Connect, 182, 183, 185, 186, 188, 232–234, 438, 439, 489, 529, 531

PMIxClient.connect (Python), 488
PMIx_Connect_nb, 184, 184, 529
pmix_connection_cbfunc_t, 376, 376
pmix_credential_cbfunc_t, 283, 393, 394
PMIx_Data_compress, 159, 161, 559
PMIx_Data_copy, 156, 530
PMIx_Data_copy_payload, 157, 530
PMIx_Data_decompress, 160, 559
PMIx_Data_load, 158, 559
PMIx_Data_pack, 152, 153, 295, 530
PMIx_Data_print, 156, 530
PMIx_Data_range_string, 56, 503, 530

PMIxClient.data_range_string (Python), 503
PMIx_Data_type_string, 56, 504, 530

PMIxClient.data_type_string (Python), 504
PMIx_Data_unload, 159, 559
PMIx_Data_unpack, 154, 159, 530
PMIx_Deregister_event_handler, 144, 497, 530, 537

PMIxClient.deregister_event_handler (Python), 497
pmix_device_dist_cbfunc_t, 196, 196, 539
PMIx_Device_type_string, 58, 507, 538

PMIxClient.device_type_string (Python), 507
PMIx_Disconnect, 185, 186–188, 234, 438, 439, 489, 529, 531

PMIxClient.disconnect (Python), 489
PMIx_Disconnect_nb, 187, 188, 234, 529

571

pmix_dmodex_response_fn_t, 322, 323
PMIx_Error_string, 55, 502, 529

PMIxClient.error_string (Python), 501
pmix_event_notification_cbfunc_fn_t, 143, 149, 149
PMIx_Fabric_deregister, 279, 280, 499, 538

PMIxClient.fabric_deregister (Python), 499
PMIx_Fabric_deregister_nb, 280, 538
PMIx_Fabric_register, 268, 276, 278, 498, 538

PMIxClient.fabric_register (Python), 498
PMIx_Fabric_register_nb, 277, 538
PMIx_Fabric_update, 277, 278, 279, 499, 538

PMIxClient.fabric_update (Python), 498
PMIx_Fabric_update_nb, 279, 538
PMIx_Fence, 4, 67, 68, 69, 71, 112, 183, 186, 231, 240, 244, 260, 293, 323, 350, 352, 470, 486,

529, 542
PMIxClient.fence (Python), 485

PMIx_Fence_nb, 53, 69, 350, 352, 470, 529, 537
PMIx_Finalize, 25, 63, 65, 65, 181, 347, 348, 438, 439, 469, 483, 529

PMIxClient.finalize (Python), 483
PMIx_generate_ppn, 296, 509, 529, 535

PMIxServer.generate_ppn (Python), 509
PMIx_generate_regex, 294, 296, 308, 509, 529, 535

PMIxServer.generate_regex (Python), 508
PMIx_Get, 3, 8, 28, 63, 68, 71, 72, 73, 74, 76–78, 81, 82, 85–87, 90, 95, 96, 98–101, 103–105,

107, 108, 112, 116, 165, 166, 171, 172, 174–176, 190, 192, 193, 206, 215, 221, 228, 230,
232, 236, 240, 260, 262, 272, 273, 275, 300, 304, 308, 338, 364, 366, 414, 423–425, 439,
457, 486, 529, 531, 536, 542, 543, 549, 550, 559

PMIxClient.get (Python), 486
PMIx_Get_attribute_name, 57, 506, 538

PMIxClient.get_attribute_name (Python), 506
PMIx_Get_attribute_string, 57, 506, 538

PMIxClient.get_attribute_string (Python), 505
PMIx_Get_cpuset, 193, 500, 538

PMIxClient.get_cpuset (Python), 500
PMIx_Get_credential, 282, 284, 394, 493, 532, 537

PMIxClient.get_credential (Python), 493
PMIx_Get_credential_nb, 283
PMIx_Get_nb, 53, 74, 529
PMIx_Get_relative_locality, 190, 192, 304, 339, 500, 538, 558

PMIxClient.get_relative_locality (Python), 500
PMIx_Get_version, 10, 60, 483, 529

PMIxClient.get_version (Python), 483
PMIx_Group_construct, 231, 232, 237, 239, 240, 243, 494, 538

572 PMIx Standard – Version 4.1 – October 2021

PMIxClient.group_construct (Python), 494
PMIx_Group_construct_nb, 240, 243, 538
PMIx_Group_destruct, 234, 243, 244, 246, 256, 496, 538

PMIxClient.group_destruct (Python), 496
PMIx_Group_destruct_nb, 244, 246, 538
PMIx_Group_invite, 233, 246, 248, 249, 251, 495, 538

PMIxClient.group_invite (Python), 494
PMIx_Group_invite_nb, 249, 538
PMIx_Group_join, 233, 248, 249, 251, 252, 253–255, 495, 538

PMIxClient.group_join (Python), 495
PMIx_Group_join_nb, 251, 254, 255, 538
PMIx_Group_leave, 234, 255, 256–258, 496, 538

PMIxClient.group_leave (Python), 496
PMIx_Group_leave_nb, 257, 538
pmix_hdlr_reg_cbfunc_t, 54, 138, 450, 451, 555
pmix_info_cbfunc_t, 52, 54, 54, 85, 195, 204, 212, 214, 219, 220, 241, 250, 254, 336, 377, 385,

387, 388, 390, 391, 404, 407
PMIx_Info_directives_string, 56, 504, 530

PMIxClient.info_directives_string (Python), 503
PMIx_Init, 7, 59, 60, 63, 82, 87, 104, 346, 418, 422, 432, 433, 440, 482, 530, 536, 559

PMIxClient.init (Python), 482
PMIx_Initialized, 59, 482, 529

PMIxClient.initialized (Python), 482
pmix_iof_cbfunc_t, 401, 449, 467

iofcbfunc (Python), 467
PMIx_IOF_channel_string, 57, 505, 532

PMIxClient.iof_channel_string (Python), 505
PMIx_IOF_deregister, 451, 522, 532, 537

PMIxTool.iof_deregister (Python), 522
PMIx_IOF_pull, 365, 381, 416, 417, 421, 424, 425, 427, 449, 451, 522, 532, 537

PMIxTool.iof_pull (Python), 521
PMIx_IOF_push, 365, 381, 416, 421, 424, 427–429, 431, 452, 454, 523, 532, 537, 548

PMIxTool.iof_push (Python), 522
PMIx_Job_control, 200, 208, 210, 213–215, 389, 434, 492, 532, 537

PMIxClient.job_ctrl (Python), 492
PMIx_Job_control_nb, 78, 208, 211, 306, 530
PMIx_Job_state_string, 57, 505, 538

PMIxClient.job_state_string (Python), 505
PMIx_Link_state_string, 57, 506, 538

PMIxClient.link_state_string (Python), 506
PMIx_Load_topology, 189, 499, 538, 558

PMIxClient.load_topology (Python), 499
PMIx_Log, 177, 222, 224, 228, 418, 437, 491, 532, 555

INDEX OF APIS 573

PMIxClient.log (Python), 491
PMIx_Log_nb, 225, 228, 530
PMIx_Lookup, 118, 123, 125–127, 486, 487, 529

PMIxClient.lookup (Python), 487
pmix_lookup_cbfunc_t, 130, 130, 358
PMIx_Lookup_nb, 125, 130, 529
pmix_modex_cbfunc_t, 52, 350, 353, 353, 354
pmix_notification_fn_t, 138, 142, 142, 468

evhandler (Python), 467
PMIx_Notify_event, 145, 375, 498, 530, 537

PMIxClient.notify_event (Python), 497
pmix_op_cbfunc_t, 53, 53, 120, 133, 145, 146, 149, 184, 187, 225, 245, 257, 278–280, 297, 317,

318, 320, 321, 328, 334, 335, 337, 345–347, 349, 356, 360, 367, 369, 371, 373, 374, 383,
399, 402, 452

PMIx_Parse_cpuset_string, 192, 339, 501, 538
PMIxClient.parse_cpuset_string (Python), 500

PMIx_Persistence_string, 56, 503, 530
PMIxClient.persistence_string (Python), 503

PMIx_Proc_state_string, 55, 502, 530
PMIxClient.proc_state_string (Python), 502

PMIx_Process_monitor, 200, 216, 220, 493, 532, 537
PMIxClient.monitor (Python), 492

PMIx_Process_monitor_nb, 218, 221, 530
PMIx_Progress, 62, 65, 292, 294, 444, 507, 538, 547

PMIxClient.progress (Python), 507
PMIx_Publish, 118, 120–123, 357, 487, 529

PMIxClient.publish (Python), 486
PMIx_Publish_nb, 120, 123, 529
PMIx_Put, 28, 67–71, 95, 98, 113, 113–116, 181, 240, 249, 323, 324, 351, 355, 485, 529

PMIxClient.put (Python), 484
PMIx_Query_info, 8, 80, 85, 89, 90, 92, 95, 230, 232, 272, 273, 408, 412, 432, 433, 457, 491, 543

PMIxClient.query (Python), 490
PMIx_Query_info_nb, 78, 85, 85, 96, 181, 308, 329, 530, 531
PMIx_Register_attributes, 328, 515, 537, 538

PMIxServer.register_attributes (Python), 514
PMIx_Register_event_handler, 78, 137, 177, 418, 438, 497, 530, 537, 554

PMIxClient.register_event_handler (Python), 496
pmix_release_cbfunc_t, 52, 52
PMIx_Resolve_nodes, 79, 490, 529

PMIxClient.resolve_nodes (Python), 490
PMIx_Resolve_peers, 79, 106, 303, 490, 529

PMIxClient.resolve_peers (Python), 489
PMIx_Scope_string, 55, 502, 530

574 PMIx Standard – Version 4.1 – October 2021

PMIxClient.scope_string (Python), 502
pmix_server_abort_fn_t, 348, 470

clientaborted (Python), 469
pmix_server_alloc_fn_t, 384, 477

allocate (Python), 477
pmix_server_client_connected2_fn_t, 53, 281, 320, 344, 345, 345–347, 469, 538, 555, 556

clientconnected2 (Python), 468
pmix_server_client_finalized_fn_t, 347, 348, 469

clientfinalized (Python), 469
PMIx_server_collect_inventory, 336, 338, 516, 532

PMIxServer.collect_inventory (Python), 516
pmix_server_connect_fn_t, 181, 367, 368, 370, 473

connect (Python), 473
PMIx_server_define_process_set, 230, 341, 517, 538

PMIxServer.define_process_set (Python), 517
PMIx_server_delete_process_set, 230, 342, 518, 538

PMIxServer.delete_process_set (Python), 517
PMIx_server_deliver_inventory, 337, 517, 532

PMIxServer.deliver_inventory (Python), 516
PMIx_server_deregister_client, 321, 513, 529

PMIxServer.deregister_client (Python), 513
pmix_server_deregister_events_fn_t, 372, 475

deregister_events (Python), 475
PMIx_server_deregister_nspace, 317, 321, 511, 529

PMIxServer.deregister_nspace (Python), 511
PMIx_server_deregister_resources, 318, 512, 518, 539

PMIxServer.deregister_resources (Python), 512, 518
pmix_server_disconnect_fn_t, 368, 370, 474

disconnect (Python), 474
pmix_server_dmodex_req_fn_t, 107, 116, 117, 353, 353, 471, 532, 534

dmodex (Python), 471
PMIx_server_dmodex_request, 322, 323, 324, 514, 529

PMIxServer.dmodex_request (Python), 513
pmix_server_fabric_fn_t, 268, 275, 406, 481, 538

fabric (Python), 481
pmix_server_fencenb_fn_t, 350, 352, 353, 470, 534

fence (Python), 470
PMIx_server_finalize, 293, 508, 529

PMIxServer.finalize (Python), 508
PMIx_server_generate_cpuset_string, 193, 339, 510, 539

PMIxServer.generate_cpuset_string (Python), 510
PMIx_server_generate_locality_string, 189, 190, 338, 510, 538

PMIxServer.generate_locality_string (Python), 509

INDEX OF APIS 575

pmix_server_get_cred_fn_t, 393, 397, 479
get_credential (Python), 478

pmix_server_grp_fn_t, 403, 481, 538
group (Python), 480

PMIx_server_init, 59, 289, 293, 329, 343, 409, 410, 414, 508, 529, 538
PMIxServer.init (Python), 507

PMIx_server_IOF_deliver, 335, 426, 516, 532
PMIxServer.iof_deliver (Python), 515

pmix_server_iof_fn_t, 398, 480
iof_pull (Python), 479

pmix_server_job_control_fn_t, 387, 478
job_control (Python), 477

pmix_server_listener_fn_t, 375
pmix_server_log_fn_t, 382, 477

log (Python), 476
pmix_server_lookup_fn_t, 357, 472

lookup (Python), 472
pmix_server_module_t, 290, 292, 329, 330, 343, 343, 344, 508
pmix_server_monitor_fn_t, 390, 478

monitor (Python), 478
pmix_server_notify_event_fn_t, 144, 148, 374, 375, 475

notify_event (Python), 475
pmix_server_publish_fn_t, 355, 471

publish (Python), 471
pmix_server_query_fn_t, 377, 476

query (Python), 475
PMIx_server_register_client, 281, 319, 320, 346, 348, 512, 529

PMIxServer.register_client (Python), 512
pmix_server_register_events_fn_t, 370, 474

register_events (Python), 474
PMIx_server_register_nspace, 10, 53, 295, 296, 297, 298, 307, 308, 311, 318, 335, 339, 511, 529,

531, 545
PMIxServer.register_nspace (Python), 510

PMIx_server_register_resources, 299, 302, 303, 317, 512, 518, 539
PMIxServer.register_resources (Python), 511, 518

PMIx_server_setup_application, 324, 327, 328, 334, 338, 514, 530, 534
PMIxServer.setup_application (Python), 514

PMIx_server_setup_fork, 321, 513, 529
PMIxServer.setup_fork (Python), 513

PMIx_server_setup_local_support, 333, 515, 530
PMIxServer.setup_local_support (Python), 515

pmix_server_spawn_fn_t, 180, 362, 419, 473
spawn (Python), 473

576 PMIx Standard – Version 4.1 – October 2021

pmix_server_stdin_fn_t, 402, 480
iof_push (Python), 480

pmix_server_tool_connection_fn_t, 281, 379, 409, 476
tool_connected (Python), 476

pmix_server_unpublish_fn_t, 360, 472
unpublish (Python), 472

pmix_server_validate_cred_fn_t, 395, 479
validate_credential (Python), 479

pmix_setup_application_cbfunc_t, 325, 327
PMIx_Spawn, 102, 104, 105, 163, 163, 169, 174, 178, 203, 206, 304, 306, 322, 362, 363, 365, 366,

386, 414, 416, 419, 420, 423–425, 431–436, 439, 440, 473, 488, 529, 535, 546
PMIxClient.spawn (Python), 488

pmix_spawn_cbfunc_t, 169, 180, 180, 362
PMIx_Spawn_nb, 169, 178, 180, 181, 529
PMIx_Store_internal, 113, 114, 114, 484, 529

PMIxClient.store_internal (Python), 484
PMIx_tool_attach_to_server, 411, 414, 423, 444, 446, 520, 539, 555

PMIxTool.attach_to_server (Python), 520
PMIx_tool_connect_to_server, 532, 557
pmix_tool_connection_cbfunc_t, 380, 381, 382
PMIx_tool_disconnect, 445, 520, 539

PMIxTool.disconnect (Python), 519
PMIx_tool_finalize, 444, 519, 530

PMIxTool.finalize (Python), 519
PMIx_tool_get_servers, 447, 521, 539

PMIxTool.get_servers (Python), 520
PMIx_tool_init, 59, 408, 411, 413–415, 422–424, 426, 441, 444, 519, 530

PMIxTool.init (Python), 519
PMIx_tool_set_server, 410, 423, 424, 447, 448, 521, 539

PMIxTool.set_server (Python), 521
PMIx_Unpublish, 131, 133, 134, 488, 529

PMIxClient.unpublish (Python), 487
PMIx_Unpublish_nb, 133, 529
PMIx_Validate_credential, 285, 494, 532, 537

PMIxClient.validate_credential (Python), 493
PMIx_Validate_credential_nb, 286
pmix_validation_cbfunc_t, 287, 396, 397
pmix_value_cbfunc_t, 53, 53

pmix_evhdlr_reg_cbfunc_t
(Deprecated), 555

pmix_server_client_connected_fn_t
(Deprecated), 344, 555

PMIx_tool_connect_to_server

INDEX OF APIS 577

(Deprecated), 555

578 PMIx Standard – Version 4.1 – October 2021

Index of Support Macros

PMIX_APP_CONSTRUCT, 179
PMIX_APP_CREATE, 179
PMIX_APP_DESTRUCT, 179
PMIX_APP_FREE, 180
PMIX_APP_INFO_CREATE, 180, 532, 534
PMIX_APP_RELEASE, 179
PMIX_ARGV_APPEND, 46
PMIX_ARGV_APPEND_UNIQUE, 47
PMIX_ARGV_COPY, 49
PMIX_ARGV_COUNT, 49
PMIX_ARGV_FREE, 47
PMIX_ARGV_JOIN, 48
PMIX_ARGV_PREPEND, 46
PMIX_ARGV_SPLIT, 48
PMIX_BYTE_OBJECT_CONSTRUCT, 43
PMIX_BYTE_OBJECT_CREATE, 43
PMIX_BYTE_OBJECT_DESTRUCT, 43
PMIX_BYTE_OBJECT_FREE, 44
PMIX_BYTE_OBJECT_LOAD, 44
PMIX_CHECK_KEY, 17
PMIX_CHECK_NSPACE, 18
PMIX_CHECK_PROCID, 22
PMIX_CHECK_RANK, 20
PMIX_CHECK_RESERVED_KEY, 17, 555
PMIX_COORD_CONSTRUCT, 265
PMIX_COORD_CREATE, 265
PMIX_COORD_DESTRUCT, 265
PMIX_COORD_FREE, 265
PMIX_CPUSET_CONSTRUCT, 340
PMIX_CPUSET_CREATE, 340
PMIX_CPUSET_DESTRUCT, 340
PMIX_CPUSET_FREE, 341
PMIX_DATA_ARRAY_CONSTRUCT, 45
PMIX_DATA_ARRAY_CREATE, 45
PMIX_DATA_ARRAY_DESTRUCT, 45
PMIX_DATA_ARRAY_FREE, 45
PMIX_DATA_BUFFER_CONSTRUCT, 151, 153, 155
PMIX_DATA_BUFFER_CREATE, 151, 153, 155

579

PMIX_DATA_BUFFER_DESTRUCT, 151
PMIX_DATA_BUFFER_LOAD, 152
PMIX_DATA_BUFFER_RELEASE, 151
PMIX_DATA_BUFFER_UNLOAD, 152, 295
PMIX_DEVICE_DIST_CONSTRUCT, 198
PMIX_DEVICE_DIST_CREATE, 198
PMIX_DEVICE_DIST_DESTRUCT, 198
PMIX_DEVICE_DIST_FREE, 199
PMIX_ENDPOINT_CONSTRUCT, 263
PMIX_ENDPOINT_CREATE, 263
PMIX_ENDPOINT_DESTRUCT, 263
PMIX_ENDPOINT_FREE, 264
PMIX_ENVAR_CONSTRUCT, 41
PMIX_ENVAR_CREATE, 42
PMIX_ENVAR_DESTRUCT, 13, 41
PMIX_ENVAR_FREE, 42
PMIX_ENVAR_LOAD, 42
PMIX_FABRIC_CONSTRUCT, 272
PMIX_GEOMETRY_CONSTRUCT, 266
PMIX_GEOMETRY_CREATE, 267
PMIX_GEOMETRY_DESTRUCT, 267
PMIX_GEOMETRY_FREE, 267
PMIx_Heartbeat, 220, 530
PMIX_INFO_CONSTRUCT, 33
PMIX_INFO_CREATE, 33, 38, 40
PMIX_INFO_DESTRUCT, 33
PMIX_INFO_FREE, 34
PMIX_INFO_IS_END, 40, 532, 534
PMIX_INFO_IS_OPTIONAL, 40
PMIX_INFO_IS_REQUIRED, 38, 39, 39
PMIX_INFO_LIST_ADD, 36, 555
PMIX_INFO_LIST_CONVERT, 37, 555
PMIX_INFO_LIST_RELEASE, 37, 555
PMIX_INFO_LIST_START, 36, 36, 37, 555
PMIX_INFO_LIST_XFER, 37, 555
PMIX_INFO_LOAD, 34
PMIX_INFO_OPTIONAL, 39
PMIX_INFO_PROCESSED, 40, 555
PMIX_INFO_REQUIRED, 38, 39
PMIX_INFO_TRUE, 35
PMIX_INFO_WAS_PROCESSED, 40, 555
PMIX_INFO_XFER, 35, 308
PMIX_LOAD_KEY, 17

580 PMIx Standard – Version 4.1 – October 2021

PMIX_LOAD_NSPACE, 19
PMIX_LOAD_PROCID, 22, 23
PMIX_MULTICLUSTER_NSPACE_CONSTRUCT, 24
PMIX_MULTICLUSTER_NSPACE_PARSE, 24
PMIX_NSPACE_INVALID, 19, 559
PMIX_PDATA_CONSTRUCT, 127
PMIX_PDATA_CREATE, 128
PMIX_PDATA_DESTRUCT, 127
PMIX_PDATA_FREE, 128
PMIX_PDATA_LOAD, 128
PMIX_PDATA_RELEASE, 128
PMIX_PDATA_XFER, 129
PMIX_PROC_CONSTRUCT, 21
PMIX_PROC_CREATE, 21
PMIX_PROC_DESTRUCT, 21
PMIX_PROC_FREE, 22, 79
PMIX_PROC_INFO_CONSTRUCT, 26
PMIX_PROC_INFO_CREATE, 27
PMIX_PROC_INFO_DESTRUCT, 26
PMIX_PROC_INFO_FREE, 27
PMIX_PROC_INFO_RELEASE, 27
PMIX_PROC_LOAD, 22
PMIX_PROC_RELEASE, 21
PMIX_PROCID_INVALID, 23, 559
PMIX_PROCID_XFER, 23, 559
PMIX_QUERY_CONSTRUCT, 93
PMIX_QUERY_CREATE, 94
PMIX_QUERY_DESTRUCT, 93
PMIX_QUERY_FREE, 94
PMIX_QUERY_QUALIFIERS_CREATE, 94, 532, 534
PMIX_QUERY_RELEASE, 94
PMIX_RANK_IS_VALID, 20, 559
PMIX_REGATTR_CONSTRUCT, 331
PMIX_REGATTR_CREATE, 332
PMIX_REGATTR_DESTRUCT, 332
PMIX_REGATTR_FREE, 332
PMIX_REGATTR_LOAD, 333
PMIX_REGATTR_XFER, 333
PMIX_SETENV, 49
PMIX_SYSTEM_EVENT, 141
PMIX_TOPOLOGY_CONSTRUCT, 191
PMIX_TOPOLOGY_CREATE, 191
PMIX_TOPOLOGY_DESTRUCT, 191

INDEX OF SUPPORT MACROS 581

PMIX_TOPOLOGY_FREE, 191
PMIX_VALUE_CONSTRUCT, 29
PMIX_VALUE_CREATE, 30
PMIX_VALUE_DESTRUCT, 29, 73, 77, 542
PMIX_VALUE_FREE, 30
PMIX_VALUE_GET_NUMBER, 32
PMIX_VALUE_LOAD, 30
PMIX_VALUE_RELEASE, 30
PMIX_VALUE_UNLOAD, 31
PMIX_VALUE_XFER, 32

582 PMIx Standard – Version 4.1 – October 2021

Index of Data Structures

pmix_alloc_directive_t, 51, 56, 201, 204, 207, 207, 208, 385, 463, 504
pmix_app_t, 46, 47, 50, 164–166, 169–171, 175, 176, 178, 178–180, 362, 363, 365, 416, 418–420,

422, 423, 432, 435, 440, 464, 532, 534, 554
pmix_bind_envelope_t, 193, 193, 465, 539
pmix_byte_object_t, 43, 43, 44, 51, 158, 159, 282, 283, 285, 287, 335, 395, 396, 402, 452, 462
pmix_coord_t, 51, 264, 264–266, 465, 539
pmix_coord_view_t, 267, 465, 539
pmix_cpuset_t, 51, 194, 195, 338, 339, 340, 340, 341, 464, 539
pmix_data_array_t, 28, 37, 44, 44, 45, 51, 83, 84, 88, 90, 91, 96, 106, 202, 205, 207, 232, 235, 270,

272–276, 298, 299, 301–303, 311, 313, 314, 325, 378, 387, 407, 433, 441, 463, 532, 534,
550–553

pmix_data_buffer_t, 150, 150–154, 157–159
pmix_data_range_t, 51, 56, 122, 122, 146, 374, 462, 503
pmix_data_type_t, 31, 32, 34, 36, 45, 50, 50, 51, 56, 129, 153, 155–157, 333, 461, 504
pmix_device_distance_t, 51, 194, 196, 197, 197–199, 305, 465, 539, 552
pmix_device_type_t, 52, 58, 196, 196, 197, 275, 465, 507, 539
pmix_endpoint_t, 52, 262, 262–264, 275, 464, 550
pmix_envar_t, 13, 41, 41, 42, 51, 463
pmix_fabric_operation_t, 268, 268, 406
pmix_fabric_t, 262, 268, 269, 269, 272, 273, 276–280, 407, 464, 539, 549
pmix_geometry_t, 51, 261, 266, 266, 267, 274, 465, 539, 550, 551
pmix_group_operation_t, 404, 406, 406, 539
pmix_group_opt_t, 252, 254, 255, 255, 495, 539
pmix_info_directives_t, 38, 38, 51, 56, 463, 503
pmix_info_t, 4, 5, 8, 17, 33, 33–40, 51, 54, 60, 63, 65, 80, 84, 90, 92–94, 96, 119, 121–124, 143,

146, 149, 180, 194, 195, 201, 202, 204, 205, 207–209, 211, 214, 215, 217, 220, 224, 227,
229, 237, 239, 241, 243, 245, 247, 250, 252, 254, 256, 257, 269, 270, 273–275, 282, 283,
285, 287, 290, 292, 297–299, 301, 302, 307, 308, 311, 313, 314, 325, 331, 333, 335–337,
342, 345, 365, 374, 380, 381, 384, 386, 387, 390, 391, 398, 399, 401, 407, 416, 418–420,
422, 425, 432, 440, 442, 446, 448, 449, 451, 452, 463, 466, 530, 532, 534, 543–546,
549–551

pmix_iof_channel_t, 51, 57, 335, 399, 401, 429, 429, 449, 463, 505
pmix_job_state_t, 27, 27, 51, 57, 464, 505, 539
pmix_key_t, 8, 16, 16, 72, 113, 333, 461
pmix_link_state_t, 51, 57, 262, 268, 268, 271, 274, 464, 506, 539, 551
pmix_locality_t, 52, 190, 192, 192, 464, 539, 557, 558
pmix_nspace_t, 18, 18, 19, 22–24, 51, 180, 461, 462
pmix_pdata_t, 123, 124, 127, 127–130, 463

583

pmix_persistence_t, 51, 56, 122, 122, 462, 503
pmix_proc_info_t, 25, 25–27, 51, 82, 83, 87, 88, 90, 91, 378, 433, 441, 462
pmix_proc_state_t, 24, 24, 51, 55, 462, 502
pmix_proc_t, 19, 20, 20–23, 51, 63, 67, 69, 70, 74, 91, 106, 129, 139–141, 143, 146, 147, 153, 154,

162, 163, 232, 235–237, 241, 247, 250, 253, 303, 319, 321, 322, 333, 335, 341, 345–347,
349, 350, 354, 356, 358, 360, 362, 367, 369, 374, 377, 382, 383, 385, 388, 391, 393, 396,
399, 401, 402, 404–406, 442, 444–448, 462, 552, 553

pmix_query_t, 51, 82, 87, 90, 92, 92–95, 377, 379, 464, 532, 534, 543
pmix_rank_t, 19, 19, 20, 22, 23, 51, 462
pmix_regattr_t, 51, 96, 329, 330, 330–333, 464, 537, 539, 545
pmix_scope_t, 51, 55, 114, 114, 462, 502
pmix_status_t, 14, 14, 31, 32, 36, 37, 46, 47, 49, 51, 54, 55, 138, 141, 143, 146, 149, 196, 324, 328,

371, 373, 374, 382, 395, 398, 461, 475, 501
pmix_storage_access_type_t, 457, 457, 559
pmix_storage_accessibility_t, 456, 456, 559
pmix_storage_medium_t, 455, 455, 456, 559
pmix_storage_persistence_t, 456, 456, 559
pmix_topology_t, 52, 189, 190, 190, 191, 194, 195, 539
pmix_value_t, 8, 28, 28–32, 51, 53, 73, 74, 77, 113, 463, 542

584 PMIx Standard – Version 4.1 – October 2021

Index of Constants

PMIX_ALLOC_DIRECTIVE, 51
PMIX_ALLOC_EXTEND, 208
PMIX_ALLOC_EXTERNAL, 208
PMIX_ALLOC_NEW, 208
PMIX_ALLOC_REAQUIRE, 208
PMIX_ALLOC_RELEASE, 208
PMIX_APP, 51
PMIX_APP_WILDCARD, 13
PMIX_BOOL, 50
PMIX_BUFFER, 51
PMIX_BYTE, 50
PMIX_BYTE_OBJECT, 51
PMIX_COMMAND, 51
PMIX_COMPRESSED_BYTE_OBJECT, 51
PMIX_COMPRESSED_STRING, 51
PMIX_COORD, 51
PMIX_COORD_LOGICAL_VIEW, 268
PMIX_COORD_PHYSICAL_VIEW, 268
PMIX_COORD_VIEW_UNDEF, 268
PMIX_CPUBIND_PROCESS, 193
PMIX_CPUBIND_THREAD, 193
PMIX_DATA_ARRAY, 51
PMIX_DATA_RANGE, 51
PMIX_DATA_TYPE, 51
PMIX_DATA_TYPE_MAX, 52
PMIX_DEBUG_WAITING_FOR_NOTIFY, 439
PMIX_DEBUGGER_RELEASE, 439
PMIX_DEVICE_DIST, 51
PMIX_DEVTYPE, 52
PMIX_DEVTYPE_BLOCK, 197
PMIX_DEVTYPE_COPROC, 197
PMIX_DEVTYPE_DMA, 197
PMIX_DEVTYPE_GPU, 197
PMIX_DEVTYPE_NETWORK, 197
PMIX_DEVTYPE_OPENFABRICS, 197
PMIX_DEVTYPE_UNKNOWN, 197
PMIX_DOUBLE, 50
PMIX_ENDPOINT, 52

585

PMIX_ENVAR, 51
PMIX_ERR_BAD_PARAM, 15
PMIX_ERR_COMM_FAILURE, 15
PMIX_ERR_CONFLICTING_CLEANUP_DIRECTIVES, 214
PMIX_ERR_DUPLICATE_KEY, 121
PMIX_ERR_EMPTY, 15
PMIX_ERR_EVENT_REGISTRATION, 140
PMIX_ERR_EXISTS, 14
PMIX_ERR_EXISTS_OUTSIDE_SCOPE, 14
PMIX_ERR_INIT, 15
PMIX_ERR_INVALID_CRED, 14
PMIX_ERR_INVALID_OPERATION, 15
PMIX_ERR_IOF_COMPLETE, 430
PMIX_ERR_IOF_FAILURE, 430
PMIX_ERR_JOB_ABORTED, 438
PMIX_ERR_JOB_ABORTED_BY_SIG, 438
PMIX_ERR_JOB_ABORTED_BY_SYS_EVENT, 439
PMIX_ERR_JOB_ALLOC_FAILED, 174
PMIX_ERR_JOB_APP_NOT_EXECUTABLE, 174
PMIX_ERR_JOB_CANCELED, 438
PMIX_ERR_JOB_FAILED_TO_LAUNCH, 174
PMIX_ERR_JOB_FAILED_TO_MAP, 174
PMIX_ERR_JOB_KILLED_BY_CMD, 438
PMIX_ERR_JOB_NO_EXE_SPECIFIED, 174
PMIX_ERR_JOB_NON_ZERO_TERM, 439
PMIX_ERR_JOB_SENSOR_BOUND_EXCEEDED, 439
PMIX_ERR_JOB_TERM_WO_SYNC, 439
PMIX_ERR_LOST_CONNECTION, 15
PMIX_ERR_NO_PERMISSIONS, 14
PMIX_ERR_NOMEM, 15
PMIX_ERR_NOT_FOUND, 15
PMIX_ERR_NOT_SUPPORTED, 15
PMIX_ERR_OUT_OF_RESOURCE, 15
PMIX_ERR_PACK_FAILURE, 14
PMIX_ERR_PARAM_VALUE_NOT_SUPPORTED, 15
PMIX_ERR_PARTIAL_SUCCESS, 15
PMIX_ERR_PROC_CHECKPOINT, 214
PMIX_ERR_PROC_MIGRATE, 214
PMIX_ERR_PROC_RESTART, 214
PMIX_ERR_PROC_TERM_WO_SYNC, 438
PMIX_ERR_REPEAT_ATTR_REGISTRATION, 330
PMIX_ERR_RESOURCE_BUSY, 15
PMIX_ERR_TIMEOUT, 14

586 PMIx Standard – Version 4.1 – October 2021

PMIX_ERR_TYPE_MISMATCH, 14
PMIX_ERR_UNKNOWN_DATA_TYPE, 14
PMIX_ERR_UNPACK_FAILURE, 14
PMIX_ERR_UNPACK_INADEQUATE_SPACE, 14
PMIX_ERR_UNPACK_READ_PAST_END_OF_BUFFER, 14
PMIX_ERR_UNREACH, 15
PMIX_ERR_WOULD_BLOCK, 14
PMIX_ERROR, 14
PMIX_EVENT_ACTION_COMPLETE, 149
PMIX_EVENT_ACTION_DEFERRED, 149
PMIX_EVENT_JOB_END, 438
PMIX_EVENT_JOB_START, 438
PMIX_EVENT_NO_ACTION_TAKEN, 149
PMIX_EVENT_NODE_DOWN, 140
PMIX_EVENT_NODE_OFFLINE, 140
PMIX_EVENT_PARTIAL_ACTION_TAKEN, 149
PMIX_EVENT_PROC_TERMINATED, 438
PMIX_EVENT_SESSION_END, 438
PMIX_EVENT_SESSION_START, 438
PMIX_EVENT_SYS_BASE, 140
PMIX_EVENT_SYS_OTHER, 140
PMIX_EXTERNAL_ERR_BASE, 15
PMIX_FABRIC_REQUEST_INFO, 268
PMIX_FABRIC_UPDATE_ENDPOINTS, 262
PMIX_FABRIC_UPDATE_INFO, 268
PMIX_FABRIC_UPDATE_PENDING, 262
PMIX_FABRIC_UPDATED, 262
PMIX_FLOAT, 50
PMIX_FWD_ALL_CHANNELS, 429
PMIX_FWD_NO_CHANNELS, 429
PMIX_FWD_STDDIAG_CHANNEL, 429
PMIX_FWD_STDERR_CHANNEL, 429
PMIX_FWD_STDIN_CHANNEL, 429
PMIX_FWD_STDOUT_CHANNEL, 429
PMIX_GEOMETRY, 51
PMIX_GLOBAL, 114
PMIX_GROUP_ACCEPT, 255
PMIX_GROUP_CONSTRUCT, 406
PMIX_GROUP_CONSTRUCT_ABORT, 235
PMIX_GROUP_CONSTRUCT_COMPLETE, 235
PMIX_GROUP_CONTEXT_ID_ASSIGNED, 235
PMIX_GROUP_DECLINE, 255
PMIX_GROUP_DESTRUCT, 406

INDEX OF CONSTANTS 587

PMIX_GROUP_INVITE_ACCEPTED, 235
PMIX_GROUP_INVITE_DECLINED, 235
PMIX_GROUP_INVITE_FAILED, 235
PMIX_GROUP_INVITED, 234
PMIX_GROUP_LEADER_FAILED, 235
PMIX_GROUP_LEADER_SELECTED, 235
PMIX_GROUP_LEFT, 234
PMIX_GROUP_MEMBER_FAILED, 234
PMIX_GROUP_MEMBERSHIP_UPDATE, 235
PMIX_INFO, 51
PMIX_INFO_ARRAY_END, 38
PMIX_INFO_DIR_RESERVED, 38
PMIX_INFO_DIRECTIVES, 51
PMIX_INFO_REQD, 38
PMIX_INFO_REQD_PROCESSED, 38
PMIX_INT, 50
PMIX_INT16, 50
PMIX_INT32, 50
PMIX_INT64, 50
PMIX_INT8, 50
PMIX_INTERNAL, 114
PMIX_IOF_CHANNEL, 51
PMIX_JCTRL_CHECKPOINT, 214
PMIX_JCTRL_CHECKPOINT_COMPLETE, 214
PMIX_JCTRL_PREEMPT_ALERT, 214
PMIX_JOB_STATE, 51
PMIX_JOB_STATE_AWAITING_ALLOC, 28
PMIX_JOB_STATE_CONNECTED, 28
PMIX_JOB_STATE_LAUNCH_UNDERWAY, 28
PMIX_JOB_STATE_RUNNING, 28
PMIX_JOB_STATE_SUSPENDED, 28
PMIX_JOB_STATE_TERMINATED, 28
PMIX_JOB_STATE_TERMINATED_WITH_ERROR, 28
PMIX_JOB_STATE_UNDEF, 28
PMIX_JOB_STATE_UNTERMINATED, 28
PMIX_KVAL, 51
PMIX_LAUNCH_COMPLETE, 438
PMIX_LAUNCHER_READY, 425
PMIX_LINK_DOWN, 268
PMIX_LINK_STATE, 51
PMIX_LINK_STATE_UNKNOWN, 268
PMIX_LINK_UP, 268
PMIX_LOCAL, 114

588 PMIx Standard – Version 4.1 – October 2021

PMIX_LOCALITY_NONLOCAL, 192
PMIX_LOCALITY_SHARE_CORE, 192
PMIX_LOCALITY_SHARE_HWTHREAD, 192
PMIX_LOCALITY_SHARE_L1CACHE, 192
PMIX_LOCALITY_SHARE_L2CACHE, 192
PMIX_LOCALITY_SHARE_L3CACHE, 192
PMIX_LOCALITY_SHARE_NODE, 192
PMIX_LOCALITY_SHARE_NUMA, 192
PMIX_LOCALITY_SHARE_PACKAGE, 192
PMIX_LOCALITY_UNKNOWN, 192
PMIX_LOCTYPE, 52
PMIX_MAX_KEYLEN, 13
PMIX_MAX_NSLEN, 13
PMIX_MODEL_DECLARED, 63
PMIX_MODEL_RESOURCES, 63
PMIX_MONITOR_FILE_ALERT, 221
PMIX_MONITOR_HEARTBEAT_ALERT, 221
PMIX_OPENMP_PARALLEL_ENTERED, 63
PMIX_OPENMP_PARALLEL_EXITED, 63
PMIX_OPERATION_IN_PROGRESS, 15
PMIX_OPERATION_SUCCEEDED, 15
PMIX_PDATA, 51
PMIX_PERSIST, 51
PMIX_PERSIST_APP, 122
PMIX_PERSIST_FIRST_READ, 122
PMIX_PERSIST_INDEF, 122
PMIX_PERSIST_INVALID, 122
PMIX_PERSIST_PROC, 122
PMIX_PERSIST_SESSION, 122
PMIX_PID, 50
PMIX_POINTER, 51
PMIX_PROC, 51
PMIX_PROC_CPUSET, 51
PMIX_PROC_INFO, 51
PMIX_PROC_NSPACE, 51
PMIX_PROC_RANK, 51
PMIX_PROC_STATE, 51
PMIX_PROC_STATE_ABORTED, 25
PMIX_PROC_STATE_ABORTED_BY_SIG, 25
PMIX_PROC_STATE_CALLED_ABORT, 25
PMIX_PROC_STATE_CANNOT_RESTART, 25
PMIX_PROC_STATE_COMM_FAILED, 25
PMIX_PROC_STATE_CONNECTED, 25

INDEX OF CONSTANTS 589

PMIX_PROC_STATE_ERROR, 25
PMIX_PROC_STATE_FAILED_TO_LAUNCH, 25
PMIX_PROC_STATE_FAILED_TO_START, 25
PMIX_PROC_STATE_HEARTBEAT_FAILED, 25
PMIX_PROC_STATE_KILLED_BY_CMD, 25
PMIX_PROC_STATE_LAUNCH_UNDERWAY, 25
PMIX_PROC_STATE_MIGRATING, 25
PMIX_PROC_STATE_PREPPED, 25
PMIX_PROC_STATE_RESTART, 25
PMIX_PROC_STATE_RUNNING, 25
PMIX_PROC_STATE_SENSOR_BOUND_EXCEEDED, 25
PMIX_PROC_STATE_TERM_NON_ZERO, 25
PMIX_PROC_STATE_TERM_WO_SYNC, 25
PMIX_PROC_STATE_TERMINATE, 25
PMIX_PROC_STATE_TERMINATED, 25
PMIX_PROC_STATE_UNDEF, 25
PMIX_PROC_STATE_UNTERMINATED, 25
PMIX_PROCESS_SET_DEFINE, 231
PMIX_PROCESS_SET_DELETE, 231
PMIX_QUERY, 51
PMIX_QUERY_PARTIAL_SUCCESS, 89
PMIX_RANGE_CUSTOM, 122
PMIX_RANGE_GLOBAL, 122
PMIX_RANGE_INVALID, 122
PMIX_RANGE_LOCAL, 122
PMIX_RANGE_NAMESPACE, 122
PMIX_RANGE_PROC_LOCAL, 122
PMIX_RANGE_RM, 122
PMIX_RANGE_SESSION, 122
PMIX_RANGE_UNDEF, 122
PMIX_RANK_INVALID, 20
PMIX_RANK_LOCAL_NODE, 19
PMIX_RANK_LOCAL_PEERS, 20
PMIX_RANK_UNDEF, 19
PMIX_RANK_VALID, 20
PMIX_RANK_WILDCARD, 19
PMIX_REGATTR, 51
PMIX_REGEX, 51
PMIX_REMOTE, 114
PMIX_SCOPE, 51
PMIX_SCOPE_UNDEF, 114
PMIX_SIZE, 50
PMIX_STATUS, 51

590 PMIx Standard – Version 4.1 – October 2021

PMIX_STORAGE_ACCESS_RD, 457
PMIX_STORAGE_ACCESS_RDWR, 457
PMIX_STORAGE_ACCESS_WR, 457
PMIX_STORAGE_ACCESSIBILITY_CLUSTER, 456
PMIX_STORAGE_ACCESSIBILITY_JOB, 456
PMIX_STORAGE_ACCESSIBILITY_NODE, 456
PMIX_STORAGE_ACCESSIBILITY_RACK, 456
PMIX_STORAGE_ACCESSIBILITY_REMOTE, 456
PMIX_STORAGE_ACCESSIBILITY_SESSION, 456
PMIX_STORAGE_MEDIUM_HDD, 455
PMIX_STORAGE_MEDIUM_NVME, 455
PMIX_STORAGE_MEDIUM_PMEM, 455
PMIX_STORAGE_MEDIUM_RAM, 455
PMIX_STORAGE_MEDIUM_SSD, 455
PMIX_STORAGE_MEDIUM_TAPE, 455
PMIX_STORAGE_MEDIUM_UNKNOWN, 455
PMIX_STORAGE_PERSISTENCE_ARCHIVE, 457
PMIX_STORAGE_PERSISTENCE_JOB, 456
PMIX_STORAGE_PERSISTENCE_NODE, 456
PMIX_STORAGE_PERSISTENCE_PROJECT, 456
PMIX_STORAGE_PERSISTENCE_SCRATCH, 456
PMIX_STORAGE_PERSISTENCE_SESSION, 456
PMIX_STORAGE_PERSISTENCE_TEMPORARY, 456
PMIX_STRING, 50
PMIX_SUCCESS, 14
PMIX_TIME, 51
PMIX_TIMEVAL, 51
PMIX_TOPO, 52
PMIX_UINT, 50
PMIX_UINT16, 50
PMIX_UINT32, 50
PMIX_UINT64, 50
PMIX_UINT8, 50
PMIX_UNDEF, 50
PMIX_VALUE, 51

PMIX_CONNECT_REQUESTED
Deprecated, 556

PMIX_ERR_DATA_VALUE_NOT_FOUND
Deprecated, 535
Removed, 557

PMIX_ERR_DEBUGGER_RELEASE
Deprecated, 556

PMIX_ERR_HANDSHAKE_FAILED

INDEX OF CONSTANTS 591

Deprecated, 535
Removed, 556

PMIX_ERR_IN_ERRNO
Deprecated, 535
Removed, 556

PMIX_ERR_INVALID_ARG
Deprecated, 535
Removed, 557

PMIX_ERR_INVALID_ARGS
Deprecated, 535
Removed, 556

PMIX_ERR_INVALID_KEY
Deprecated, 535
Removed, 557

PMIX_ERR_INVALID_KEY_LENGTH
Deprecated, 535
Removed, 557

PMIX_ERR_INVALID_KEYVALP
Deprecated, 535
Removed, 556

PMIX_ERR_INVALID_LENGTH
Deprecated, 535
Removed, 556

PMIX_ERR_INVALID_NAMESPACE
Deprecated, 535
Removed, 557

PMIX_ERR_INVALID_NUM_ARGS
Deprecated, 535
Removed, 556

PMIX_ERR_INVALID_NUM_PARSED
Deprecated, 535
Removed, 556

PMIX_ERR_INVALID_SIZE
Deprecated, 535
Removed, 556

PMIX_ERR_INVALID_TERMINATION
Deprecated, 556

PMIX_ERR_INVALID_VAL
Deprecated, 535
Removed, 557

PMIX_ERR_INVALID_VAL_LENGTH
Deprecated, 535
Removed, 556

592 PMIx Standard – Version 4.1 – October 2021

PMIX_ERR_JOB_TERMINATED
Deprecated, 556

PMIX_ERR_LOST_CONNECTION_TO_CLIENT
Deprecated, 556

PMIX_ERR_LOST_CONNECTION_TO_SERVER
Deprecated, 556

PMIX_ERR_LOST_PEER_CONNECTION
Deprecated, 556

PMIX_ERR_NODE_DOWN
Deprecated, 556

PMIX_ERR_NODE_OFFLINE
Deprecated, 556

PMIX_ERR_NOT_IMPLEMENTED
Deprecated, 535
Removed, 557

PMIX_ERR_PACK_MISMATCH
Deprecated, 535
Removed, 557

PMIX_ERR_PROC_ABORTED
Deprecated, 556

PMIX_ERR_PROC_ABORTING
Deprecated, 556

PMIX_ERR_PROC_ENTRY_NOT_FOUND
Deprecated, 535
Removed, 556

PMIX_ERR_PROC_REQUESTED_ABORT
Deprecated, 535
Removed, 556

PMIX_ERR_READY_FOR_HANDSHAKE
Deprecated, 535
Removed, 556

PMIX_ERR_SERVER_FAILED_REQUEST
Deprecated, 535
Removed, 556

PMIX_ERR_SERVER_NOT_AVAIL
Deprecated, 535
Removed, 557

PMIX_ERR_SILENT
Deprecated, 535
Removed, 557

PMIX_ERR_SYS_OTHER
Deprecated, 556

PMIX_EXISTS

INDEX OF CONSTANTS 593

Deprecated, 556
PMIX_GDS_ACTION_COMPLETE

Deprecated, 535
Removed, 557

PMIX_INFO_ARRAY
Deprecated, 530

PMIX_MODEX
Deprecated, 530

PMIX_NOTIFY_ALLOC_COMPLETE
Deprecated, 535
Removed, 557

PMIX_PROC_HAS_CONNECTED
Deprecated, 556

PMIX_PROC_TERMINATED
Deprecated, 556

594 PMIx Standard – Version 4.1 – October 2021

Index of Environmental Variables

PMIX_KEEPALIVE_PIPE, 414, 423, 424, 555
PMIX_LAUNCHER_RNDZ_FILE, 410, 414, 555
PMIX_LAUNCHER_RNDZ_URI, 414, 423, 424, 555

595

Index of Attributes

PMIX_ACCESS_GRPIDS, 122, 546
PMIX_ACCESS_PERMISSIONS, 119, 121, 121, 546
PMIX_ACCESS_USERIDS, 122, 546
PMIX_ADD_ENVAR, 167, 172, 178
PMIX_ADD_HOST, 165, 170, 175, 364
PMIX_ADD_HOSTFILE, 165, 170, 175, 364
PMIX_ALL_CLONES_PARTICIPATE, 68, 71, 71, 183, 185, 186, 188, 542
PMIX_ALLOC_BANDWIDTH, 167, 173, 202, 205, 207, 207, 325, 326, 387
PMIX_ALLOC_CPU_LIST, 167, 173, 202, 205, 206, 386
PMIX_ALLOC_FABRIC, 202, 205, 207, 325, 386, 557
PMIX_ALLOC_FABRIC_ENDPTS, 168, 173, 202, 203, 205, 206, 207, 207, 325, 326, 386, 557
PMIX_ALLOC_FABRIC_ENDPTS_NODE, 168, 173, 203, 206, 207, 326, 557
PMIX_ALLOC_FABRIC_ID, 202, 205, 207, 207, 325, 386, 557
PMIX_ALLOC_FABRIC_PLANE, 168, 173, 202, 205, 206, 207, 207, 325, 326, 387, 557
PMIX_ALLOC_FABRIC_QOS, 167, 173, 202, 205, 207, 207, 325, 326, 387, 557
PMIX_ALLOC_FABRIC_SEC_KEY, 202, 203, 205, 206, 207, 207, 325, 387, 557
PMIX_ALLOC_FABRIC_TYPE, 168, 173, 202, 205, 206, 207, 207, 325, 326, 386, 387, 557
PMIX_ALLOC_ID, 203, 206, 386, 534, 535, 546
PMIX_ALLOC_MEM_SIZE, 167, 173, 202, 205, 207, 386
PMIX_ALLOC_NODE_LIST, 167, 173, 202, 205, 206, 386
PMIX_ALLOC_NUM_CPU_LIST, 167, 173, 202, 205, 206, 386
PMIX_ALLOC_NUM_CPUS, 167, 173, 201, 204, 206, 386
PMIX_ALLOC_NUM_NODES, 167, 173, 201, 204, 206, 386
PMIX_ALLOC_QUEUE, 83, 88, 90, 167, 172, 206, 378, 546
PMIX_ALLOC_REQ_ID, 201, 204, 206, 534
PMIX_ALLOC_TIME, 167, 172, 201, 205, 207, 386
PMIX_ALLOCATED_NODELIST, 100, 299
PMIX_ANL_MAP, 101, 102, 300
PMIX_APP_ARGV, 103, 301, 546
PMIX_APP_INFO, 73, 76, 81, 86, 98, 103, 106, 301, 302
PMIX_APP_INFO_ARRAY, 298, 301, 307, 307, 313, 545
PMIX_APP_MAP_REGEX, 104, 301
PMIX_APP_MAP_TYPE, 104, 301
PMIX_APP_RANK, 104, 304
PMIX_APP_SIZE, 103, 301, 312
PMIX_APPEND_ENVAR, 167, 172, 178
PMIX_APPLDR, 103, 301, 313
PMIX_APPNUM, 73, 76, 81, 86, 99, 103, 104, 106, 298, 301–303, 307, 313, 545

596

PMIX_ATTR_UNDEF, 5
PMIX_AVAIL_PHYS_MEMORY, 92, 106, 303
PMIX_BINDTO, 165, 171, 175, 300, 364
PMIX_CLEANUP_EMPTY, 210, 213, 216
PMIX_CLEANUP_IGNORE, 210, 213, 216
PMIX_CLEANUP_LEAVE_TOPDIR, 210, 213, 216
PMIX_CLEANUP_RECURSIVE, 210, 213, 216
PMIX_CLIENT_ATTRIBUTES, 82, 87, 92, 96, 432, 537, 544
PMIX_CLIENT_AVG_MEMORY, 84, 89, 92
PMIX_CLIENT_FUNCTIONS, 82, 87, 91, 92, 96, 543, 544
PMIX_CLUSTER_ID, 99, 299
PMIX_CMD_LINE, 102, 546
PMIX_COLLECT_DATA, 68, 70, 71, 112, 351
PMIX_COLLECT_GENERATED_JOB_INFO, 68, 70, 71, 71, 260, 351, 542
PMIX_COLLECTIVE_ALGO, 531
PMIX_CONNECT_MAX_RETRIES, 414, 443
PMIX_CONNECT_RETRY_DELAY, 415, 443
PMIX_CONNECT_SYSTEM_FIRST, 412, 414, 442, 446
PMIX_CONNECT_TO_SYSTEM, 412, 414, 442, 446
PMIX_COSPAWN_APP, 168, 173, 440
PMIX_CPU_LIST, 166, 172, 176, 366
PMIX_CPUS_PER_PROC, 166, 171, 176, 366
PMIX_CPUSET, 105, 193, 305, 339
PMIX_CPUSET_BITMAP, 105, 305, 547
PMIX_CRED_TYPE, 284, 394
PMIX_CREDENTIAL, 105, 380
PMIX_CRYPTO_KEY, 284, 301
PMIX_DAEMON_MEMORY, 84, 89, 92
PMIX_DATA_SCOPE, 73, 76, 78
PMIX_DEBUG_DAEMONS_PER_NODE, 365, 434, 435, 440, 441, 549
PMIX_DEBUG_DAEMONS_PER_PROC, 365, 434, 435, 440, 441, 548
PMIX_DEBUG_STOP_IN_INIT, 418, 422, 424, 432, 435, 440
PMIX_DEBUG_STOP_ON_EXEC, 418, 424, 431, 433, 439
PMIX_DEBUG_TARGET, 365, 433–435, 440, 440, 441, 548, 549, 557
PMIX_DEBUG_WAIT_FOR_NOTIFY, 419, 432, 439, 440
PMIX_DEBUGGER_DAEMONS, 365, 434, 435, 440
PMIX_DEVICE_DISTANCES, 199, 275, 305, 552
PMIX_DEVICE_ID, 199, 260, 261, 271, 274, 275, 319, 550–552
PMIX_DEVICE_TYPE, 199, 552
PMIX_DISPLAY_MAP, 165, 170, 175, 364
PMIX_EMBED_BARRIER, 65, 65
PMIX_ENUM_VALUE, 331, 331, 537, 545
PMIX_EVENT_ACTION_TIMEOUT, 142, 148

INDEX OF ATTRIBUTES 597

PMIX_EVENT_AFFECTED_PROC, 139, 141, 147, 438
PMIX_EVENT_AFFECTED_PROCS, 139, 141, 147, 438
PMIX_EVENT_BASE, 62, 292, 444
PMIX_EVENT_CUSTOM_RANGE, 139, 141, 147
PMIX_EVENT_DO_NOT_CACHE, 142, 147
PMIX_EVENT_HDLR_AFTER, 139, 141
PMIX_EVENT_HDLR_APPEND, 139, 141
PMIX_EVENT_HDLR_BEFORE, 139, 141
PMIX_EVENT_HDLR_FIRST, 139, 141
PMIX_EVENT_HDLR_FIRST_IN_CATEGORY, 139, 141
PMIX_EVENT_HDLR_LAST, 139, 141
PMIX_EVENT_HDLR_LAST_IN_CATEGORY, 139, 141
PMIX_EVENT_HDLR_NAME, 139, 141
PMIX_EVENT_HDLR_PREPEND, 139, 141
PMIX_EVENT_NON_DEFAULT, 141, 147
PMIX_EVENT_PROXY, 142, 147
PMIX_EVENT_RETURN_OBJECT, 139, 141
PMIX_EVENT_SILENT_TERMINATION, 168, 173, 177
PMIX_EVENT_TERMINATE_JOB, 142, 147
PMIX_EVENT_TERMINATE_NODE, 142, 147
PMIX_EVENT_TERMINATE_PROC, 142, 147
PMIX_EVENT_TERMINATE_SESSION, 142, 147
PMIX_EVENT_TEXT_MESSAGE, 142, 147
PMIX_EVENT_TIMESTAMP, 142, 177, 418, 419, 437, 438, 554, 555
PMIX_EXEC_AGENT, 422, 425, 436, 548
PMIX_EXIT_CODE, 104, 177, 418, 419, 437, 555
PMIX_EXTERNAL_PROGRESS, 61, 292, 294, 444, 547
PMIX_FABRIC_COORDINATES, 273, 549
PMIX_FABRIC_COST_MATRIX, 270, 272, 549
PMIX_FABRIC_DEVICE, 260, 270, 273, 274, 551
PMIX_FABRIC_DEVICE_ADDRESS, 261, 271, 274, 551
PMIX_FABRIC_DEVICE_BUS_TYPE, 261, 271, 274, 551
PMIX_FABRIC_DEVICE_COORDINATES, 261, 274, 551
PMIX_FABRIC_DEVICE_DRIVER, 261, 271, 274, 551
PMIX_FABRIC_DEVICE_FIRMWARE, 261, 271, 274, 551
PMIX_FABRIC_DEVICE_INDEX, 261, 274, 407, 551
PMIX_FABRIC_DEVICE_MTU, 262, 271, 274, 551
PMIX_FABRIC_DEVICE_NAME, 260, 261, 270, 274, 319, 551
PMIX_FABRIC_DEVICE_PCI_DEVID, 261, 271, 274, 275, 552
PMIX_FABRIC_DEVICE_SPEED, 262, 271, 274, 551
PMIX_FABRIC_DEVICE_STATE, 262, 271, 274, 551
PMIX_FABRIC_DEVICE_TYPE, 262, 271, 274, 552
PMIX_FABRIC_DEVICE_VENDOR, 261, 271, 274, 551

598 PMIx Standard – Version 4.1 – October 2021

PMIX_FABRIC_DEVICE_VENDORID, 261, 274, 551
PMIX_FABRIC_DEVICES, 260, 273
PMIX_FABRIC_DIMS, 270, 273, 550
PMIX_FABRIC_ENDPT, 275, 550
PMIX_FABRIC_GROUPS, 270, 272, 549
PMIX_FABRIC_IDENTIFIER, 269, 273, 276, 407, 549
PMIX_FABRIC_INDEX, 268, 273, 273, 549
PMIX_FABRIC_NUM_DEVICES, 269, 273, 549
PMIX_FABRIC_PLANE, 270, 272, 273, 276, 277, 407, 550
PMIX_FABRIC_SHAPE, 270, 273, 550
PMIX_FABRIC_SHAPE_STRING, 270, 273, 550
PMIX_FABRIC_SWITCH, 272, 275, 550
PMIX_FABRIC_VENDOR, 269, 273, 276, 407, 549
PMIX_FIRST_ENVAR, 167, 172, 178, 555
PMIX_FORKEXEC_AGENT, 422, 424, 425, 436, 548
PMIX_FWD_STDDIAG, 417, 421, 425, 534
PMIX_FWD_STDERR, 365, 381, 416, 421, 425, 426
PMIX_FWD_STDIN, 364, 381, 416, 420, 424, 426
PMIX_FWD_STDOUT, 365, 381, 416, 421, 424, 424, 426
PMIX_GET_POINTER_VALUES, 73, 74, 76, 77, 542
PMIX_GET_REFRESH_CACHE, 73, 76, 77, 116, 542
PMIX_GET_STATIC_VALUES, 72–74, 77, 77, 542
PMIX_GLOBAL_RANK, 104, 304
PMIX_GROUP_ASSIGN_CONTEXT_ID, 236, 238, 242, 248, 251, 405, 406, 553
PMIX_GROUP_CONTEXT_ID, 236, 405, 553
PMIX_GROUP_ENDPT_DATA, 236, 405, 554
PMIX_GROUP_FT_COLLECTIVE, 236, 238, 242, 247, 251, 553
PMIX_GROUP_ID, 235, 235, 405, 553
PMIX_GROUP_LEADER, 236, 238, 239, 242, 249, 253, 553
PMIX_GROUP_LOCAL_ONLY, 236, 238, 242, 405, 553
PMIX_GROUP_MEMBERSHIP, 236, 239, 405
PMIX_GROUP_NAMES, 236, 554
PMIX_GROUP_NOTIFY_TERMINATION, 236, 238, 239, 242, 244, 248, 251, 553
PMIX_GROUP_OPTIONAL, 236, 238, 239, 242, 247, 251, 405, 553
PMIX_GRPID, 82, 87, 119, 120, 124, 126, 132, 133, 201, 204, 209, 212, 217, 219, 223, 226, 282,

284, 286, 287, 356, 357, 359, 361, 363, 372, 378, 380, 382, 383, 386, 389, 392, 394, 397,
398, 400, 403

PMIX_HOMOGENEOUS_SYSTEM, 292, 294, 545
PMIX_HOST, 164, 170, 174, 363
PMIX_HOST_ATTRIBUTES, 82, 87, 92, 96, 433, 537, 544
PMIX_HOST_FUNCTIONS, 82, 87, 91, 92, 96, 543, 544
PMIX_HOSTFILE, 164, 170, 174, 363
PMIX_HOSTNAME, 73, 76, 81, 83, 84, 86, 88, 89, 91, 92, 99, 106, 106, 260, 261, 271, 275, 298,

INDEX OF ATTRIBUTES 599

302–305, 307, 319, 378, 433, 441, 545, 552
PMIX_HOSTNAME_ALIASES, 106, 302, 547
PMIX_HOSTNAME_KEEP_FQDN, 100, 300, 547
PMIX_IMMEDIATE, 72, 76, 77, 107, 116
PMIX_INDEX_ARGV, 166, 171, 176, 365
PMIX_IOF_BUFFERING_SIZE, 400, 417, 421, 430, 450, 453
PMIX_IOF_BUFFERING_TIME, 400, 417, 421, 430, 450, 453
PMIX_IOF_CACHE_SIZE, 400, 417, 421, 430, 450, 453
PMIX_IOF_COMPLETE, 401, 429, 430, 431, 454, 467, 548
PMIX_IOF_COPY, 427, 431, 548
PMIX_IOF_DROP_NEWEST, 400, 417, 421, 430, 450, 453
PMIX_IOF_DROP_OLDEST, 400, 417, 421, 430, 450, 453
PMIX_IOF_PUSH_STDIN, 428, 430, 453, 548
PMIX_IOF_REDIRECT, 427, 431, 548
PMIX_IOF_TAG_OUTPUT, 417, 421, 427, 430, 450
PMIX_IOF_TIMESTAMP_OUTPUT, 417, 422, 428, 430, 450
PMIX_IOF_XML_OUTPUT, 417, 422, 428, 430, 451
PMIX_JOB_CONTINUOUS, 166, 172, 176, 366
PMIX_JOB_CTRL_CANCEL, 210, 213, 215, 389
PMIX_JOB_CTRL_CHECKPOINT, 210, 213, 215, 389
PMIX_JOB_CTRL_CHECKPOINT_EVENT, 210, 213, 215, 390
PMIX_JOB_CTRL_CHECKPOINT_METHOD, 211, 214, 215, 390
PMIX_JOB_CTRL_CHECKPOINT_SIGNAL, 210, 213, 215, 390
PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT, 211, 213, 215, 390
PMIX_JOB_CTRL_ID, 209, 210, 212, 213, 215, 215, 389
PMIX_JOB_CTRL_KILL, 210, 212, 215, 389
PMIX_JOB_CTRL_PAUSE, 209, 212, 215, 389
PMIX_JOB_CTRL_PREEMPTIBLE, 211, 214, 215, 390
PMIX_JOB_CTRL_PROVISION, 211, 214, 215, 390
PMIX_JOB_CTRL_PROVISION_IMAGE, 211, 214, 215, 390
PMIX_JOB_CTRL_RESTART, 210, 213, 215, 389
PMIX_JOB_CTRL_RESUME, 209, 212, 215, 389
PMIX_JOB_CTRL_SIGNAL, 210, 213, 215, 389
PMIX_JOB_CTRL_TERMINATE, 210, 213, 215, 389
PMIX_JOB_INFO, 73, 76, 81, 86, 98, 101
PMIX_JOB_INFO_ARRAY, 297, 299, 307, 307, 308, 311, 532, 544
PMIX_JOB_NUM_APPS, 102, 300, 311
PMIX_JOB_RECOVERABLE, 166, 172, 176, 366
PMIX_JOB_SIZE, 102, 299, 311, 312, 531, 534
PMIX_JOB_TERM_STATUS, 177, 418, 419, 437, 438, 439, 555
PMIX_JOBID, 101, 297–299, 307, 311, 438, 545
PMIX_LAUNCH_DIRECTIVES, 424, 425, 549
PMIX_LAUNCHER, 409, 414, 415

600 PMIx Standard – Version 4.1 – October 2021

PMIX_LAUNCHER_DAEMON, 422, 425, 547
PMIX_LAUNCHER_RENDEZVOUS_FILE, 410, 415, 547
PMIX_LOCAL_CPUSETS, 106, 303, 315
PMIX_LOCAL_PEERS, 106, 106, 303, 314
PMIX_LOCAL_PROCS, 106, 303
PMIX_LOCAL_RANK, 105, 304, 434–436, 441, 548, 549
PMIX_LOCAL_SIZE, 106, 302
PMIX_LOCALITY_STRING, 190, 192, 304, 339
PMIX_LOCALLDR, 106, 302
PMIX_LOG_COMPLETION, 177, 418, 437, 555
PMIX_LOG_EMAIL, 224, 227, 229, 384
PMIX_LOG_EMAIL_ADDR, 224, 227, 229, 384
PMIX_LOG_EMAIL_MSG, 224, 227, 229, 384
PMIX_LOG_EMAIL_SENDER_ADDR, 224, 227, 229
PMIX_LOG_EMAIL_SERVER, 224, 227, 229
PMIX_LOG_EMAIL_SRVR_PORT, 224, 227, 229
PMIX_LOG_EMAIL_SUBJECT, 224, 227, 229, 384
PMIX_LOG_GENERATE_TIMESTAMP, 223, 226, 228
PMIX_LOG_GLOBAL_DATASTORE, 224, 227, 229
PMIX_LOG_GLOBAL_SYSLOG, 223, 226, 228
PMIX_LOG_JOB_EVENTS, 177, 418, 437, 554
PMIX_LOG_JOB_RECORD, 224, 227, 229
PMIX_LOG_LOCAL_SYSLOG, 223, 226, 228
PMIX_LOG_MSG, 228, 384
PMIX_LOG_ONCE, 223, 226, 228
PMIX_LOG_PROC_ABNORMAL_TERMINATION, 177, 554
PMIX_LOG_PROC_TERMINATION, 177, 554
PMIX_LOG_SOURCE, 223, 226, 228
PMIX_LOG_STDERR, 223, 226, 228, 383
PMIX_LOG_STDOUT, 223, 226, 228, 383
PMIX_LOG_SYSLOG, 223, 226, 228, 383
PMIX_LOG_SYSLOG_PRI, 223, 226, 228
PMIX_LOG_TAG_OUTPUT, 224, 227, 228
PMIX_LOG_TIMESTAMP, 223, 226, 228
PMIX_LOG_TIMESTAMP_OUTPUT, 224, 227, 228
PMIX_LOG_XML_OUTPUT, 224, 227, 228
PMIX_MAPBY, 165, 171, 174, 175, 300, 364
PMIX_MAX_PROCS, 100, 100–103, 298–301, 303, 330, 534
PMIX_MAX_RESTARTS, 166, 172, 176, 366
PMIX_MAX_VALUE, 331, 331, 537, 545
PMIX_MERGE_STDERR_STDOUT, 166, 171, 175, 365
PMIX_MIN_VALUE, 331, 331, 537, 545
PMIX_MODEL_AFFINITY_POLICY, 62, 64

INDEX OF ATTRIBUTES 601

PMIX_MODEL_CPU_TYPE, 62, 64
PMIX_MODEL_LIBRARY_NAME, 62, 64, 302, 326
PMIX_MODEL_LIBRARY_VERSION, 62, 64, 302, 327
PMIX_MODEL_NUM_CPUS, 62, 64
PMIX_MODEL_NUM_THREADS, 62, 64
PMIX_MODEL_PHASE_NAME, 64, 142
PMIX_MODEL_PHASE_TYPE, 64, 142
PMIX_MONITOR_APP_CONTROL, 217, 220, 221, 392
PMIX_MONITOR_CANCEL, 217, 219, 221, 392
PMIX_MONITOR_FILE, 217, 218, 220, 221, 392
PMIX_MONITOR_FILE_ACCESS, 218, 220, 222, 392
PMIX_MONITOR_FILE_CHECK_TIME, 218, 220, 222, 393
PMIX_MONITOR_FILE_DROPS, 218, 220, 222, 393
PMIX_MONITOR_FILE_MODIFY, 218, 220, 222, 392
PMIX_MONITOR_FILE_SIZE, 217, 220, 221, 392
PMIX_MONITOR_HEARTBEAT, 217, 220, 221, 392
PMIX_MONITOR_HEARTBEAT_DROPS, 217, 220, 221, 392
PMIX_MONITOR_HEARTBEAT_TIME, 217, 220, 221, 392
PMIX_MONITOR_ID, 217, 219, 221, 392
PMIX_NO_OVERSUBSCRIBE, 166, 172, 176, 366
PMIX_NO_PROCS_ON_HEAD, 166, 171, 176, 366
PMIX_NODE_INFO, 73, 76, 81, 86, 99, 106, 303
PMIX_NODE_INFO_ARRAY, 298, 302, 307, 308, 312, 314, 318, 319, 545
PMIX_NODE_LIST, 100, 102, 104
PMIX_NODE_MAP, 100, 102, 103, 300, 311–313, 326, 327, 534
PMIX_NODE_MAP_RAW, 101, 547
PMIX_NODE_RANK, 105, 304, 435
PMIX_NODE_SIZE, 106, 302
PMIX_NODEID, 73, 76, 81, 84, 86, 89, 92, 99, 106, 106, 261, 271, 275, 298, 302–304, 307, 319,

545, 552
PMIX_NOHUP, 417, 422, 425, 547
PMIX_NOTIFY_COMPLETION, 177, 418, 437
PMIX_NOTIFY_JOB_EVENTS, 176, 417, 437, 554
PMIX_NOTIFY_PROC_ABNORMAL_TERMINATION, 177, 554
PMIX_NOTIFY_PROC_TERMINATION, 177, 554
PMIX_NPROC_OFFSET, 101, 300
PMIX_NSDIR, 102, 105, 303, 305
PMIX_NSPACE, 82–84, 87–92, 101, 297–299, 307, 312, 378, 379, 433, 438, 441, 543–545
PMIX_NUM_ALLOCATED_NODES, 100, 546
PMIX_NUM_NODES, 98, 100, 102, 103, 311, 312, 546
PMIX_NUM_SLOTS, 100, 101, 103
PMIX_OPTIONAL, 72, 75, 77, 116
PMIX_OUTPUT_TO_DIRECTORY, 176, 554

602 PMIx Standard – Version 4.1 – October 2021

PMIX_OUTPUT_TO_FILE, 166, 171, 176, 365
PMIX_PACKAGE_RANK, 105, 305, 546
PMIX_PARENT_ID, 104, 363, 423
PMIX_PERSISTENCE, 119, 121, 121, 356, 462
PMIX_PERSONALITY, 165, 170, 174, 364
PMIX_PPR, 165, 170, 175, 364
PMIX_PREFIX, 164, 170, 175, 363
PMIX_PRELOAD_BIN, 165, 170, 175, 364
PMIX_PRELOAD_FILES, 165, 170, 175, 364
PMIX_PREPEND_ENVAR, 167, 172, 178
PMIX_PRIMARY_SERVER, 415, 447, 547
PMIX_PROC_INFO, 81, 86, 99
PMIX_PROC_INFO_ARRAY, 298, 303, 307, 313, 545, 557
PMIX_PROC_MAP, 101, 101, 102, 104, 300, 311, 312, 326, 327, 534
PMIX_PROC_MAP_RAW, 101, 547
PMIX_PROC_PID, 84, 89, 105
PMIX_PROC_STATE_STATUS, 84, 89, 439
PMIX_PROC_TERM_STATUS, 438, 439
PMIX_PROCDIR, 105, 305
PMIX_PROCID, 81–83, 86–88, 91, 104, 177, 298, 307, 379, 418, 419, 437, 545, 555
PMIX_PROGRAMMING_MODEL, 62, 64, 302, 326
PMIX_PSET_MEMBERS, 231, 232, 552
PMIX_PSET_NAME, 231, 232, 552
PMIX_PSET_NAMES, 230, 232, 301, 552
PMIX_QUERY_ALLOC_STATUS, 83, 88, 91, 379
PMIX_QUERY_ATTRIBUTE_SUPPORT, 82, 87, 91, 95, 432, 543
PMIX_QUERY_AUTHORIZATIONS, 84, 89, 91
PMIX_QUERY_AVAIL_SERVERS, 91, 412, 543
PMIX_QUERY_DEBUG_SUPPORT, 83, 88, 91, 378
PMIX_QUERY_GROUP_MEMBERSHIP, 235, 553
PMIX_QUERY_GROUP_NAMES, 235, 553
PMIX_QUERY_JOB_STATUS, 83, 88, 90, 378
PMIX_QUERY_LOCAL_ONLY, 91, 379
PMIX_QUERY_LOCAL_PROC_TABLE, 83, 88, 90, 378, 433, 441
PMIX_QUERY_MEMORY_USAGE, 83, 88, 91, 379
PMIX_QUERY_NAMESPACE_INFO, 90, 543
PMIX_QUERY_NAMESPACES, 83, 88, 90, 378, 433
PMIX_QUERY_NUM_GROUPS, 235, 552
PMIX_QUERY_NUM_PSETS, 91, 232, 552
PMIX_QUERY_PROC_TABLE, 83, 88, 90, 378, 433, 441
PMIX_QUERY_PSET_MEMBERSHIP, 91, 232, 552
PMIX_QUERY_PSET_NAMES, 91, 232, 552
PMIX_QUERY_QUALIFIERS, 84, 90, 90, 543

INDEX OF ATTRIBUTES 603

PMIX_QUERY_QUEUE_LIST, 83, 88, 90, 378
PMIX_QUERY_QUEUE_STATUS, 83, 88, 90, 378
PMIX_QUERY_REFRESH_CACHE, 81, 85, 86, 90, 95
PMIX_QUERY_REPORT_AVG, 83, 88, 91, 379
PMIX_QUERY_REPORT_MINMAX, 83, 88, 91, 379
PMIX_QUERY_RESULTS, 84, 90, 543
PMIX_QUERY_SPAWN_SUPPORT, 83, 88, 91, 378
PMIX_QUERY_STORAGE_LIST, 457, 561
PMIX_QUERY_SUPPORTED_KEYS, 90, 543
PMIX_QUERY_SUPPORTED_QUALIFIERS, 90, 543
PMIX_RANGE, 119, 121, 121, 124, 126, 132, 134, 139, 218, 235, 356, 359, 361, 375, 405, 406,

462, 552, 553
PMIX_RANK, 82, 83, 87, 88, 91, 104, 168, 173, 298, 303, 307, 379, 436, 440, 545
PMIX_RANKBY, 165, 171, 175, 300, 364
PMIX_REGISTER_CLEANUP, 210, 213, 215
PMIX_REGISTER_CLEANUP_DIR, 210, 213, 216
PMIX_REGISTER_NODATA, 297, 307
PMIX_REINCARNATION, 105, 304, 547
PMIX_REPORT_BINDINGS, 166, 172, 176, 366
PMIX_REQUESTOR_IS_CLIENT, 363, 367
PMIX_REQUESTOR_IS_TOOL, 363, 367
PMIX_REQUIRED_KEY, 354, 355, 546
PMIX_RM_NAME, 100, 299
PMIX_RM_VERSION, 100, 299
PMIX_SEND_HEARTBEAT, 218, 220, 221
PMIX_SERVER_ATTRIBUTES, 82, 87, 92, 96, 537, 544
PMIX_SERVER_ENABLE_MONITORING, 292, 294
PMIX_SERVER_FUNCTIONS, 82, 87, 91, 92, 96, 543, 544
PMIX_SERVER_GATEWAY, 290, 294
PMIX_SERVER_HOSTNAME, 299, 414
PMIX_SERVER_INFO_ARRAY, 92, 92, 543
PMIX_SERVER_NSPACE, 290, 294, 299, 412, 442, 446
PMIX_SERVER_PIDINFO, 412, 414, 442, 446
PMIX_SERVER_RANK, 290, 294, 299
PMIX_SERVER_REMOTE_CONNECTIONS, 291, 293
PMIX_SERVER_SCHEDULER, 272, 275, 290, 294, 544, 549
PMIX_SERVER_SESSION_SUPPORT, 290, 294, 544
PMIX_SERVER_SHARE_TOPOLOGY, 292, 293, 544
PMIX_SERVER_START_TIME, 294, 544
PMIX_SERVER_SYSTEM_SUPPORT, 290, 294, 409
PMIX_SERVER_TMPDIR, 290, 292, 294, 409–411
PMIX_SERVER_TOOL_SUPPORT, 281, 290, 292, 293
PMIX_SERVER_URI, 84, 89, 411, 412, 414, 442, 446

604 PMIx Standard – Version 4.1 – October 2021

PMIX_SESSION_ID, 99, 99, 101, 108, 297, 298, 307, 311, 438, 545
PMIX_SESSION_INFO, 73, 76, 81, 86, 98, 100, 108, 298, 300, 326
PMIX_SESSION_INFO_ARRAY, 297, 298, 307, 308, 311, 532
PMIX_SET_ENVAR, 166, 172, 178
PMIX_SET_SESSION_CWD, 164, 170, 175, 363
PMIX_SETUP_APP_ALL, 325, 328
PMIX_SETUP_APP_ENVARS, 325, 328
PMIX_SETUP_APP_NONENVARS, 325, 328
PMIX_SINGLE_LISTENER, 61, 291, 293
PMIX_SOCKET_MODE, 61, 291, 293, 443
PMIX_SPAWN_TOOL, 168, 173, 176, 424
PMIX_SPAWNED, 105, 304, 363
PMIX_STDIN_TGT, 165, 171, 175, 364
PMIX_STORAGE_ACCESS_TYPE, 458, 562
PMIX_STORAGE_ACCESSIBILITY, 457, 561
PMIX_STORAGE_BW_CUR, 458, 458, 561, 562
PMIX_STORAGE_BW_MAX, 458, 561
PMIX_STORAGE_CAPACITY_LIMIT, 457, 561
PMIX_STORAGE_CAPACITY_USED, 457, 561
PMIX_STORAGE_ID, 457, 457, 560, 561
PMIX_STORAGE_IOPS_CUR, 458, 458, 561, 562
PMIX_STORAGE_IOPS_MAX, 458, 561
PMIX_STORAGE_MEDIUM, 457, 560
PMIX_STORAGE_MINIMAL_XFER_SIZE, 457, 561
PMIX_STORAGE_OBJECT_LIMIT, 457, 561
PMIX_STORAGE_OBJECTS_USED, 457, 561
PMIX_STORAGE_PATH, 457, 560
PMIX_STORAGE_PERSISTENCE, 457, 561
PMIX_STORAGE_SUGGESTED_XFER_SIZE, 458, 458, 561, 562
PMIX_STORAGE_TYPE, 457, 560
PMIX_STORAGE_VERSION, 457, 560
PMIX_SWITCH_PEERS, 275, 275, 550
PMIX_SYSTEM_TMPDIR, 290, 294, 409, 411
PMIX_TAG_OUTPUT, 165, 171, 175, 365
PMIX_TCP_DISABLE_IPV4, 61, 64, 291, 443
PMIX_TCP_DISABLE_IPV6, 61, 64, 291, 443
PMIX_TCP_IF_EXCLUDE, 61, 64, 291, 443
PMIX_TCP_IF_INCLUDE, 61, 64, 291, 443
PMIX_TCP_IPV4_PORT, 61, 64, 291, 443
PMIX_TCP_IPV6_PORT, 61, 64, 291, 443
PMIX_TCP_REPORT_URI, 61, 63, 291, 443
PMIX_TCP_URI, 64, 411, 412, 442, 446
PMIX_TDIR_RMCLEAN, 100, 301

INDEX OF ATTRIBUTES 605

PMIX_THREADING_MODEL, 62, 64
PMIX_TIME_REMAINING, 78, 84, 89, 91, 379
PMIX_TIMEOUT, 4, 68, 71, 74, 77, 78, 107, 116, 117, 119, 121, 124, 126, 132, 134, 183, 185,

186, 188, 234, 238, 240, 243, 244, 246, 248, 251, 253, 255, 283, 284, 286, 288, 351, 355,
357, 359, 361, 366, 368, 370, 394, 397, 415, 449, 549

PMIX_TIMEOUT_REPORT_STATE, 176, 554
PMIX_TIMEOUT_STACKTRACES, 176, 554
PMIX_TIMESTAMP_OUTPUT, 165, 171, 175, 365
PMIX_TMPDIR, 100, 102, 303
PMIX_TOOL_ATTACHMENT_FILE, 411, 412, 415, 442, 446, 547
PMIX_TOOL_ATTRIBUTES, 82, 87, 92, 96, 537, 544
PMIX_TOOL_CONNECT_OPTIONAL, 415, 547
PMIX_TOOL_DO_NOT_CONNECT, 411, 415, 442, 444
PMIX_TOOL_FUNCTIONS, 82, 87, 91, 92, 96, 543, 544
PMIX_TOOL_NSPACE, 380, 410, 413, 442, 444
PMIX_TOOL_RANK, 380, 410, 414, 442, 444
PMIX_TOPOLOGY2, 292, 293, 544, 557
PMIX_UNIV_SIZE, 8, 99, 298, 311, 531, 532, 534
PMIX_UNSET_ENVAR, 167, 172, 178
PMIX_USERID, 82, 87, 119, 120, 124, 126, 132, 133, 201, 204, 209, 212, 217, 219, 223, 226, 282,

284, 286, 287, 356–359, 361, 363, 371, 378, 380, 382, 383, 385, 389, 392, 394, 396, 398,
399, 403

PMIX_USOCK_DISABLE, 61, 291, 293
PMIX_VERSION_INFO, 381, 382
PMIX_WAIT, 76, 78, 124, 126, 359
PMIX_WAIT_FOR_CONNECTION, 415, 449, 549
PMIX_WDIR, 164, 170, 175, 301, 363

PMIX_ALLOC_NETWORK
Deprecated, 557

PMIX_ALLOC_NETWORK_ENDPTS
Deprecated, 557

PMIX_ALLOC_NETWORK_ENDPTS_NODE
Deprecated, 557

PMIX_ALLOC_NETWORK_ID
Deprecated, 557

PMIX_ALLOC_NETWORK_PLANE
Deprecated, 557

PMIX_ALLOC_NETWORK_QOS
Deprecated, 557

PMIX_ALLOC_NETWORK_SEC_KEY
Deprecated, 557

PMIX_ALLOC_NETWORK_TYPE
Deprecated, 557

606 PMIx Standard – Version 4.1 – October 2021

PMIX_ARCH
Deprecated, 536
Removed, 559

PMIX_COLLECTIVE_ALGO
Deprecated, 536
Removed, 558

PMIX_COLLECTIVE_ALGO_REQD
Deprecated, 533
Removed, 558

PMIX_DEBUG_JOB
Deprecated, 557

PMIX_DSTPATH
Deprecated, 536
Removed, 558

PMIX_ERROR_GROUP_ABORT
Deprecated, 531
Removed, 533

PMIX_ERROR_GROUP_COMM
Deprecated, 531
Removed, 533

PMIX_ERROR_GROUP_GENERAL
Deprecated, 531
Removed, 533

PMIX_ERROR_GROUP_LOCAL
Deprecated, 531
Removed, 533

PMIX_ERROR_GROUP_MIGRATE
Deprecated, 531
Removed, 533

PMIX_ERROR_GROUP_NODE
Deprecated, 531
Removed, 533

PMIX_ERROR_GROUP_RESOURCE
Deprecated, 531
Removed, 533

PMIX_ERROR_GROUP_SPAWN
Deprecated, 531
Removed, 533

PMIX_ERROR_HANDLER_ID
Deprecated, 531
Removed, 533

PMIX_ERROR_NAME
Deprecated, 531

INDEX OF ATTRIBUTES 607

Removed, 533
PMIX_HWLOC_HOLE_KIND

Deprecated, 536
Removed, 558

PMIX_HWLOC_SHARE_TOPO
Deprecated, 536
Removed, 558

PMIX_HWLOC_SHMEM_ADDR
Deprecated, 536
Removed, 558

PMIX_HWLOC_SHMEM_FILE
Deprecated, 536
Removed, 558

PMIX_HWLOC_SHMEM_SIZE
Deprecated, 536
Removed, 558

PMIX_HWLOC_XML_V1
Deprecated, 536
Removed, 558

PMIX_HWLOC_XML_V2
Deprecated, 536
Removed, 558

PMIX_LOCAL_TOPO
Deprecated, 536
Removed, 558

PMIX_LOCALITY
Deprecated, 557

PMIX_MAP_BLOB
Deprecated, 536
Removed, 559

PMIX_MAPPER
Deprecated, 536
Removed, 559

PMIX_NON_PMI
Deprecated, 536
Removed, 559

PMIX_PROC_BLOB
Deprecated, 536
Removed, 558

PMIX_PROC_DATA
Deprecated, 557

PMIX_PROC_URI
Deprecated, 536

608 PMIx Standard – Version 4.1 – October 2021

Removed, 559
PMIX_RECONNECT_SERVER

Deprecated, 557
PMIX_TOPOLOGY

Deprecated, 557
PMIX_TOPOLOGY_FILE

Deprecated, 536
Removed, 558

PMIX_TOPOLOGY_SIGNATURE
Deprecated, 537
Removed, 558

PMIX_TOPOLOGY_XML
Deprecated, 537
Removed, 558

INDEX OF ATTRIBUTES 609

	1 Introduction
	1.1 Background
	1.2 PMIx Architecture Overview
	1.3 Portability of Functionality
	1.3.1 Attributes in PMIx

	2 PMIx Terms and Conventions
	2.1 Notational Conventions
	2.2 Semantics
	2.3 Naming Conventions
	2.4 Procedure Conventions

	3 Data Structures and Types
	3.1 Constants
	3.1.1 PMIx Return Status Constants
	3.1.1.1 User-Defined Error and Event Constants

	3.2 Data Types
	3.2.1 Key Structure
	3.2.1.1 Key support macros

	3.2.2 Namespace Structure
	3.2.2.1 Namespace support macros

	3.2.3 Rank Structure
	3.2.3.1 Rank support macros

	3.2.4 Process Structure
	3.2.4.1 Process structure support macros

	3.2.5 Process State Structure
	3.2.6 Process Information Structure
	3.2.6.1 Process information structure support macros

	3.2.7 Job State Structure
	3.2.8 Value Structure
	3.2.8.1 Value structure support macros

	3.2.9 Info Structure
	3.2.9.1 Info structure support macros
	3.2.9.2 Info structure list macros

	3.2.10 Info Type Directives
	3.2.10.1 Info Directive support macros

	3.2.11 Environmental Variable Structure
	3.2.11.1 Environmental variable support macros

	3.2.12 Byte Object Type
	3.2.12.1 Byte object support macros

	3.2.13 Data Array Structure
	3.2.13.1 Data array support macros

	3.2.14 Argument Array Macros
	3.2.15 Set Environment Variable

	3.3 Generalized Data Types Used for Packing/Unpacking
	3.4 General Callback Functions
	3.4.1 Release Callback Function
	3.4.2 Op Callback Function
	3.4.3 Value Callback Function
	3.4.4 Info Callback Function
	3.4.5 Handler registration callback function

	3.5 PMIx Datatype Value String Representations

	4 Client Initialization and Finalization
	4.1 PMIx_Initialized
	4.2 PMIx_Get_version
	4.3 PMIx_Init
	4.3.1 Initialization events
	4.3.2 Initialization attributes
	4.3.2.1 Connection attributes
	4.3.2.2 Programming model attributes

	4.4 PMIx_Finalize
	4.4.1 Finalize attributes

	4.5 PMIx_Progress

	5 Synchronization and Data Access Operations
	5.1 PMIx_Fence
	5.2 PMIx_Fence_nb
	5.2.1 Fence-related attributes

	5.3 PMIx_Get
	5.3.1 PMIx_Get_nb
	5.3.2 Retrieval attributes

	5.4 Query
	5.4.1 PMIx_Resolve_peers
	5.4.2 PMIx_Resolve_nodes
	5.4.3 PMIx_Query_info
	5.4.4 PMIx_Query_info_nb
	5.4.5 Query-specific constants
	5.4.6 Query attributes
	5.4.7 Query Structure
	5.4.7.1 Query structure support macros

	5.5 Using Get vs Query
	5.6 Accessing attribute support information

	6 Reserved Keys
	6.1 Data realms
	6.1.1 Session realm attributes
	6.1.2 Job realm attributes
	6.1.3 Application realm attributes
	6.1.4 Process realm attributes
	6.1.5 Node realm keys

	6.2 Retrieval rules for reserved keys
	6.2.1 Accessing information: examples
	6.2.1.1 Session-level information
	6.2.1.2 Job-level information
	6.2.1.3 Application-level information
	6.2.1.4 Process-level information
	6.2.1.5 Node-level information

	7 Process-Related Non-Reserved Keys
	7.1 Posting Key/Value Pairs
	7.1.1 PMIx_Put
	7.1.1.1 Scope of Put Data

	7.1.2 PMIx_Store_internal
	7.1.3 PMIx_Commit

	7.2 Retrieval rules for non-reserved keys

	8 Publish/Lookup Operations
	8.1 PMIx_Publish
	8.2 PMIx_Publish_nb
	8.3 Publish-specific constants
	8.4 Publish-specific attributes
	8.5 Publish-Lookup Datatypes
	8.5.1 Range of Published Data
	8.5.2 Data Persistence Structure

	8.6 PMIx_Lookup
	8.7 PMIx_Lookup_nb
	8.7.1 Lookup Returned Data Structure
	8.7.1.1 Lookup data structure support macros

	8.7.2 Lookup Callback Function

	8.8 Retrieval rules for published data
	8.9 PMIx_Unpublish
	8.10 PMIx_Unpublish_nb

	9 Event Notification
	9.1 Notification and Management
	9.1.1 Events versus status constants
	9.1.2 PMIx_Register_event_handler
	9.1.3 Event registration constants
	9.1.4 System events
	9.1.5 Event handler registration and notification attributes
	9.1.5.1 Fault tolerance event attributes
	9.1.5.2 Hybrid programming event attributes

	9.1.6 Notification Function
	9.1.7 PMIx_Deregister_event_handler
	9.1.8 PMIx_Notify_event
	9.1.9 Notification Handler Completion Callback Function
	9.1.9.1 Completion Callback Function Status Codes

	10 Data Packing and Unpacking
	10.1 Data Buffer Type
	10.2 Support Macros
	10.3 General Routines
	10.3.1 PMIx_Data_pack
	10.3.2 PMIx_Data_unpack
	10.3.3 PMIx_Data_copy
	10.3.4 PMIx_Data_print
	10.3.5 PMIx_Data_copy_payload
	10.3.6 PMIx_Data_load
	10.3.7 PMIx_Data_unload
	10.3.8 PMIx_Data_compress
	10.3.9 PMIx_Data_decompress

	11 Process Management
	11.1 Abort
	11.1.1 PMIx_Abort

	11.2 Process Creation
	11.2.1 PMIx_Spawn
	11.2.2 PMIx_Spawn_nb
	11.2.3 Spawn-specific constants
	11.2.4 Spawn attributes
	11.2.5 Application Structure
	11.2.5.1 App structure support macros
	11.2.5.2 Spawn Callback Function

	11.3 Connecting and Disconnecting Processes
	11.3.1 PMIx_Connect
	11.3.2 PMIx_Connect_nb
	11.3.3 PMIx_Disconnect
	11.3.4 PMIx_Disconnect_nb

	11.4 Process Locality
	11.4.1 PMIx_Load_topology
	11.4.2 PMIx_Get_relative_locality
	11.4.2.1 Topology description
	11.4.2.2 Topology support macros
	11.4.2.3 Relative locality of two processes
	11.4.2.4 Locality keys

	11.4.3 PMIx_Parse_cpuset_string
	11.4.4 PMIx_Get_cpuset
	11.4.4.1 Binding envelope

	11.4.5 PMIx_Compute_distances
	11.4.6 PMIx_Compute_distances_nb
	11.4.7 Device Distance Callback Function
	11.4.8 Device type
	11.4.9 Device Distance Structure
	11.4.10 Device distance support macros
	11.4.11 Device distance attributes

	12 Job Management and Reporting
	12.1 Allocation Requests
	12.1.1 PMIx_Allocation_request
	12.1.2 PMIx_Allocation_request_nb
	12.1.3 Job Allocation attributes
	12.1.4 Job Allocation Directives

	12.2 Job Control
	12.2.1 PMIx_Job_control
	12.2.2 PMIx_Job_control_nb
	12.2.3 Job control constants
	12.2.4 Job control events
	12.2.5 Job control attributes

	12.3 Process and Job Monitoring
	12.3.1 PMIx_Process_monitor
	12.3.2 PMIx_Process_monitor_nb
	12.3.3 PMIx_Heartbeat
	12.3.4 Monitoring events
	12.3.5 Monitoring attributes

	12.4 Logging
	12.4.1 PMIx_Log
	12.4.2 PMIx_Log_nb
	12.4.3 Log attributes

	13 Process Sets and Groups
	13.1 Process Sets
	13.1.1 Process Set Constants
	13.1.2 Process Set Attributes

	13.2 Process Groups
	13.2.1 Relation to the host environment
	13.2.2 Construction procedure
	13.2.3 Destruct procedure
	13.2.4 Process Group Events
	13.2.5 Process Group Attributes
	13.2.6 PMIx_Group_construct
	13.2.7 PMIx_Group_construct_nb
	13.2.8 PMIx_Group_destruct
	13.2.9 PMIx_Group_destruct_nb
	13.2.10 PMIx_Group_invite
	13.2.11 PMIx_Group_invite_nb
	13.2.12 PMIx_Group_join
	13.2.13 PMIx_Group_join_nb
	13.2.13.1 Group accept/decline directives

	13.2.14 PMIx_Group_leave
	13.2.15 PMIx_Group_leave_nb

	14 Fabric Support Definitions
	14.1 Fabric Support Events
	14.2 Fabric Support Datatypes
	14.2.1 Fabric Endpoint Structure
	14.2.2 Fabric endpoint support macros
	14.2.3 Fabric Coordinate Structure
	14.2.4 Fabric coordinate support macros
	14.2.5 Fabric Geometry Structure
	14.2.6 Fabric geometry support macros
	14.2.7 Fabric Coordinate Views
	14.2.8 Fabric Link State
	14.2.9 Fabric Operation Constants
	14.2.10 Fabric registration structure
	14.2.10.1 Initialize the fabric structure

	14.3 Fabric Support Attributes
	14.4 Fabric Support Functions
	14.4.1 PMIx_Fabric_register
	14.4.2 PMIx_Fabric_register_nb
	14.4.3 PMIx_Fabric_update
	14.4.4 PMIx_Fabric_update_nb
	14.4.5 PMIx_Fabric_deregister
	14.4.6 PMIx_Fabric_deregister_nb

	15 Security
	15.1 Obtaining Credentials
	15.1.1 PMIx_Get_credential
	15.1.2 PMIx_Get_credential_nb
	15.1.3 Credential Attributes

	15.2 Validating Credentials
	15.2.1 PMIx_Validate_credential
	15.2.2 PMIx_Validate_credential_nb

	16 Server-Specific Interfaces
	16.1 Server Initialization and Finalization
	16.1.1 PMIx_server_init
	16.1.2 PMIx_server_finalize
	16.1.3 Server Initialization Attributes

	16.2 Server Support Functions
	16.2.1 PMIx_generate_regex
	16.2.2 PMIx_generate_ppn
	16.2.3 PMIx_server_register_nspace
	16.2.3.1 Namespace registration attributes
	16.2.3.2 Assembling the registration information

	16.2.4 PMIx_server_deregister_nspace
	16.2.5 PMIx_server_register_resources
	16.2.6 PMIx_server_deregister_resources
	16.2.7 PMIx_server_register_client
	16.2.8 PMIx_server_deregister_client
	16.2.9 PMIx_server_setup_fork
	16.2.10 PMIx_server_dmodex_request
	16.2.10.1 Server Direct Modex Response Callback Function

	16.2.11 PMIx_server_setup_application
	16.2.11.1 Server Setup Application Callback Function
	16.2.11.2 Server Setup Application Attributes

	16.2.12 PMIx_Register_attributes
	16.2.12.1 Attribute registration constants
	16.2.12.2 Attribute registration structure
	16.2.12.3 Attribute registration structure descriptive attributes
	16.2.12.4 Attribute registration structure support macros

	16.2.13 PMIx_server_setup_local_support
	16.2.14 PMIx_server_IOF_deliver
	16.2.15 PMIx_server_collect_inventory
	16.2.16 PMIx_server_deliver_inventory
	16.2.17 PMIx_server_generate_locality_string
	16.2.18 PMIx_server_generate_cpuset_string
	16.2.18.1 Cpuset Structure
	16.2.18.2 Cpuset support macros

	16.2.19 PMIx_server_define_process_set
	16.2.20 PMIx_server_delete_process_set

	16.3 Server Function Pointers
	16.3.1 pmix_server_module_t Module
	16.3.2 pmix_server_client_connected_fn_t
	16.3.3 pmix_server_client_connected2_fn_t
	16.3.4 pmix_server_client_finalized_fn_t
	16.3.5 pmix_server_abort_fn_t
	16.3.6 pmix_server_fencenb_fn_t
	16.3.6.1 Modex Callback Function

	16.3.7 pmix_server_dmodex_req_fn_t
	16.3.7.1 Dmodex attributes

	16.3.8 pmix_server_publish_fn_t
	16.3.9 pmix_server_lookup_fn_t
	16.3.10 pmix_server_unpublish_fn_t
	16.3.11 pmix_server_spawn_fn_t
	16.3.11.1 Server spawn attributes

	16.3.12 pmix_server_connect_fn_t
	16.3.13 pmix_server_disconnect_fn_t
	16.3.14 pmix_server_register_events_fn_t
	16.3.15 pmix_server_deregister_events_fn_t
	16.3.16 pmix_server_notify_event_fn_t
	16.3.17 pmix_server_listener_fn_t
	16.3.17.1 PMIx Client Connection Callback Function

	16.3.18 pmix_server_query_fn_t
	16.3.19 pmix_server_tool_connection_fn_t
	16.3.19.1 Tool connection attributes
	16.3.19.2 PMIx Tool Connection Callback Function

	16.3.20 pmix_server_log_fn_t
	16.3.21 pmix_server_alloc_fn_t
	16.3.22 pmix_server_job_control_fn_t
	16.3.23 pmix_server_monitor_fn_t
	16.3.24 pmix_server_get_cred_fn_t
	16.3.24.1 Credential callback function

	16.3.25 pmix_server_validate_cred_fn_t
	16.3.26 Credential validation callback function
	16.3.27 pmix_server_iof_fn_t
	16.3.27.1 IOF delivery function

	16.3.28 pmix_server_stdin_fn_t
	16.3.29 pmix_server_grp_fn_t
	16.3.29.1 Group Operation Constants

	16.3.30 pmix_server_fabric_fn_t

	17 Tools and Debuggers
	17.1 Connection Mechanisms
	17.1.1 Rendezvousing with a local server
	17.1.2 Connecting to a remote server
	17.1.3 Attaching to running jobs
	17.1.4 Tool initialization attributes
	17.1.5 Tool initialization environmental variables
	17.1.6 Tool connection attributes

	17.2 Launching Applications with Tools
	17.2.1 Direct launch
	17.2.2 Indirect launch
	17.2.2.1 Initiator-based command line parsing
	17.2.2.2 IL-based command line parsing

	17.2.3 Tool spawn-related attributes
	17.2.4 Tool rendezvous-related events

	17.3 IO Forwarding
	17.3.1 Forwarding stdout/stderr
	17.3.2 Forwarding stdin
	17.3.3 IO Forwarding Channels
	17.3.4 IO Forwarding constants
	17.3.5 IO Forwarding attributes

	17.4 Debugger Support
	17.4.1 Co-Location of Debugger Daemons
	17.4.2 Co-Spawn of Debugger Daemons
	17.4.3 Debugger Agents
	17.4.4 Tracking the job lifecycle
	17.4.4.1 Job lifecycle events
	17.4.4.2 Job lifecycle attributes

	17.4.5 Debugger-related constants
	17.4.6 Debugger attributes

	17.5 Tool-Specific APIs
	17.5.1 PMIx_tool_init
	17.5.2 PMIx_tool_finalize
	17.5.3 PMIx_tool_disconnect
	17.5.4 PMIx_tool_attach_to_server
	17.5.5 PMIx_tool_get_servers
	17.5.6 PMIx_tool_set_server
	17.5.7 PMIx_IOF_pull
	17.5.8 PMIx_IOF_deregister
	17.5.9 PMIx_IOF_push

	18 Storage Support Definitions
	18.1 Storage support constants
	18.2 Storage support attributes

	A Python Bindings
	A.1 Design Considerations
	A.1.1 Error Codes vs Python Exceptions
	A.1.2 Representation of Structured Data

	A.2 Datatype Definitions
	A.2.1 Example

	A.3 Callback Function Definitions
	A.3.1 IOF Delivery Function
	A.3.2 Event Handler
	A.3.3 Server Module Functions
	A.3.3.1 Client Connected
	A.3.3.2 Client Finalized
	A.3.3.3 Client Aborted
	A.3.3.4 Fence
	A.3.3.5 Direct Modex
	A.3.3.6 Publish
	A.3.3.7 Lookup
	A.3.3.8 Unpublish
	A.3.3.9 Spawn
	A.3.3.10 Connect
	A.3.3.11 Disconnect
	A.3.3.12 Register Events
	A.3.3.13 Deregister Events
	A.3.3.14 Notify Event
	A.3.3.15 Query
	A.3.3.16 Tool Connected
	A.3.3.17 Log
	A.3.3.18 Allocate Resources
	A.3.3.19 Job Control
	A.3.3.20 Monitor
	A.3.3.21 Get Credential
	A.3.3.22 Validate Credential
	A.3.3.23 IO Forward
	A.3.3.24 IO Push
	A.3.3.25 Group Operations
	A.3.3.26 Fabric Operations

	A.4 PMIxClient
	A.4.1 Client.init
	A.4.2 Client.initialized
	A.4.3 Client.get_version
	A.4.4 Client.finalize
	A.4.5 Client.abort
	A.4.6 Client.store_internal
	A.4.7 Client.put
	A.4.8 Client.commit
	A.4.9 Client.fence
	A.4.10 Client.get
	A.4.11 Client.publish
	A.4.12 Client.lookup
	A.4.13 Client.unpublish
	A.4.14 Client.spawn
	A.4.15 Client.connect
	A.4.16 Client.disconnect
	A.4.17 Client.resolve_peers
	A.4.18 Client.resolve_nodes
	A.4.19 Client.query
	A.4.20 Client.log
	A.4.21 Client.allocation_request
	A.4.22 Client.job_ctrl
	A.4.23 Client.monitor
	A.4.24 Client.get_credential
	A.4.25 Client.validate_credential
	A.4.26 Client.group_construct
	A.4.27 Client.group_invite
	A.4.28 Client.group_join
	A.4.29 Client.group_leave
	A.4.30 Client.group_destruct
	A.4.31 Client.register_event_handler
	A.4.32 Client.deregister_event_handler
	A.4.33 Client.notify_event
	A.4.34 Client.fabric_register
	A.4.35 Client.fabric_update
	A.4.36 Client.fabric_deregister
	A.4.37 Client.load_topology
	A.4.38 Client.get_relative_locality
	A.4.39 Client.get_cpuset
	A.4.40 Client.parse_cpuset_string
	A.4.41 Client.compute_distances
	A.4.42 Client.error_string
	A.4.43 Client.proc_state_string
	A.4.44 Client.scope_string
	A.4.45 Client.persistence_string
	A.4.46 Client.data_range_string
	A.4.47 Client.info_directives_string
	A.4.48 Client.data_type_string
	A.4.49 Client.alloc_directive_string
	A.4.50 Client.iof_channel_string
	A.4.51 Client.job_state_string
	A.4.52 Client.get_attribute_string
	A.4.53 Client.get_attribute_name
	A.4.54 Client.link_state_string
	A.4.55 Client.device_type_string
	A.4.56 Client.progress

	A.5 PMIxServer
	A.5.1 Server.init
	A.5.2 Server.finalize
	A.5.3 Server.generate_regex
	A.5.4 Server.generate_ppn
	A.5.5 Server.generate_locality_string
	A.5.6 Server.generate_cpuset_string
	A.5.7 Server.register_nspace
	A.5.8 Server.deregister_nspace
	A.5.9 Server.register_resources
	A.5.10 Server.deregister_resources
	A.5.11 Server.register_client
	A.5.12 Server.deregister_client
	A.5.13 Server.setup_fork
	A.5.14 Server.dmodex_request
	A.5.15 Server.setup_application
	A.5.16 Server.register_attributes
	A.5.17 Server.setup_local_support
	A.5.18 Server.iof_deliver
	A.5.19 Server.collect_inventory
	A.5.20 Server.deliver_inventory
	A.5.21 Server.define_process_set
	A.5.22 Server.delete_process_set
	A.5.23 Server.register_resources
	A.5.24 Server.deregister_resources

	A.6 PMIxTool
	A.6.1 Tool.init
	A.6.2 Tool.finalize
	A.6.3 Tool.disconnect
	A.6.4 Tool.attach_to_server
	A.6.5 Tool.get_servers
	A.6.6 Tool.set_server
	A.6.7 Tool.iof_pull
	A.6.8 Tool.iof_deregister
	A.6.9 Tool.iof_push

	A.7 Example Usage
	A.7.1 Python Client
	A.7.2 Python Server

	B Revision History
	B.1 Version 1.0: June 12, 2015
	B.2 Version 2.0: Sept. 2018
	B.2.1 Removed/Modified API
	B.2.2 Deprecated constants
	B.2.3 Deprecated attributes

	B.3 Version 2.1: Dec. 2018
	B.4 Version 2.2: Jan 2019
	B.5 Version 3.0: Dec. 2018
	B.5.1 Removed constants
	B.5.2 Deprecated attributes
	B.5.3 Removed attributes

	B.6 Version 3.1: Jan. 2019
	B.7 Version 3.2: Oct. 2020
	B.7.1 Deprecated constants
	B.7.2 Deprecated attributes

	B.8 Version 4.0: Dec. 2020
	B.8.1 Added Constants
	B.8.2 Added Attributes
	B.8.3 Added Environmental Variables
	B.8.4 Added Macros
	B.8.5 Deprecated API
	B.8.6 Deprecated constants
	B.8.7 Removed constants
	B.8.8 Deprecated attributes
	B.8.9 Removed attributes

	B.9 Version 4.1: Oct. 2021
	B.9.1 Added Functions (Provisional)
	B.9.2 Added Data Structures (Provisional)
	B.9.3 Added Macros (Provisional)
	B.9.4 Added Constants (Provisional)
	B.9.5 Added Attributes (Provisional)

	C Acknowledgements
	C.1 Version 4.0
	C.2 Version 3.0
	C.3 Version 2.0
	C.4 Version 1.0

	Bibliography
	Index
	Index of APIs
	Index of Support Macros
	Index of Data Structures
	Index of Constants
	Index of Environmental Variables
	Index of Attributes

