
Ralph H. Castain
Intel

PMIx: A Tutorial

• Day 1: Server & Scheduler
§ Overview of PMIx
§ Detailed look at Launch

• Day 2: Client, Tools, & Events – Oh My!
§ Event notification
§ PMIx Client functions
§ PMIx Tool support

Agenda

• Session
§ Allocation to a specific user

• Job
§ What was submitted to the scheduler for allocation and execution
§ Can span multiple sessions

• Task
§ Workflow to be executed within an application
§ Multiple jobs can coexist within a given session
§ In MPI terms, a “task” is synonymous with MPI_COMM_WORLD

• Application
§ One or more processes executing the same executable
§ Can be a script, typically a binary
§ A single task can be comprised of multiple apps

Terminology

• Overview
• PMIx Reference Implementation
• Server Initialization

§ Exercise
• Launch Sequence

§ Exercise

Day 1: Detail

Origin: Changing Landscape
Launch time limiting scale

Legion

Programming model &
runtime proliferation

Container technologiesHybrid applications Model-specific tools

• Resolve launch scaling
§ Pre-load information

known to RM/scheduler
§ Pre-assign

communication endpoints
§ Eliminate data exchange

during init
§ Orchestrate launch

procedure

Start Someplace!

Job
Script WLM WLM RM

Launch
Cmd

Spawn
Procs

GO

Global
Xchg

Proc

Fabric

NIC

Proc

NIC

Proc

Barrier

FS

Traditional Launch Sequence

Wait for files
& libs

Topo Topo Topo

Fabric

NIC

Fabric

Pro
c

Pro
c

Pro
c

Job
Script WLM WLM RM

Launch
Cmd

Spawn
Procs

GO

Global
Xchg

Proc

Fabric

NIC

Proxy

Proc

Fabric

NIC

Proxy

Proc

Proxy

Barrier

FS

Newer Launch Sequence

Wait for files
& libs

Topo Topo

Fabric

NIC

Topo

PMIx Launch Sequence

*RM daemon, mpirun-daemon, etc.

Three Distinct Entities
• PMIx Standard

§ Defined set of APIs, attribute strings
§ Nothing about implementation

• PMIx Reference Library
§ A full-featured implementation of the Standard
§ Intended to ease adoption

• PMIx Reference RTE
§ Full-featured “shim” to a non-PMIx RM
§ Provides development environment

v3.1
released!

Where Is It Used?
• Libraries

§ OMPI, MPICH, Intel MPI, HPE-MPI,
Spectrum MPI, Fujitsu MPI

§ OSHMEM, SOS, OpenSHMEM, …
• RMs

§ Slurm, Fujitsu,
IBM’s JSM,
PBSPro (2019), Kubernetes(?)

§ Slurm enhancement (LANL/ECP)

• New use-cases
§ Spark, TensorFlow
§ Debuggers (TotalView, DDT)
§ MPI

• Re-ordering for load balance
(UTK/ECP)

• Fault management (UTK)
• On-the-fly session

formation/teardown (MPIF)

§ Logging information
§ Containers

• Singularity, Docker, Amazon

• Async event notification
• Cross-model notification

§ Announce model type, characteristics
§ Coordinate resource utilization,

programming blocks

• Generalized tool support
§ Co-launch daemons with job
§ Forward stdio channels
§ Query job, system info, network traffic,

process counters, etc.
§ Standardized attachment, launch methods

Build Upon It

• Allocation support
§ Dynamically add/remove/loan nodes
§ Register pre-emption acceptance,

handshake
• Dynamic process groups

§ Async group construct/destruct
§ Notification of process departure/failure

• File system integration
§ Pre-cache files, specify storage strategies

Sprinkle Some Magic Dust

PMIx-SMS Interactions

RM
PMIx
Client

FS

Fabric

RAS

APP
Orchestration

Requests

Responses

NIC

Fabric
Mgr

PMIx
Server

MPI

OpenMP

Job
Script

System
Management Stack

Tool Support

PMIx-SMS Interactions

RM
PMIx
Client

FS

Fabric

RAS

APP
Orchestration

Requests

Responses

NIC

Fabric
Mgr

PMIx
Server

MPI

OpenMP

Job
Script

System
Management Stack

Tool SupportContainer!

• Generalized APIs
§ Few hard parameters
§ “Info” arrays to pass information, specify directives

• Easily extended
§ Add “keys” instead of modifying API

• Async operations
• Thread safe

Philosophy

• Messenger, not a Doer
§ There are some (very limited) exceptions

• No internal inter-node messaging support
§ Per RM request, all inter-node messaging provided by host environment

• Minimizes connections and avoids yet another wireup procedure
§ Host environment required to know where things are

• Where to send requests based on PMIx server type, info on a given proc

• “Not Supported”
§ Critical to RM adoption
§ Let the market drive support

Guiding Principles

• Interactions with non-PMIx systems
§ Fabric manager, credential subsystems, storage

systems
• Aggregate local collective operations

§ Fence, connect/disconnect
• Environment “support”

§ Inventory collection, process monitoring, logging

“Doer” Exceptions

PMIx Scope
• Wireup

§ Fence, put, get, commit
• Publication

§ Publish, lookup, unpublish
• Dynamics

§ Spawn, connect, disconnect,
group construct/destruct

• Storage
§ Estimate retrieval times, set

hot/warm/cold policy, data
movement

• WLM
§ Inventory, comm costs,

subsystem app resource
allocations, allocation mgmt

• Fabric
§ QoS control, async updates

• Tools
§ Query, attach/detach, IO fwd

• Events (Async notification)
• Info

§ Query, logging

Monitoring
Console

DB

File
SystemNetwork

Resourc
e

Manage
r

Prov.
Agent

WLM APP

WLM/RTE Orchestrator

• Overview
• PMIx Reference Implementation
• Server Initialization

§ Exercise
• Launch Sequence

§ Exercise

Day 1: Detail

• Objective
§ Ease adoption, validate proposed standard modifications/additions

• Written in C with some C++ like extensions (object classes)
• Plugin architecture

§ Internal APIs defined as “frameworks” with individual ”component” implementations
§ Components loaded as dll’s to allow for proprietary add-ons

• Python bindings
§ Utilize public PMIx APIs (not internal)

• Debugging fundamentals - Verbosity is your friend
§ Framework level spans components (e.g., ptl_base_verbose)

• No separation between client and server

§ Functional level (pmix_iof_xxx_verbose), where xxx is either “client” or “server”

Reference Implementation
https://github.com/pmix/pmix

Releases

2014

1/2016

1.1.3

12/2018

3.0

12/2016

1.2

RM Production Releases

Launch &
wireup

12/2017

2.0
Events,
fabric, &

basic tool

Logging, IO fwd,
credentials,

inventory, job ctrl,
monitoring,
dyn alloc

12/2019

Scheduler,
groups,

storage, adv
tools, Python

4.0

major.minor.release

Standard
version https://github.com/pmix/pmix/releases

• Auto-negotiate messaging protocol
• Client starts

§ Envar indicates server capabilities
§ Select highest support in common
§ Convey selection in connection

handshake
• Server follows client’s lead

§ Per-client messaging protocol
§ Support mix of client versions

Cross-Version Support

+

+

Done!

• Client
§ Application process connected to local server

• Server
§ Client + server APIs + host function module
§ Subtypes: gateway, scheduler, default

• Tool
§ Client APIs with rendezvous

• Launcher
§ Tool + server APIs

Process Types

• Overview
• PMIx Reference Implementation
• Server Initialization

§ Exercise
• Launch Sequence

§ Exercise

Day 1: Detail

• Declare server type
§ Gateway: acts as a gateway for PMIx requests that cannot be

serviced on backend nodes (e.g., logging to email)
§ Scheduler: supports inventory and application resource allocations
§ Default: supports local PMIx clients and possibly tools

• Setup internal structures
• Create rendezvous file(s) for tool support
• Note: servers have access to all client, tool functions

Server Initialization

Rendezvous File Locations
System TMPDIR

pmix.sys.host

Server TMPDIR

pmix.host.tool.pid

rndvsFile

pmix.host.tool.nspace

pmix.host.tool

(per nspace)

PRRTE demo

• Process ID, system and server tmpdir
• Accept tool connections?
• Act as “system server” on that node?
• Server backend function module

§ Can be NULL or empty

Server: Initialization Options
PMIx_server_init(pmix_server_module_t *module,

pmix_info_t info[], size_t ninfo)

• Struct of function pointers (currently 26)
§ Provide access to host environment operations, info
§ Request support for inter-node ops
§ NULL or omitted => no support for that function

• Return rules
§ PMIX_SUCCESS: request accepted, cbfunc executed when complete

• Cbfunc cannot be called prior to return from function
§ PMIX_OPERATION_SUCCEEDED: operation completed and successful,

cbfunc will not be called
§ PMIx error code: problem with request, cbfunc will not be called

Server Function Pointer Module

• Client_connected
§ Client has connected to server, passing all internal security

screenings
• Matches expected uid/gid, psec plugin checks

§ Server response: indicate if connection is okay, host
support ready

• Client_finalized
§ Client has called PMIx_Finalize
§ Server response: allow client to leave PMIx

Module Functions
const pmix_proc_t *proc, void* server_object,
pmix_op_cbfunc_t cbfunc, void *cbdata)

const pmix_proc_t *proc, void* server_object,
pmix_op_cbfunc_t cbfunc, void *cbdata)

• Abort
§ Client requests that specified procs be terminated and provided status/msg

be reported to user
• NULL proc array => all members of requestor’s nspace
• Request does not automatically include requestor

• Fence_nb
§ Execute inter-node barrier collecting any provided data
§ Array of participating procs indicates which nodes will participate

• Host required to translate proc to node location
• Forms op signature: multiple simultaneous ops allowed, only one per sig

§ Return all collected data to each participating server

Module Functions
const pmix_proc_t *proc, void *server_object, int status, const char msg[],
pmix_proc_t procs[], size_t nprocs, pmix_op_cbfunc_t cbfunc, void *cbdata

const pmix_proc_t procs[], size_t nprocs, const pmix_info_t info[], size_t ninfo,
char *data, size_t ndata, pmix_modex_cbfunc_t cbfunc, void *cbdata

• Direct_modex
§ Provide job-level data for nspace if rank=wildcard
§ Request any info “put” by the specified proc
§ Host required to:

• Identify node where proc located
• Pass request to PMIx server on that node
• Return data response back to requesting PMIx server

Module Functions
const pmix_proc_t *proc, const pmix_info_t info[], size_t ninfo,
pmix_modex_cbfunc_t cbfunc, void *cbdata

• Publish
§ Publish information from source
§ Info array contains info + directives (range, persistence, etc.)
§ Duplicate keys in same range = error

• Lookup
§ Retrieve info published by publisher for provided keys (NULL -> all)
§ Info array contains directives (range)

• Unpublish
§ Delete data published by source for provided keys (NULL -> all)
§ Info array contains directives (range)

Module Functions
const pmix_proc_t *source, const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void *cbdata

const pmix_proc_t *proc, char **keys, const pmix_info_t info[], size_t ninfo,
pmix_lookup_cbfunc_t cbfunc, void *cbdata

const pmix_proc_t *proc, char **keys, const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void *cbdata

• Connect
§ Record specified procs as “connected”

• Treat failure of any proc as reportable event

§ Collective operation
• Array of procs => operation signature
• Multiple simultaneous ops allowed, only one per signature

• Disconnect
§ Separate specified procs
§ Collective operation

• Array of procs => operation signature
• Multiple simultaneous ops allowed, only one per signature

Module Functions
const pmix_proc_t procs[], size_t nprocs, const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void *cbdata

const pmix_proc_t procs[], size_t nprocs, const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void *cbdata

• Register_events
§ Request host provide notification of specified event codes using

PMIx_Notify_event API
• NULL => all

• Deregister_events
§ Stop notifications for specified events

• NULL => all

• Notify event
§ Request host notify all procs (within specified range) of given

event code using PMIx_Notify_event

Module Functions
pmix_status_t *codes, size_t ncodes, const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void *cbdata

pmix_status_t *codes, size_t ncodes,
pmix_op_cbfunc_t cbfunc, void *cbdata

MORE ON

DAY2!

pmix_status_t code, const pmix_proc_t *source,
pmix_data_range_t range, pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void *cbdata

• Spawn
§ Launch one or more applications on behalf of specified proc
§ Job-level directives apply to all apps, info provided to all procs
§ App-specific directives included in app object, info provided solely

to app’s procs
§ Can include allocation directivces

• Listener
§ Host shall monitor provided socket for connection requests,

harvest/validate them, and call cbfunc for PMIx server to init client
setup

Module Functions
const pmix_proc_t *proc, const pmix_info_t job_info[], size_t ninfo,
const pmix_app_t apps[], size_t napps,
pmix_spawn_cbfunc_t cbfunc, void *cbdata

int listening_sd, pmix_connection_cbfunc_t cbfunc, void *cbdata

• Query
§ Request information from the host environment (e.g.,

queue status, active nspaces, proc table, time
remaining in allocation)

• Tool_connected
§ Tool has requested connection to server

• Info contains uid/gid of tool plus optional service requests
§ Host can validate request, return proc ID for tool

Module Functions
pmix_proc_t *proct, pmix_query_t *queries, size_t nqueries,
pmix_info_cbfunc_t cbfunc, void *cbdata

pmix_info_t *info, size_t ninfo,
pmix_tool_connection_cbfunc_t cbfunc, void *cbdata

• Log
§ Push the specified data to a persistent datastore or

channel per directives
• Syslog, email, text, system job log

• Allocate
§ Request modification to existing allocation

• Extension (both time and resource), resource release, resource
“lend”/”callback”

§ Request new allocation

Module Functions
const pmix_proc_t *client, const pmix_info_t data[], size_t ndata,
const pmix_info_t directives[], size_t ndirs, pmix_op_cbfunc_t cbfunc, void *cbdata

const pmix_proc_t *client, pmix_alloc_directive_t directive,
const pmix_info_t data[], size_t ndata,
pmix_info_cbfunc_t cbfunc, void *cbdata

• Job_control
§ Signal specified procs (pause, resume, kill, terminate, etc.)
§ Register files/directories for cleanup upon termination
§ Provision specified nodes with given image
§ Direct checkpoint of specified procs

• Monitor
§ Monitor this process for ”signs of life”

• File (size, access, modify), heartbeat, etc.
§ Failures reported as PMIx events

Module Functions
const pmix_proc_t *requestor, const pmix_proc_t targets[], size_t ntargets,
const pmix_info_t directives[], size_t ndirs, pmix_info_cbfunc_t cbfunc, void *cbdata

const pmix_proc_t *requestor, const pmix_info_t *monitor, pmix_status_t error,
const pmix_info_t directives[], size_t ndirs, pmix_info_cbfunc_t cbfunc, void *cbdata

• Get_credential
§ Request a credential

• Validate_credential
§ Validate a credential

• Group
§ Perform a barrier op across specified procs
§ Perform any host tracking/cleanup operations
§ Return result of any special requests in directives

• Assign unique context ID to group

Module Functions
const pmix_proc_t *proc, const pmix_info_t directives[], size_t ndirs,
pmix_credential_cbfunc_t cbfunc, void *cbdata

const pmix_proc_t *proc, const pmix_byte_object_t *cred,
const pmix_info_t directives[], size_t ndirs,
pmix_validation_cbfunc_t cbfunc, void *cbdata

pmix_group_operation_t op, char grp[], const pmix_proc_t procs[], size_t nprocs,
const pmix_info_t directives[], size_t ndirs, pmix_info_cbfunc_t cbfunc, void *cbdata

• IOF_pull
§ Request the specified IO channels be forwarded from the given

array of procs to this server for local distribution
§ Stdin is not supported in this call

• Push_stdin
§ Request the host transmit and deliver the provided data to stdin of

the specified targets
• Wildcard rank => all procs in that nspace

§ Source identifies the process whose stdin is being forwarded

Module Functions
const pmix_proc_t procs[], size_t nprocs, const pmix_info_t directives[], size_t ndirs,
pmix_iof_channel_t channels, pmix_op_cbfunc_t cbfunc, void *cbdata

const pmix_proc_t *source, const pmix_proc_t targets[], size_t ntargets,
const pmix_info_t directives[], size_t ndirs, const pmix_byte_object_t *bo,
pmix_op_cbfunc_t cbfunc, void *cbdata

• Python or C – your choice
• Initialize a server

§ Start with an empty server module
§ Specify a “safe” tmpdir location
§ Indicate it should be a “system” server

• Have it hang around
• Use “pattrs” to find out what it supports
• Add job_control function to server module

§ Have it cause your server to exit
§ Use PRRTE’s ”prun --terminate” to trigger it

Exercise 1: Create a Server

• Overview
• PMIx Reference Implementation
• Server Initialization

§ Exercise
• Launch Sequence

§ Exercise

Day 1: Detail

• Objective
§ Gather a complete picture of all relevant hardware in the

system
• Utilizes HWLOC to obtain information

§ Allow each plugin to extract what is relevant to it
• Fabric – NICs/HFIs plus distance matrix; topology, connectivity,

and per-plane communication costs
• Memory – available memory and hierarchy

• Two collection modes

Stage 0: Inventory Collection

• PMIx_server_collect_inventory
§ Collect inventory of local resources
§ Pass opaque blob back to host for transmission to WLM-based

server
§ Info keys can specify types/level of detail of inventory to collect

• PMIx_server_deliver_inventory
§ Pass inventory blobs into PMIx server library for processing
§ Construct internal resource trackers

Relevant Functions
pmix_info_t directives[], size_t ndirs,
pmix_info_cbfunc_t cbfunc, void *cbdata

pmix_info_t info[], size_t ninfo,
pmix_info_t directives[], size_t ndirs,
pmix_op_cbfunc_t cbfunc, void *cbdata

Mode 1: Rollup

RM
Daemon

PMIx_server_collect_inventory
(default to local only) Inventory blob

HWLOC

Probe local
inventory

Filter thru
plugins

Extract NIC,
memory info, etc

Mode 1: Rollup

RM
Daemon

PMIx_server_collect_inventory
(default to local only) Inventory blob

WLM
PMIx_server_deliver_inventory

“phone home”
PMIx_server_collect_inventory

(local+infra)

HWLOC

Probe local
inventory

FM

Obtain switch,
connectivity,
topology info

Filter thru
plugins

Construct internal
resource trackers

(plugins)

Extract NIC,
memory info, etc

Mode 2: Central

WLMPMIx_server_collect_inventory
(global)

FM

Obtain NIC, switch,
connectivity,
topology info

Construct internal
resource trackers

(plugins)

Only collects inventory
accessible via centralized

source (e.g., FM)

Option: WLM can request
remote daemons respond
with their local inventory

• Storage timing
§ Identify dependencies
§ Estimate caching/retrieval times

• Fabric considerations
§ Access relative communication costs

• Asynchronously updated by FM events
§ Capabilities of each plane

• Map user requests vs available planes

Stage 1: Scheduling

Baseline Storage Vision
• Tiered storage

§ Parallel file system
§ Caches at IO server, switches, cabinets, …
§ Caches hold images, files, executables, libraries,

checkpoints

• Bits flow in all directions
§ Stage locations prior to launch
§ Movement in response to faults, dynamic workflow,

computational stages

Estimate Retrieval Times

WLM

Job
Script

User-specified caching,
dependencies
(data & libs),
persistence

Query

Retrieval time

Parse for dependencies
(plugins)

Current data map
Usage patterns
Authorization

• Dependencies
§ Support multiple methods via plugins
§ Typical ldd-like checks, others are active area of research

• Accessibility
§ List of files and uid/gid or credential, return accessibility status for each file
§ Include temperature/location (e.g., hot/cached, warm/on disk), other metadata

• Scheduling data
§ Time/cost to move specified files to given target locations (nodes, caches, temp)

• Info queries
§ Available storage, unit of reservation (block size)
§ Storage strategies (striping patterns)
§ Capabilities (QoS levels, bandwidth, topology, co-located processes)

Relevant Storage Functions
(signatures TBD)

• PMIx_server_register_fabric
§ Obtain a handle to a specific fabric plane
§ Can specify plane by characteristics or name

• Obtain available names via PMIx_Query

• Pmix_server_deregister_fabric
§ Release the fabric handle

• Terminology
§ Vertex: NIC or switch interface, can include metadata
§ Index: column or row in the cost matrix

Relevant Fabric Functions
pmix_fabric_t *fabric,
const pmix_info_t directives[], size_t ndirs

pmix_fabric_t *fabric

Correspondence changes as
interfaces fail, go offline, return as

entire cost matrix is updated by FM!

• Fabric plane handle tracks revision
• Matrix updates

§ Occur in thread-safe event
§ Increment matrix revision

• Functions that access cost data
§ Execute in thread-safe event
§ Check handle version against matrix version
§ Return PMIX_FABRIC_UPDATED if mismatch

• PMIx_server_update_fabric
§ Syncs version level of handle to matrix

Dealing With Updates

pmix_fabric_t *fabric

• PMIx_server_get_num_vertices
§ Get number of vertices in the provided fabric plane

• PMIx_server_get_comm_cost
§ Obtain relative communication cost for sending message from src to dest across

provided plane

• PMIx_server_get_vertex_info
§ Given index, get interface metadata and name of node/switch hosting it

• PMIx_server_get_index
§ Given vertex, get matrix index and name of node/switch hosting it

Relevant Fabric Functions
pmix_fabric_t *fabric, uint32_t *nverts

pmix_fabric_t *fabric,
uint32_t src, uint32_t dest, uint16_t *cost

pmix_fabric_t *fabric, uint32_t i,
pmix_value_t *vertex, char **nodename

pmix_fabric_t *fabric, pmix_value_t *vertex,
uint32_t *i, char **nodename

Open issue: query/return blocks of results – e.g., “give me 100
nodes with minimum relative comm cost”? May prove too
complex a query due to number of constraint options.

• Extend your previous server using the ”test” fabric component
§ PMIX_MCA_pnet=test
§ PMIX_MCA_pnet_test_nverts=nodes:5;plane:d:3

• Collect the inventory
• How many NICs are in the system?
• Print the communication costs between them
• What vertex info is available for index 3?
• What is the index of the 1st NIC on node “test001”?

Exercise 2: Scheduler Support

• Storage requests
§ Request pre-position/cache data
§ Allocate storage resources

• Fabric requests
§ Obtain fabric info for application

• Endpoints, network coordinates, etc.
§ Set fabric configuration

• Software-defined topologies, QoS, etc.
§ Obtain security credentials

• Collect envars to forward

Stage 2: Launch Prep

Obtain/set fabric
configuration

• Shift data
§ Move cache to parallel file system to clear room
§ Pre-position data from file system to cache

• Gateway, network-near target nodes, on-node bulk memory
§ Async operation – callback upon completion

• Allocate storage resources
§ Manage cache allotments
§ Set storage strategy for job

Storage Directives
(signatures TBD)

Data Mover

Job
Script

Data movement
directives

Gateway Node

fork/exec

User
DM

Cache

Lustre

System
PMIx serverWLM

• PMIx_server_setup_application
§ Process mapping: What procs are on which nodes and where they are bound

§ Any directives regarding fabric settings (e.g., planes to be used, QoS), others

• Cycle across active components
§ Fabric plugins

• Assign endpoints: info directives indicate how many per plane to assign to each proc, assignments
provided in order of closest NIC to proc

• Generate fabric credential(s) for job
• Collect fabric-specific envars and settings for client libraries/drivers

§ Storage plugins
• Alert job starting, retrieve storage settings for client libraries/drivers

• Pickup PMIx-specific envars
• Return info array for delivery to compute nodes

Setup Application
const pmix_nspace_t nspace, pmix_info_t info[], size_t ninfo,
pmix_setup_application_cbfunc_t cbfunc, void *cbdata

• Launch its daemons on all nodes
§ Collect inventory from each
§ Proceed as before

• If inventory not available
§ PMIx_server_setup_application automatically

requests info from scheduler
• Provide URI for scheduler PMIx server
• “Upcall” to RM for transmission

What About mpiexec?

• Extend your previous server
§ PMIX_MCA_pnet=test
§ PMIX_MCA_pnet_test_nverts=nodes:5;plane:d:3

• Define an application (keep it simple)
§ Hosts: “test000,test001,test002”
§ Ppn: “0,1,2;3,4,5;6,7”
§ Remember to use the regex generators!

• Setup the application
§ Allocate network resources and security key
§ Pickup all related envars
§ Use the PNET verbosity parameter to see what it is doing

• Print out the result

Exercise 3: Launch Prep

• Extract setup array from launch msg
§ Check for job-level directives

• Modify paths, set/unset envars
§ PMIx_server_setup_local_support

• Pass input to all active components
• Fabric plugins

§ Setup local drivers, prep address tables, …
• Storage plugins

§ Setup local drivers, configure memory, …

• PMIx_server_register_nspace
§ Pass in job- and proc-level info for clients
§ Include setup array info, process map

Stage 3: Local Spawn Prep

const pmix_nspace_t nspace,
pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void *cbdata

const pmix_nspace_t nspace, int nlocalprocs,
pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void *cbdata

• PMIx_server_register_client
§ Register each local proc for this nspace
§ Informs server of expected uid/gid of connecting client for security

check
§ Server preps client support infrastructure

• PMIx_server_setup_fork
§ Add PMIx server connection and support info to env
§ Add subsystem-specific envars for client libraries (e.g., fabric,

storage)

Stage 4: Fork/Exec
const pmix_proc_t *proc, uid_t uid, gid_t gid,
void *server_object, pmix_op_cbfunc_t cbfunc, void *cbdata

const pmix_proc_t *proc, char ***env

• Handshake with server
§ Sets compatibility plugins
§ Server function module

• Given chance to validate or
reject connecting client

• Transfer data to client
§ Setup SM datastore
§ Send copy to client

Stage 5: Process Startup

• Extend your previous server
• Setup the local support

§ Pass in the data returned by setup application
§ Use the GDS and PNET verbosity parameters to see what it is doing

• Register the nspace
§ For now, just pass universe size and 3 local procs

• Register the local clients
• Setup the fork environment for each client
• Print out the results

Exercise 4: Fork/Exec Prep

• PMIx_server_deregister_client
§ Called when local client terminates

• Often called from within function module client_terminated entry
• Both normal and abnormal termination

§ Provides server library with chance to cleanup

• Generate event
§ Abnormal termination only to avoid floods

• Typically only upon request included with spawn directives
§ Notify anyone listening for PMIX_PROC_ABORTED event

• Provide ID of affected proc, any provided text message and/or info
• Target only nspace of affected proc unless otherwise directed
• Target non-default handlers

Stage 6: Process Termination
const pmix_nspace_t nspace,
pmix_op_cbfunc_t cbfunc, void *cbdata

• PMIx_server_deregister_nspace
§ Called when job completes

• Note: PMIx cannot provide function module entry as it doesn’t see multi-
node job status

§ Provides server library with chance to cleanup

• Generate event
§ Notify anyone listening for PMIX_JOB_TERMINATED event

• Optional to perform by default

§ Target non-default handlers
§ Provide exit status, any associated text message and/or info

Stage 7: Job Termination

• Overview
• PMIx Reference Implementation
• Server Initialization

§ Exercise
• Launch Sequence

§ Exercise

Day 1: Detail

• Extend your server to support a scheduler
• Collect local inventory
• Poke around the comm cost matrix

§ Perhaps with ”pquery” tool?
• Define an application and set it up

§ Set pnet_base_verbose=100 to see what it does

Exercise: Scheduler

• Day 1: Server & Scheduler
§ Overview of PMIx
§ Detailed look at Launch

• Day 2: Client, Tools, & Events – Oh My!
§ Event notification
§ PMIx Client functions
§ PMIx Tool support

Agenda

• Async notification
§ Proc failures, system issues, coordination requests, workflow orchestration

• Types of events
§ Job-specific: directly relate to executing job

• Debugger attachment, proc failure, app-generated event
• Always delivered to the PMIx server by host

§ Environment: indirectly relate to a job but not specifically targeting it
• ECC errors, temperature excursions, …
• Delivered only upon request to host

• Event codes
§ Any integer value
§ Host-specific values must be either positive or lie beyond PMIX_EXTERNAL_ERR_BASE

Events

• Anyone can register
§ Host subsystem elements, apps, tools

• PMIx_Register_event_handler
§ Specify any number of codes (3 categories)

• NULL => default handler for all codes
• Single code, Multiple codes

§ Can provide string name for this handler
• Used for ordering and debugging

§ Callback returns handler registration ID (deregister, returned in notifications)
§ Handlers not required to be unique (can register same function multiple times)

• Event caching
§ Job-specific events required to be cached and delivered in order
§ Environment events are requested to be cached

Registration

pmix_status_t codes[], size_t ncodes,
pmix_info_t info[], size_t ninfo,
pmix_notification_fn_t evhdlr,
pmix_hdlr_reg_cbfunc_t cbfunc,
void *cbdata

• Specify ordering at time of registration
§ First => execute this handler before any others*
§ Last => execute this handler after all others have completed*
§ First in category => execute this handler before any others for the event category*
§ Last in category => execute after all handlers for the event category have completed*
§ Before – insert immediately before the named handler
§ After – insert immediately after the named handler
§ Prepend – add to the front of the list for this category
§ Append – add to the end of the list for this category

• Restrict interest
§ Pass array of specific affected procs we want to hear about
§ Events impacting all other procs will be ignored for that handler

Handler Directives

*only one of each

Handler Signature

size_t evhdlr_registration_id,
pmix_status_t status,
const pmix_proc_t *source,
pmix_info_t info[], size_t ninfo,
pmix_info_t *results, size_t nresults,
pmix_event_notification_cbfunc_fn_t cbfunc,
void *cbdata);

ID of handler being called

Event code

Proc that
generated
event

Info provided by source

pmix_status_t status,
pmix_info_t *results, size_t nresults,
pmix_op_cbfunc_t cbfunc, void *thiscbdata,
void *notification_cbdata

Handler return code

Callback fn/data to release handler data

Aggregate of
results from all prior
handlers

Array of results
from this handler

• Anyone can generate an event
§ Application procs, tools, host

• PMIx_Notify_event
§ Report a single event code plus source that generated the event
§ Specify a delivery range

• RM: solely to the host
• Local: available to procs on local node only
• Namespace: available to procs in same nspace only
• Session: available to procs in same session only
• Global: available to all procs
• Proc_local: available only internally to the generating proc
• Custom: array of specific target procs

§ Provide additional info
• Affected proc(s), do not deliver to default event handlers

Generation

pmix_status_t status,
const pmix_proc_t *source,
pmix_data_range_t range,
const pmix_info_t info[], size_t ninfo,
pmix_op_cbfunc_t cbfunc, void *cbdata

• Precedence order
§ First
§ Single code -> Multi-code -> Default handlers

• First/last called in each category
§ Last

• Results “chained”
§ Results returned by each handler are added to end of results array passed

to next handler

• Each handler must call event handler completion function
§ All processing stops upon return of PMIX_EVENT_ACTION_COMPLETE
§ Not allowed to perform any blocking operation during handler

Event Handling

• Last handler is called after all registered default
handlers matching specified range
§ Ensure no default handler aborts process before it

• Events cannot be delivered back to the process that
generated them
§ Host cannot pass event back to its PMIx server library
§ Server library cannot pass event back to generating client

• Keep event handlers short
§ PMIx server library is “blocked” until completion

Event Notes

Event Processing

RM
PMIx

Server

RM
PMIx

Server

chain chain

chain chain
Send and then

internally process

• Hybrid applications
§ Notify programming libraries of each others existence, operations
§ OpenMP + MPI: coordinate programming blocks
§ Notification strictly within the individual proc

• Fault tolerance: ULFM
§ Notification of process failure

• Tools
§ Notification of job completion
§ Debugger attachment handshake

Example Uses

RM
PMIx

Server

RM

PMIx
Server

Proc Proc

Dbgr
Dmn

PMIx
Server

mpiexec
PMIx

Server

Query App Info

mpid
QueryQuery

App query
event

Register handler
for event

• Day 1: Server & Scheduler
§ Overview of PMIx
§ Detailed look at Launch

• Day 2: Client, Tools, & Events – Oh My!
§ Event notification
§ PMIx Client functions
§ PMIx Tool support

Agenda

PMIx Scope: Client
• Wireup

§ Fence, put, get, commit
• Publication

§ Publish, lookup, unpublish
• Dynamics

§ Spawn, connect, disconnect,
group construct/destruct

• Storage
§ Estimate retrieval times, set

hot/warm/cold policy, data
movement

• WLM
§ Inventory, comm costs,

subsystem app resource
allocations, allocation mgmt

• Fabric
§ QoS control, async updates

• Tools
§ Query, attach/detach, IO fwd

• Events (async notification)
• Info

§ Query, logging

Wireup
• PMIx_Put

§ Adds provided key-value pair to
internal cache

§ Duplicate keys are overwritten
• PMIx_Commit

§ Sends all added/modified key-
value pairs since last commit to
local PMIx server

§ Server required to store keys on
per-proc basis – i.e., procs can
post the identical key without
overwrite

• Fence
§ Barrier operation
§ Data collection optional

• Get
§ Retrieve key for a given proc

• PMIX_RANK_UNDEF: retrieve
globally unique key (legacy support)

§ Check internal/shmem first
§ Request from server

• Obtain from remote server hosting
specified proc if data not exchanged

pmix_scope_t scope,
const pmix_key_t key,
pmix_value_t *val

const pmix_proc_t procs[], size_t nprocs,
const pmix_info_t info[], size_t ninfo

const pmix_proc_t *proc, const char key[],
const pmix_info_t info[], size_t ninfo,
pmix_value_t **val

• Specified by source process at time of “put”
• Controls access by other procs

§ “internal”: only available to the source proc
§ ”local”: only accessible by other procs on same node
§ “remote”: only available to procs on other nodes
§ “global”: available to everyone

• Only remote and global scope included in data
exchanges during “fence”

Key-Value “Scope”
Who can “Get” this key-value pair?

Publication
• PMIx_Publish

§ Publish data in info array to specified
range (default: session)

§ Keys must be unique within given
range

• Not indexed by source proc!
• First published “wins” – followers return

error

§ Persistence instructs server as to how
long data is retained (default: app)

• PMIx_Unpublish
§ Delete data for specified keys
§ NULL => delete all data published by

this process

• PMIx_Lookup

§ Retrieve published data
§ Constrained to data published

by current uid/gid
§ Returns error if not found

• Optional: wait for first found data,
wait for all data, timeout

§ “non-found” data will have
PMIX_UNDEF datatype

const pmix_info_t info[], size_t ninfo

char **keys,
const pmix_info_t info[], size_t ninfo

pmix_pdata_t data[], size_t ndata,
const pmix_info_t info[], size_t ninfo

• Range: who has access to data
§ “proc_local”: only within the proc itself (e.g., across threads)
§ ”local”: only procs on local node
§ “namespace”: only procs within same nspace (job) as publisher
§ “session”: only procs within same session (allocation) as publisher
§ “global”: any process
§ “custom”: only specified processes
§ “rm”: only the host environment

• Persistence: when data shall automatically be deleted
§ “first_read”: delete after first access
§ “proc”: retain until publisher terminates
§ “app”: delete when publisher’s application terminates
§ “namespace”: delete when publisher’s nspace (job) terminates
§ “session”: delete when publisher’s session (allocation) terminates
§ “indef”: retain until specifically deleted

Range & Persistence

Dynamics: Basic
• Spawn

§ Spawn new job
• Job_info specifies directives and

info for all apps
• Apps array contains info for each

individual app
§ Namespace returned upon

spawn complete
§ Variety of notification options

• Job launched, job terminated, app
terminated, proc terminated

• Connect
§ Mark the specified procs as

“connected”
§ All procs to receive

• Job-level info for nspaces of all
participants

• “put” info from participants, filtered
by scope

• Disconnect
§ Remove “connected”

specification for given procs
§ Return error if not connected

• Relation to RM
§ Connect: passed to RM, no new ID assigned
§ Group: handled by PMIx server, each proc assigned new “group rank”,

translate group IDs to global IDs for RM operations

• Construction
§ Connect: bulk synchronous only
§ Group: can be dynamic, invite/join as well as nonblocking

• Destruction
§ Disconnect: bulk synchronous only
§ Group: can be dynamic, members notified as procs leave

Dynamics: Groups vs Basic

• PMIx_Allocation_request
§ Request allocation of new resources
§ Extend current reservation on specified resources
§ Release current specified resources
§ “Lend” resources back, mark for return on request or after

specified time
• Return requested by passing PMIX_ALLOC_REAQUIRE directive

• RM can notify of resource changes
§ Registration for event required

Allocation Management
pmix_alloc_directive_t directive,
pmix_info_t *info, size_t ninfo

• PMIx_Job_control
§ Include string ID with request

• Allows later query for status, cancellation of request
§ Signal, kill, politely terminate
§ Direct targets to checkpoint

• PMIx event, signal, etc

§ Provision specified nodes with indicated image
§ Register files and directories for cleanup after termination
§ Register willingness to be preempted

• PMIx_Process_monitor
§ Monitor file changes(access, mod, size)
§ Heartbeat

Job Control & Monitoring

• PMIx_Resolve_nodes
§ Given nspace, return comma-delimited list of nodes hosting procs within it

• PMIx_Resolve_peers
§ Given node, return array of procs within given nspace on it (NULL => all)

• Query
§ Request supported APIs, attributes
§ Executing jobs, process tables, queue status
§ Psets, groups, available resources

• Log
§ Deliver provided message to one or more logging channels
§ Syslog (local, global), email, text, global data store, job record

Information

• Get/validate credential
§ Some built-in support for credential services

• Munge, Cray DRC
§ Others passed to host for servicing

• Storage
§ Data movement, storage strategies, availability and

location

Security & Storage

• Day 1: Server & Scheduler
§ Overview of PMIx
§ Detailed look at Launch

• Day 2: Client, Tools, & Events – Oh My!
§ Event notification
§ PMIx Client functions
§ PMIx Tool support

Agenda

Tool Support Examples
• Query

§ Network topology
• Array of proc network-relative locations
• Overall topology (e.g., “dragonfly”)

§ Running jobs
• Currently executing job namespaces
• Array of proc location, status, PID

§ Resources
• Available system resources
• Array of proc location, resource

utilization (ala “top”)

§ Queue status
• Current scheduler queue backlog

• Event injection
§ Async directives to running jobs

• Storage directives
§ Move/delete files between

storage locations
• Job submission
• Debuggers

§ Portable attach, query
mechanism

• Two types
§ Client

• Launched by a PMIx server – has identifier
§ Launcher

• Will be spawning processes – e.g., “mpiexec”
• May or may not also be client

• Servers must “opt in” for tool connection support
§ PMIX_SERVER_TOOL_SUPPORT – allow support
§ PMIX_SERVER_REMOTE_CONNECTIONS – allow remote connections
§ PMIX_SERVER_SYSTEM_SUPPORT - system server (max one/node)
§ Job-specific server (default)

Tool Basics

Tool Connections

Tool

RM

P

Node A

RM

Node B

WLM

Mpirun

System
PMIx server

System
PMIx server

Only one connection at a time!

Rendezvous File Locations
System TMPDIR

pmix.sys.host

Server TMPDIR

pmix.host.tool.pid

rndvsFile

pmix.host.tool.nspace

pmix.host.tool

(per nspace)

PRRTE demo

• PMIx_tool_init
§ Type of tool
§ Connection options

• Do not connect
• Connect via precedence rules

• PMIx_tool_connect_to_server
§ If connected, disconnect from current server
§ Connect to new server per precedence rules

Tool Initialization

pmix_proc_t *proc,
pmix_info_t info[], size_t ninfo

pmix_proc_t *proc,
pmix_info_t info[], size_t ninfo

• Given specific URI or filename
§ Special names found in configuration file (MCA param)

• PMIX_CONNECT_TO_SCHED

• System server
§ If system-server-only, then return error if not found

• Scan server tmpdir’s
§ Given server PID or nspace

• Returns error if not found or not allowed to access
§ First generic tool uid/gid allowed to access

Connection Precedence

• Query local server for URI
§ Reconnect to returned URI
§ System and job-level servers

• Compute from configuration, given target node
§ MCA param for static socket of system servers

• Spawn proxy to scan
§ Assumes permissions and mechanism for spawn

Tool Connections: Remote

General Capabilities
• Query RM or launcher for support

§ Mechanisms for “hold” and “release”
§ Daemon co-launch capabilities
§ IO forwarding support

• Specify app release mechanism
§ PMIx event, signal, …

• Register for events
§ Termination of debugger job and/or daemons
§ Termination of app job and/or procs
§ Request debugger start on event from app

Debugger/Tool Features
• Co-launch/co-location of daemons

§ At initial app spawn
• Co-launch

§ Upon attach
• Spawn w/co-location

• Launch control
§ Stop-on-exec, stop-in-init, stop-in-app
§ Release method to be used

• Forwarding of IO
§ To/from debugger daemons
§ To/from app being debugged

• Query app info
§ Global and local proctable
§ Application internal metadata

• Direct/indirect launch support
§ Forward, set/unset/modify envars

(e.g., LD_PRELOAD)
§ Launcher directives

• Modify local fork/exec agent
• Replace launcher daemons

• Local launcher fork/exec option
§ If PMIx_Spawn not available or if

desired

RM
PMIx

Server

RM

PMIx
Server

Proc Proc

Dbgr
Dmn

Direct Launch

Co-launch
Two-stage launch

RM
PMIx

Server

RM

PMIx
Server

mpiexec
PMIx

Server

Indirect Launch

PMIx_Spawn

fork/exec

PMIX_LAUNCHER_PAUSE_FOR_TOOL

RM
PMIx

Server

RM

PMIx
Server

mpiexec
PMIx

Server

Indirect Launch

Launch
Directives

Pass directives,
application description

RM
PMIx

Server

RM

PMIx
Server

Proc Proc

Dbgr
Dmn

PMIx
Server

mpiexec
PMIx

Server

ssh

Indirect Launch

mpid

Co-launch
Two-stage launch

PMIx_Spawn

RM
PMIx

Server

RM

PMIx
Server

Proc Proc

Dbgr
Dmn

PMIx
Server

mpiexec
PMIx

Server

Attach to Running Job

mpid

RM
PMIx

Server

RM

PMIx
Server

Proc Proc

Dbgr
Dmn

PMIx
Server

mpiexec
PMIx

Server

Attach to Running Job

Launch
Daemons

mpid

Direct or Indirect Launch

RM
PMIx

Server

RM

PMIx
Server

Proc Proc

Dbgr
Dmn

Assigning Procs->Daemons

Query:
• Local proctable
• Local rank

PMIX_DEBUG_JOB
Assigned in launch data

Query global
proctable

RM
PMIx

Server

RM

PMIx
Server

Proc Proc

Dbgr
Dmn

PMIx
Server

mpiexec
PMIx

Server

Assigning Procs->Daemons

mpid

Query:
• Local proctable
• Local rank

PMIX_DEBUG_JOB
Assigned in launch data

RM
PMIx

Server

RM

PMIx
Server

Proc Proc

Dbgr
Dmn

PMIx
Server

mpiexec
PMIx

Server

Assigning Procs->Daemons

mpid

Query:
• Local proctable
• Local rank

PMIX_DEBUG_JOB
Assigned in launch data

RM
PMIx

Server

RM

PMIx
Server

Proc Proc

stdout
stderr

Sent
via

PMIx

Forwarding of Output

Dbgr
Dmn

RM
PMIx

Server

RM

PMIx
Server

Proc Proc

stdin

Sent
via

PMIx

Forwarding Stdin

PMIx Client
Collects

Tool
Collects

Dbgr
Dmn

RM
PMIx

Server

RM

PMIx
Server

Proc Proc

Dbgr
Dmn

PMIx
Server

mpiexec
PMIx

Server

Forwarding Stdin

mpid

stdin

PMIx Client
Collects

Tool
Collects

Sent
via

PMIx

• Covered a lot of ground
§ Primary focus on scheduler

• Implementation status
§ Client & basic server: in production
§ Scheduler & fabric: alpha
§ Storage: in definition

• Expected completion
§ Release v4.0 in 2Q2020

Wrap-Up

