
Process Management Interface
for Exascale (PMIx) Standard

Version 3.0
December 2018

This document describes the Process Management Interface for Exascale (PMIx) Standard, version
3.0.

Comments: Please provide comments on the PMIx Standard by filing issues on the document
repository https://github.com/pmix/pmix-standard/issues or by sending them to the PMIx
Community mailing list at https://groups.google.com/forum/#!forum/pmix. Comments should
include the version of the PMIx standard you are commenting about, and the page, section, and line
numbers that you are referencing. Please note that messages sent to the mailing list from an
unsubscribed e-mail address will be ignored.

Copyright c© 2018 PMIx Standard Review Board.
Permission to copy without fee all or part of this material is granted, provided the PMIx Standard
Review Board copyright notice and the title of this document appear, and notice is given that
copying is by permission of PMIx Standard Review Board.

https://github.com/pmix/pmix-standard/issues
https://groups.google.com/forum/#!forum/pmix

This page intentionally left blank

Contents

1. Introduction 1
1.1. Charter . 2
1.2. PMIx Standard Overview . 2

1.2.1. Who should use the standard? . 3
1.2.2. What is defined in the standard? . 3
1.2.3. What is not defined in the standard? . 3
1.2.4. General Guidance for PMIx Users and Implementors 4

1.3. PMIx Architecture Overview . 5
1.3.1. The PMIx Reference Implementation (PRI) 6
1.3.2. The PMIx Reference RunTime Environment (PRRTE) 7

1.4. Organization of this document . 7
1.5. Version 1.0: June 12, 2015 . 8
1.6. Version 2.0: Sept. 2018 . 9
1.7. Version 2.1: Dec. 2018 . 10
1.8. Version 3.0: Dec. 2018 . 10

2. PMIx Terms and Conventions 12
2.1. Notational Conventions . 14
2.2. Semantics . 15
2.3. Naming Conventions . 15
2.4. Procedure Conventions . 16
2.5. Standard vs Reference Implementation . 16

3. Data Structures and Types 17
3.1. Constants . 18

3.1.1. PMIx Error Constants . 19
3.2. Data Types . 22

3.2.1. Key Structure . 22
3.2.2. Namespace Structure . 23

i

3.2.3. Rank Structure . 24
3.2.4. Process Structure . 24
3.2.5. Process structure support macros . 25
3.2.6. Process State Structure . 26
3.2.7. Process Information Structure . 27
3.2.8. Process Information Structure support macros 28
3.2.9. Scope of Put Data . 29
3.2.10. Range of Published Data . 30
3.2.11. Data Persistence Structure . 30
3.2.12. Value Structure . 31
3.2.13. Value structure support macros . 32
3.2.14. Info and Info Array Structures . 35
3.2.15. Info structure support macros . 35
3.2.16. Info Type Directives . 38
3.2.17. Info Directive support macros . 38
3.2.18. Job Allocation Directives . 40
3.2.19. IO Forwarding Channels . 40
3.2.20. Environmental Variable Structure . 41
3.2.21. Environmental variable support macros 41
3.2.22. Lookup Returned Data Structure . 43
3.2.23. Lookup data structure support macros 43
3.2.24. Application Structure . 46
3.2.25. App structure support macros . 46
3.2.26. Query Structure . 48
3.2.27. Query structure support macros . 48

3.3. Packing/Unpacking Types & Structures . 49
3.3.1. Byte Object Type . 49
3.3.2. Byte object support macros . 50
3.3.3. Data Buffer Type . 51
3.3.4. Data buffer support macros . 52
3.3.5. Data Array Structure . 53
3.3.6. Generalized Data Types Used for Packing/Unpacking 54

ii PMIx Standard – Version 3.0 – December 2018

3.4. Reserved attributes . 55
3.4.1. Initialization attributes . 56
3.4.2. Tool-related attributes . 56
3.4.3. Identification attributes . 57
3.4.4. Programming model attributes . 58
3.4.5. UNIX socket rendezvous socket attributes 58
3.4.6. TCP connection attributes . 59
3.4.7. Global Data Storage (GDS) attributes 59
3.4.8. General process-level attributes . 59
3.4.9. Scratch directory attributes . 60
3.4.10. Relative Rank Descriptive Attributes 60
3.4.11. Information retrieval attributes . 62
3.4.12. Information storage attributes . 62
3.4.13. Size information attributes . 63
3.4.14. Memory information attributes . 63
3.4.15. Topology information attributes . 64
3.4.16. Request-related attributes . 65
3.4.17. Server-to-PMIx library attributes . 66
3.4.18. Server-to-Client attributes . 66
3.4.19. Event handler registration and notification attributes 66
3.4.20. Fault tolerance attributes . 67
3.4.21. Spawn attributes . 68
3.4.22. Query attributes . 70
3.4.23. Log attributes . 71
3.4.24. Debugger attributes . 72
3.4.25. Resource manager attributes . 73
3.4.26. Environment variable attributes . 73
3.4.27. Job Allocation attributes . 74
3.4.28. Job control attributes . 75
3.4.29. Monitoring attributes . 76
3.4.30. Security attributes . 77
3.4.31. IO Forwarding attributes . 77
3.4.32. Application setup attributes . 78

Contents iii

3.5. Callback Functions . 78
3.5.1. Release Callback Function . 78
3.5.2. Modex Callback Function . 79
3.5.3. Spawn Callback Function . 80
3.5.4. Op Callback Function . 80
3.5.5. Lookup Callback Function . 81
3.5.6. Value Callback Function . 82
3.5.7. Info Callback Function . 82
3.5.8. Event Handler Registration Callback Function 83
3.5.9. Notification Handler Completion Callback Function 84
3.5.10. Notification Function . 85
3.5.11. Server Setup Application Callback Function 87
3.5.12. Server Direct Modex Response Callback Function 88
3.5.13. Tool connection request callback function 89
3.5.14. Tool connection callback function . 90
3.5.15. Credential callback function . 90
3.5.16. Credential validation callback function 91
3.5.17. IOF delivery function . 92
3.5.18. IOF and Event registration function . 93

3.6. Constant String Functions . 94

4. Initialization and Finalization 97
4.1. Query . 97

4.1.1. PMIx_Initialized . 97
4.1.2. PMIx_Get_version . 98

4.2. Client Initialization and Finalization . 98
4.2.1. PMIx_Init . 98
4.2.2. PMIx_Finalize . 101

4.3. Tool Initialization and Finalization . 102
4.3.1. PMIx_tool_init . 102
4.3.2. PMIx_tool_finalize . 105
4.3.3. PMIx_tool_connect_to_server 106

4.4. Server Initialization and Finalization . 107
4.4.1. PMIx_server_init . 107

iv PMIx Standard – Version 3.0 – December 2018

4.4.2. PMIx_server_finalize . 110

5. Key/Value Management 111
5.1. Setting and Accessing Key/Value Pairs . 111

5.1.1. PMIx_Put . 111
5.1.2. PMIx_Get . 112
5.1.3. PMIx_Get_nb . 115
5.1.4. PMIx_Store_internal . 118
5.1.5. Accessing information: examples . 119

5.2. Exchanging Key/Value Pairs . 124
5.2.1. PMIx_Commit . 124
5.2.2. PMIx_Fence . 124
5.2.3. PMIx_Fence_nb . 126

5.3. Publish and Lookup Data . 129
5.3.1. PMIx_Publish . 129
5.3.2. PMIx_Publish_nb . 131
5.3.3. PMIx_Lookup . 133
5.3.4. PMIx_Lookup_nb . 135
5.3.5. PMIx_Unpublish . 137
5.3.6. PMIx_Unpublish_nb . 139

6. Process Management 141
6.1. Abort . 141

6.1.1. PMIx_Abort . 141
6.2. Process Creation . 142

6.2.1. PMIx_Spawn . 142
6.2.2. PMIx_Spawn_nb . 147

6.3. Connecting and Disconnecting Processes . 151
6.3.1. PMIx_Connect . 151
6.3.2. PMIx_Connect_nb . 154
6.3.3. PMIx_Disconnect . 156
6.3.4. PMIx_Disconnect_nb . 158

6.4. IO Forwarding . 160
6.4.1. PMIx_IOF_pull . 160

Contents v

6.4.2. PMIx_IOF_deregister . 162
6.4.3. PMIx_IOF_push . 164

7. Job Management and Reporting 166
7.1. Query . 166

7.1.1. PMIx_Resolve_peers . 167
7.1.2. PMIx_Resolve_nodes . 167
7.1.3. PMIx_Query_info_nb . 168

7.2. Allocation Requests . 173
7.2.1. PMIx_Allocation_request . 174
7.2.2. PMIx_Allocation_request_nb 176

7.3. Job Control . 179
7.3.1. PMIx_Job_control . 180
7.3.2. PMIx_Job_control_nb . 182

7.4. Process and Job Monitoring . 185
7.4.1. PMIx_Process_monitor . 186
7.4.2. PMIx_Process_monitor_nb . 187
7.4.3. PMIx_Heartbeat . 189

7.5. Logging . 190
7.5.1. PMIx_Log . 190
7.5.2. PMIx_Log_nb . 193

8. Event Notification 197
8.1. Notification and Management . 197

8.1.1. PMIx_Register_event_handler 199
8.1.2. PMIx_Deregister_event_handler 202
8.1.3. PMIx_Notify_event . 203

9. Data Packing and Unpacking 206
9.1. Support Macros . 206

9.1.1. PMIX_DATA_BUFFER_CREATE . 206
9.1.2. PMIX_DATA_BUFFER_RELEASE . 207
9.1.3. PMIX_DATA_BUFFER_CONSTRUCT 207
9.1.4. PMIX_DATA_BUFFER_DESTRUCT 207
9.1.5. PMIX_DATA_BUFFER_LOAD . 208

vi PMIx Standard – Version 3.0 – December 2018

9.1.6. PMIX_DATA_BUFFER_UNLOAD . 208
9.2. General Routines . 209

9.2.1. PMIx_Data_pack . 209
9.2.2. PMIx_Data_unpack . 211
9.2.3. PMIx_Data_copy . 213
9.2.4. PMIx_Data_print . 213
9.2.5. PMIx_Data_copy_payload . 214

10.Security 216
10.1. Obtaining Credentials . 217

10.1.1. PMIx_Get_credential . 217
10.2. Validating Credentials . 219

10.2.1. PMIx_Validate_credential . 219

11.Server-Specific Interfaces 221
11.1. Server Support Functions . 221

11.1.1. PMIx_generate_regex . 221
11.1.2. PMIx_generate_ppn . 222
11.1.3. PMIx_server_register_nspace 223
11.1.4. PMIx_server_deregister_nspace 235
11.1.5. PMIx_server_register_client 236
11.1.6. PMIx_server_deregister_client 238
11.1.7. PMIx_server_setup_fork . 239
11.1.8. PMIx_server_dmodex_request 239
11.1.9. PMIx_server_setup_application 241
11.1.10. PMIx_server_setup_local_support 243
11.1.11. PMIx_server_IOF_deliver . 245
11.1.12. PMIx_server_collect_inventory 246
11.1.13. PMIx_server_deliver_inventory 247

11.2. Server Function Pointers . 248
11.2.1. pmix_server_module_tModule 249
11.2.2. pmix_server_client_connected_fn_t 250
11.2.3. pmix_server_client_finalized_fn_t 251
11.2.4. pmix_server_abort_fn_t . 252

Contents vii

11.2.5. pmix_server_fencenb_fn_t . 254
11.2.6. pmix_server_dmodex_req_fn_t 256
11.2.7. pmix_server_publish_fn_t . 258
11.2.8. pmix_server_lookup_fn_t . 260
11.2.9. pmix_server_unpublish_fn_t 262
11.2.10. pmix_server_spawn_fn_t . 264
11.2.11. pmix_server_connect_fn_t . 269
11.2.12. pmix_server_disconnect_fn_t 271
11.2.13. pmix_server_register_events_fn_t 273
11.2.14. pmix_server_deregister_events_fn_t 275
11.2.15. pmix_server_notify_event_fn_t 277
11.2.16. pmix_server_listener_fn_t 278
11.2.17. pmix_server_query_fn_t . 279
11.2.18. pmix_server_tool_connection_fn_t 282
11.2.19. pmix_server_log_fn_t . 283
11.2.20. pmix_server_alloc_fn_t . 285
11.2.21. pmix_server_job_control_fn_t 287
11.2.22. pmix_server_monitor_fn_t . 290
11.2.23. pmix_server_get_cred_fn_t 292
11.2.24. pmix_server_validate_cred_fn_t 294
11.2.25. pmix_server_iof_fn_t . 296
11.2.26. pmix_server_stdin_fn_t . 299

A. Acknowledgements 301
A.1. Version 3.0 . 301
A.2. Version 2.0 . 302
A.3. Version 1.0 . 303

Bibliography 304

Index 305

viii PMIx Standard – Version 3.0 – December 2018

CHAPTER 1

Introduction

The Process Management Interface (PMI) has been used for quite some time as a means of1
exchanging wireup information needed for inter-process communication. Two versions (PMI-1 and2
PMI-2) have been released as part of the MPICH effort, with PMI-2 demonstrating better scaling3
properties than its PMI-1 predecessor. However, two significant challenges face the High4
Performance Computing (HPC) community as it continues to move towards machines capable of5
exaflop and higher performance levels:6

• the physical scale of the machines, and the corresponding number of total processes they support,7
is expected to reach levels approaching 1 million processes executing across 100 thousand nodes.8
Prior methods for initiating applications relied on exchanging communication endpoint9
information between the processes, either directly or in some form of hierarchical collective10
operation. Regardless of the specific mechanism employed, the exchange across such large11
applications would consume considerable time, with estimates running in excess of 5-1012
minutes; and13

• whether it be hybrid applications that combine OpenMP threading operations with MPI, or14
application-steered workflow computations, the HPC community is experiencing an15
unprecedented wave of new approaches for computing at exascale levels. One common thread16
across the proposed methods is an increasing need for orchestration between the application and17
the system management software stack (SMS) comprising the scheduler (a.k.a. the workload18
manager (WLM)), the resource manager (RM), global file system, fabric, and other subsystems.19
The lack of available support for application-to-SMS integration has forced researchers to20
develop "virtual" environments that hide the SMS behind a customized abstraction layer, but this21
results in considerable duplication of effort and a lack of portability.22

Process Management Interface - Exascale (PMIx) represents an attempt to resolve these questions23
by providing an extended version of the PMI definitions specifically designed to support clusters up24
to exascale and larger sizes. The overall objective of the project is not to branch the existing25
definitions – in fact, PMIx fully supports both of the existing PMI-1 and PMI-2 Application26
Programming Interfaces (APIs) – but rather to:27

a) add flexibility to the existing APIs by adding an array of key-value “attribute” pairs to each API28
signature that allows implementers to customize the behavior of the API as future needs emerge29
without having to alter or create new variants of it;30

b) add new APIs that provide extended capabilities such as asynchronous event notification plus31
dynamic resource allocation and management;32

1

c) establish a collaboration between SMS subsystem providers including resource manager, fabric,1
file system, and programming library developers to define integration points between the2
various subsystems as well as agreed upon definitions for associated APIs, attribute names, and3
data types;4

d) form a standards-like body for the definitions; and5
e) provide a reference implementation of the PMIx standard.6

Complete information about the PMIx standard and affiliated projects can be found at the PMIx7
web site: https://pmix.org8

1.1 Charter9

The charter of the PMIx community is to:10

• Define a set of agnostic APIs (not affiliated with any specific programming model or code base)11
to support interactions between application processes and the SMS.12

• Develop an open source (non-copy-left licensed) standalone “reference” library implementation13
to facilitate adoption of the PMIx standard.14

• Retain transparent backward compatibility with the existing PMI-1 and PMI-2 definitions, any15
future PMI releases, and across all PMIx versions.16

• Support the “Instant On” initiative for rapid startup of applications at exascale and beyond.17

• Work with the HPC community to define and implement new APIs that support evolving18
programming model requirements for application interactions with the SMS.19

Participation in the PMIx community is open to anyone, and not restricted to only code contributors20
to the reference implementation.21

1.2 PMIx Standard Overview22

The PMIx Standard defines and describes the interface developed by the PMIx Reference23
Implementation (PRI). Much of this document is specific to the PMIx Reference24
Implementation (PRI)’s design and implementation. Specifically the standard describes the25
functionality provided by the PRI, and what the PRI requires of the clients and resource26
managers (RMs) that use it’s interface.27

2 PMIx Standard – Version 3.0 – December 2018

https://pmix.org

1.2.1 Who should use the standard?1

The PMIx Standard informs PMIx clients and RMs of the syntax and semantics of the PMIx APIs.2

PMIx clients (e.g., tools, Message Passing Environment (MPE) libraries) can use this standard to3
understand the set of attributes provided by various APIs of the PRI and their intended behavior.4
Additional information about the rationale for the selection of specific interfaces and attributes is5
also provided.6

PMIx-enabled RMs can use this standard to understand the expected behavior required of them7
when they support various interfaces/attributes. In addition, optional features and suggestions on8
behavior are also included in the discussion to help guide RM design and implementation.9

1.2.2 What is defined in the standard?10

The PMIx Standard defines and describes the interface developed by the PMIx Reference11
Implementation (PRI). It defines the set of attributes that the PRI supports; the set of attributes that12
are required of a RM to support, for a given interface; and the set of optional attributes that an RM13
may choose to support, for a given interface.14

1.2.3 What is not defined in the standard?15

No standards body can require an implementer to support something in their standard, and PMIx is16
no different in that regard. While an implementer of the PMIx library itself must at least include the17
standard PMIx headers and instantiate each function, they are free to return “not supported” for any18
function they choose not to implement.19

This also applies to the host environments. Resource managers and other system management stack20
components retain the right to decide on support of a particular function. The PMIx community21
continues to look at ways to assist SMS implementers in their decisions by highlighting functions22
that are critical to basic application execution (e.g., PMIx_Get), while leaving flexibility for23
tailoring a vendor’s software for their target market segment.24

One area where this can become more complicated is regarding the attributes that provide25
information to the client process and/or control the behavior of a PMIx standard API. For example,26
the PMIX_TIMEOUT attribute can be used to specify the time (in seconds) before the requested27
operation should time out. The intent of this attribute is to allow the client to avoid “hanging” in a28
request that takes longer than the client wishes to wait, or may never return (e.g., a PMIx_Fence29
that a blocked participant never enters).30

If an application (for example) truly relies on the PMIX_TIMEOUT attribute in a call to31
PMIx_Fence , it should set the required flag in the pmix_info_t for that attribute. This32
informs the library and its SMS host that it must return an immediate error if this attribute is not33

CHAPTER 1. INTRODUCTION 3

supported. By not setting the flag, the library and SMS host are allowed to treat the attribute as1
optional, ignoring it if support is not available.2

It is therefore critical that users and application implementers:3

a) consider whether or not a given attribute is required, marking it accordingly; and4
b) check the return status on all PMIx function calls to ensure support was present and that the5

request was accepted. Note that for non-blocking APIs, a return of PMIX_SUCCESS only6
indicates that the request had no obvious errors and is being processed – the eventual callback7
will return the status of the requested operation itself.8

While a PMIx library implementer, or an SMS component server, may choose to support a9
particular PMIx API, they are not required to support every attribute that might apply to it. This10
would pose a significant barrier to entry for an implementer as there can be a broad range of11
applicable attributes to a given API, at least some of which may rarely be used. The PMIx12
community is attempting to help differentiate the attributes by indicating those that are generally13
used (and therefore, of higher importance to support) vs those that a “complete implementation”14
would support.15

Note that an environment that does not include support for a particular attribute/API pair is not16
“incomplete” or of lower quality than one that does include that support. Vendors must decide17
where to invest their time based on the needs of their target markets, and it is perfectly reasonable18
for them to perform cost/benefit decisions when considering what functions and attributes to19
support.20

The flip side of that statement is also true: Users who find that their current vendor does not support21
a function or attribute they require may raise that concern with their vendor and request that the22
implementation be expanded. Alternatively, users may wish to utilize the PMIx-based Reference23
RunTime Environment (PRRTE) as a “shim” between their application and the host environment as24
it might provide the desired support until the vendor can respond. Finally, in the extreme, one can25
exploit the portability of PMIx-based applications to change vendors.26

1.2.4 General Guidance for PMIx Users and Implementors27

The PMIx Standard defines the behavior of the PMIx Reference Implementation (PRI). A complete28
system harnessing the PMIx interface requires an agreement between the PMIx client, be it a tool or29
library, and the PMIx-enabled RM. The PRI acts as an intermediary between these two entities by30
providing a standard API for the exchange of requests and responses. The degree to which the31
PMIx client and the PMIx-enabled RM may interact needs to be defined by those developer32
communities. The PMIx standard can be used to define the specifics of this interaction.33

PMIx clients (e.g., tools, MPE libraries) may find that they depend only on a small subset of34
interfaces and attributes to work correctly. PMIx clients are strongly advised to define a document35
itemizing the PMIx interfaces and associated attributes that are required for correct operation, and36
are optional but recommended for full functionality. The PMIx standard cannot define this list for37
all given PMIx clients, but such a list is valuable to RMs desiring to support these clients.38

4 PMIx Standard – Version 3.0 – December 2018

PMIx-enabled RMs may choose to implement a subset of the PMIx standard and/or define attributes1
beyond those defined herein. PMIx-enabled RMs are strongly advised to define a document2
itemizing the PMIx interfaces and associated attributes they support, with any annotations about3
behavior limitations. The PMIx standard cannot define this list for all given PMIx-enabled RMs,4
but such a list is valuable to PMIx clients desiring to support a broad range of PMIx-enabled RMs.5

1.3 PMIx Architecture Overview6

This section presents a brief overview of the PMIx Architecture [1]. Note that this is a conceptual7
model solely used to help guide the standards process — it does not represent a design requirement8
on any PMIx implementation. Instead, the model is used by the PMIx community as a sounding9
board for evaluating proposed interfaces and avoid unintentionally imposing constraints on10
implementers. Built into the model are two guiding principles also reflected in the standard. First,11
PMIx operates in the mode of a messenger, and not a doer — i.e., the role of PMIx is to provide12
communication between the various participants, relaying requests and returning responses. The13
intent of the standard is not to suggest that PMIx itself actually perform any of the defined14
operations — this is left to the various SMS elements and/or the application. Any exceptions to that15
intent are left to the discretion of the particular implementation.16

RM

PMIx
Client

FS

Fabric

RAS

APP

Orchestration
Requests

Responses

NIC

Fabric
Mgr

PMIx
Server

MPI

OpenMP

Job
Script

System
Management Stack

Tool Support

Figure 1.1.: PMIx-SMS Interactions

Thus, as the diagram in Fig. 1.1 shows, the application is built against a PMIx client library that17
contains the client-side APIs, attribute definitions, and communication support for interacting with18
the local PMIx server. Intra-process cross-library interactions are supported at the client level to19
avoid unnecessary burdens on the server. Orchestration requests are sent to the local PMIx server,20
which subsequently passes them to the host SMS (here represented by an RM daemon) using the21

CHAPTER 1. INTRODUCTION 5

PMIx server callback functions the host SMS registered during PMIx_server_init. The host SMS1
can indicate its lack of support for any operation by simply providing a NULL for the associated2
callback function, or can create a function entry that returns not supported when called.3

The conceptual model places the burden of fulfilling the request on the host SMS. This includes4
performing any inter-node communications, or interacting with other SMS elements. Thus, a client5
request for a network traffic report does not go directly from the client to the Fabric Manager (FM),6
but instead is relayed to the PMIx server, and then passed to the host SMS for execution. This7
architecture reflects the second principle underlying the standard — namely, that connectivity is to8
be minimized by channeling all application interactions with the SMS through the local PMIx9
server.10

Recognizing the burden this places on SMS vendors, the PMIx community has included interfaces11
by which the host can request support from local SMS elements. Once the SMS has transferred the12
request to an appropriate location, a PMIx server interface can be used to pass the request between13
SMS subsystems. For example, a request for network traffic statistics can utilize the PMIx14
networking abstractions to retrieve the information from the FM. This reduces the portability and15
interoperability issues between the individual subsystems by transferring the burden of defining the16
interoperable interfaces from the SMS subsystems to the PMIx community, which continues to17
work with those providers to develop the necessary support.18

Tools, whether standalone or embedded in job scripts, are an exception to the communication rule19
and can connect to any PMIx server providing they are given adequate rendezvous information. The20
PMIx conceptual model views the collection of PMIx servers as a cloud-like conglomerate — i.e.,21
orchestration and information requests can be given to any server regardless of location. However,22
tools frequently execute on locations that may not house an operating PMIx server — e.g., a users23
notebook computer. Thus, tools need the ability to remotely connect to the PMIx server “cloud”.24

The scope of the PMIx standard therefore spans the range of these interactions, between25
client-and-SMS and between SMS subsystems. Note again that this does not impose a requirement26
on any given PMIx implementation to cover the entire range — implementers are free to return not27
supported from any PMIx function.28

1.3.1 The PMIx Reference Implementation (PRI)29

The PMIx community has committed to providing a complete, reference implementation of each30
version of the standard. Note that the definition of the PMIx Standard is not contingent upon use of31
the PMIx Reference Implementation (PRI) — any implementation that supports the defined APIs is32
a PMIx Standard compliant implementation. The PRI is provided solely for the following purposes:33

• Validation of the standard.34
No proposed change and/or extension to the PMIx standard is accepted without an accompanying35
prototype implementation in the PRI. This ensures that the proposal has undergone at least some36
minimal level of scrutiny and testing before being considered.37

6 PMIx Standard – Version 3.0 – December 2018

• Ease of adoption.1
The PRI is designed to be particularly easy for resource managers (and the SMS in general) to2
adopt, thus facilitating a rapid uptake into that community for application portability. Both client3
and server PMIx libraries are included, along with examples of client usage and server-side4
integration. A list of supported environments and versions is maintained on the PMIx web site5
https://pmix.org/support/faq/what-apis-are-supported-on-my-rm/6

The PRI does provide some internal implementations that lie outside the scope of the PMIx7
standard. This includes several convenience macros as well as support for consolidating collectives8
for optimization purposes (e.g., the PMIx server aggregates all local PMIx_Fence calls before9
passing them to the SMS for global execution). In a few additional cases, the PMIx community (in10
partnership with the SMS subsystem providers) have determined that a base level of support for a11
given operation can best be portably provided by including it in the PRI.12

Instructions for downloading, and installing the PRI are available on the community’s web site13
https://pmix.org/code/getting-the-reference-implementation/.The PRI targets support for the Linux14
operating system. A reasonable effort is made to support all major, modern Linux distributions;15
however, validation is limited to the most recent 2-3 releases of RedHat Enterprise Linux (RHEL),16
Fedora, CentOS, and SUSE Linux Enterprise Server (SLES). In addition, development support is17
maintained for Mac OSX. Production support for vendor-specific operating systems is included as18
provided by the vendor.19

1.3.2 The PMIx Reference RunTime Environment (PRRTE)20

The PMIx community has also released PRRTE — i.e., a runtime environment containing the21
reference implementation and capable of operating within a host SMS. PRRTE provides an easy22
way of exploring PMIx capabilities and testing PMIx-based applications outside of a PMIx-enabled23
environment by providing a “shim” between the application and the host environment that includes24
full support for the PRI. The intent of PRRTE is not to replace any existing production25
environment, but rather to enable developers to work on systems that do not yet feature a26
PMIx-enabled host SMS or one that lacks a PMIx feature of interest. Instructions for downloading,27
installing, and using PRRTE are available on the community’s web site28
https://pmix.org/code/getting-the-pmix-reference-server/29

1.4 Organization of this document30

The remainder of this document is structured as follows:31

• Introduction and Overview in Chapter 1 on page 132

• Terms and Conventions in Chapter 2 on page 1233

• Data Structures and Types in Chapter 3 on page 1734

CHAPTER 1. INTRODUCTION 7

https://pmix.org/support/faq/what-apis-are-supported-on-my-rm/
https://pmix.org/code/getting-the-reference-implementation/
https://pmix.org/code/getting-the-pmix-reference-server/

• PMIx Initialization and Finalization in Chapter 4 on page 971

• Key/Value Management in Chapter 5 on page 1112

• Process Management in Chapter 6 on page 1413

• Job Management in Chapter 7 on page 1664

• Event Notification in Chapter 8 on page 1975

• Data Packing and Unpacking in Chapter 9 on page 2066

• PMIx Server Specific Interfaces in Chapter 11 on page 2217

1.5 Version 1.0: June 12, 20158

The PMIx version 1.0 ad hoc standard was defined in the PMIx Reference Implementation (PRI)9
header files as part of the PRI v1.0.0 release prior to the creation of the formal PMIx 2.0 standard.10
Below are a summary listing of the interfaces defined in the 1.0 headers.11

• Client APIs12

– PMIx_Init, PMIx_Initialized , PMIx_Abort , PMIx_Finalize13

– PMIx_Put , PMIx_Commit ,14

– PMIx_Fence , PMIx_Fence_nb15

– PMIx_Get , PMIx_Get_nb16

– PMIx_Publish , PMIx_Publish_nb17

– PMIx_Lookup , PMIx_Lookup18

– PMIx_Unpublish , PMIx_Unpublish_nb19

– PMIx_Spawn , PMIx_Spawn_nb20

– PMIx_Connect , PMIx_Connect_nb21

– PMIx_Disconnect , PMIx_Disconnect_nb22

– PMIx_Resolve_nodes , PMIx_Resolve_peers23

• Server APIs24

– PMIx_server_init , PMIx_server_finalize25

– PMIx_generate_regex , PMIx_generate_ppn26

– PMIx_server_register_nspace , PMIx_server_deregister_nspace27

– PMIx_server_register_client , PMIx_server_deregister_client28

8 PMIx Standard – Version 3.0 – December 2018

– PMIx_server_setup_fork , PMIx_server_dmodex_request1

• Common APIs2

– PMIx_Get_version , PMIx_Store_internal , PMIx_Error_string3

– PMIx_Register_errhandler, PMIx_Deregister_errhandler, PMIx_Notify_error4

The PMIx_Init API was subsequently modified in the PRI release v1.1.0.5

1.6 Version 2.0: Sept. 20186

The following APIs were introduced in v2.0 of the PMIx Standard:7

• Client APIs8

– PMIx_Query_info_nb , PMIx_Log_nb9

– PMIx_Allocation_request_nb , PMIx_Job_control_nb ,10
PMIx_Process_monitor_nb , PMIx_Heartbeat11

• Server APIs12

– PMIx_server_setup_application , PMIx_server_setup_local_support13

• Tool APIs14

– PMIx_tool_init , PMIx_tool_finalize15

• Common APIs16

– PMIx_Register_event_handler , PMIx_Deregister_event_handler17

– PMIx_Notify_event18

– PMIx_Proc_state_string , PMIx_Scope_string19

– PMIx_Persistence_string , PMIx_Data_range_string20

– PMIx_Info_directives_string , PMIx_Data_type_string21

– PMIx_Alloc_directive_string22

– PMIx_Data_pack , PMIx_Data_unpack , PMIx_Data_copy23

– PMIx_Data_print , PMIx_Data_copy_payload24

The PMIx_Init API was modified in v2.0 of the standard from its ad hoc v1.0 signature to25
include passing of a pmix_info_t array for flexibility and “future-proofing” of the API. In26
addition, the PMIx_Notify_error, PMIx_Register_errhandler, and PMIx_Deregister_errhandler27
APIs were replaced.28

CHAPTER 1. INTRODUCTION 9

1.7 Version 2.1: Dec. 20181

The v2.1 update includes clarifications and corrections, plus addition of examples:2

• Clarify description of PMIx_Connect and PMIx_Disconnect APIs.3

• Explain that values for the PMIX_COLLECTIVE_ALGO are environment-dependent4

• Identify the namespace/rank values required for retrieving attribute-associated information using5
the PMIx_Get API6

• Provide definitions for session , job , application , and other terms used throughout the7
document8

• Clarify definitions of PMIX_UNIV_SIZE versus PMIX_JOB_SIZE9

• Clarify server module function return values10

• Provide examples of the use of PMIx_Get for retrieval of information11

• Clarify the use of PMIx_Get versus PMIx_Query_info_nb12

• Clarify return values for non-blocking APIs and emphasize that callback functions must not be13
invoked prior to return from the API14

• Provide detailed example for construction of the PMIx_server_register_nspace input15
information array16

• Define information levels (e.g., session vs job) and associated attributes for both storing17
and retrieving values18

• Clarify roles of PMIx server library and host environment for collective operations19

• Clarify definition of PMIX_UNIV_SIZE20

1.8 Version 3.0: Dec. 201821

The following APIs were introduced in v3.0 of the PMIx Standard:22

• Client APIs23

– PMIx_Log , PMIx_Job_control24

– PMIx_Allocation_request , PMIx_Process_monitor25

– PMIx_Get_credential , PMIx_Validate_credential26

• Server APIs27

– PMIx_server_IOF_deliver28

10 PMIx Standard – Version 3.0 – December 2018

– PMIx_server_collect_inventory , PMIx_server_deliver_inventory1

• Tool APIs2

– PMIx_IOF_pull , PMIx_IOF_push , PMIx_IOF_deregister3

– PMIx_tool_connect_to_server4

• Common APIs5

– PMIx_IOF_channel_string6

The document added a chapter on security credentials, a new section for Input/Output (IO)7
forwarding to the Process Management chapter, and a few blocking forms of previously-existing8
non-blocking APIs. Attributes supporting the new APIs were introduced, as well as additional9
attributes for a few existing functions.10

CHAPTER 1. INTRODUCTION 11

CHAPTER 2

PMIx Terms and Conventions

The PMIx Standard has adopted the widespread use of key-value attributes to add flexibility to the1
functionality expressed in the existing APIs. Accordingly, the community has chosen to require that2
the definition of each standard API include the passing of an array of attributes. These provide a3
means of customizing the behavior of the API as future needs emerge without having to alter or4
create new variants of it. In addition, attributes provide a mechanism by which researchers can5
easily explore new approaches to a given operation without having to modify the API itself.6

The PMIx community has further adopted a policy that modification of existing released APIs will7
only be permitted under extreme circumstances. In its effort to avoid introduction of any such8
backward incompatibility, the community has avoided the definitions of large numbers of APIs that9
each focus on a narrow scope of functionality, and instead relied on the definition of fewer generic10
APIs that include arrays of directives for “tuning” the function’s behavior. Thus, modifications to11
the PMIx standard increasingly consist of the definition of new attributes along with a description12
of the APIs to which they relate and the expected behavior when used with those APIs.13

One area where this can become more complicated relates to the attributes that provide directives to14
the client process and/or control the behavior of a PMIx standard API. For example, the15
PMIX_TIMEOUT attribute can be used to specify the time (in seconds) before the requested16
operation should time out. The intent of this attribute is to allow the client to avoid hanging in a17
request that takes longer than the client wishes to wait, or may never return (e.g., a PMIx_Fence18
that a blocked participant never enters).19

If an application truly relies on the PMIX_TIMEOUT attribute in a call to PMIx_Fence , it20
should set the required flag in the pmix_info_t for that attribute. This informs the library and21
its SMS host that it must return an immediate error if this attribute is not supported. By not setting22
the flag, the library and SMS host are allowed to treat the attribute as optional, silently ignoring it if23
support is not available.24

Advice to users

It is critical that users and application developers consider whether or not a given attribute is25
required (marking it accordingly) and always check the return status on all PMIx function calls to26
ensure support was present and that the request was accepted. Note that for non-blocking APIs, a27
return of PMIX_SUCCESS only indicates that the request had no obvious errors and is being28
processed. The eventual callback will return the status of the requested operation itself.29

12

While a PMIx library implementer, or an SMS component server, may choose to support a1
particular PMIx API, they are not required to support every attribute that might apply to it. This2
would pose a significant barrier to entry for an implementer as there can be a broad range of3
applicable attributes to a given API, at least some of which may rarely be used in a specific market4
area. The PMIx community is attempting to help differentiate the attributes by indicating in the5
standard those that are generally used (and therefore, of higher importance to support) versus those6
that a “complete implementation” would support.7

In addition, the document refers to the following entities and process stages when describing8
use-cases or operations involving PMIx:9

• session refers to an allocated set of resources assigned to a particular user by the system WLM.10
Historically, HPC sessions have consisted of a static allocation of resources - i.e., a block of11
resources are assigned to a user in response to a specific request and managed as a unified12
collection. However, this is changing in response to the growing use of dynamic programming13
models that require on-the-fly allocation and release of system resources. Accordingly, the term14
session in this document refers to the current block of assigned resources and is a potentially15
dynamic entity.16

• slot refers to an allocated entry for a process. WLMs frequently allocate entire nodes to a17
session, but can also be configured to define the maximum number of processes that can18
simultaneously be executed on each node. This often corresponds to the number of hardware19
Processing Units (PUs) (typically cores, but can also be defined as hardware threads) on the20
node. However, the correlation between hardware PUs and slot allocations strictly depends upon21
system configuration.22

• job refers to a set of one or more applications executed as a single invocation by the user within a23
session. For example, “mpiexec -n 1 app1 : -n 2 app2” is considered a single Multiple Program24
Multiple Data (MPMD) job containing two applications.25

• namespace refers to a character string value assigned by the RM to a job. All applications26
executed as part of that job share the same namespace. The namespace assigned to each job must27
be unique within the scope of the governing RM.28

• application refers to a single executable (binary, script, etc.) member of a job. Applications29
consist of one or more processes, either operating independently or in parallel at any given time30
during their execution.31

• rank refers to the numerical location (starting from zero) of a process within the defined scope.32
Thus, global rank is the rank of a process within its job, while application rank is the rank of that33
process within its application.34

• workflow refers to an orchestrated execution plan frequently spanning multiple jobs carried out35
under the control of a workflow manager process. An example workflow might first execute a36
computational job to generate the flow of liquid through a complex cavity, followed by a37
visualization job that takes the output of the first job as its input to produce an image output.38

CHAPTER 2. PMIX TERMS AND CONVENTIONS 13

• resource manager is used in a generic sense to represent the system that will host the PMIx1
server library. This could be a vendor’s RM, a programming library’s RunTime2
Environment (RTE), or some other agent.3

• host environment is used interchangeably with resource manager to refer to the process hosting4
the PMIx server library.5

This document borrows freely from other standards (most notably from the Message Passing6
Interface (MPI) and OpenMP standards) in its use of notation and conventions in an attempt to7
reduce confusion. The following sections provide an overview of the conventions used throughout8
the PMIx Standard document.9

2.1 Notational Conventions10

Some sections of this document describe programming language specific examples or APIs. Text11
that applies only to programs for which the base language is C is shown as follows:12

C
C specific text...13

int foo = 42;14

C

Some text is for information only, and is not part of the normative specification. These take several15
forms, described in their examples below:16

Note: General text...17

Rationale

Throughout this document, the rationale for the design choices made in the interface specification is18
set off in this section. Some readers may wish to skip these sections, while readers interested in19
interface design may want to read them carefully.20

Advice to users

Throughout this document, material aimed at users and that illustrates usage is set off in this21
section. Some readers may wish to skip these sections, while readers interested in programming22
with the PMIx API may want to read them carefully.23

14 PMIx Standard – Version 3.0 – December 2018

Advice to PMIx library implementers
Throughout this document, material that is primarily commentary to PMIx library implementers is1
set off in this section. Some readers may wish to skip these sections, while readers interested in2
PMIx implementations may want to read them carefully.3

Advice to PMIx server hosts
Throughout this document, material that is primarily commentary aimed at host environments (e.g.,4
RMs and RTEs) providing support for the PMIx server library is set off in this section. Some5
readers may wish to skip these sections, while readers interested in integrating PMIx servers into6
their environment may want to read them carefully.7

2.2 Semantics8

The following terms will be taken to mean:9

• shall and will indicate that the specified behavior is required of all conforming implementations10

• should and may indicate behaviors that a quality implementation would include, but are not11
required of all conforming implementations12

2.3 Naming Conventions13

The PMIx standard has adopted the following conventions:14

• PMIx constants and attributes are prefixed with PMIX.15

• Structures and type definitions are prefixed with pmix.16

• Underscores are used to separate words in a function or variable name.17

• Lowercase letters are used in PMIx client APIs except for the PMIx prefix (noted below) and the18
first letter of the word following it. For example, PMIx_Get_version .19

• PMIx server and tool APIs are all lower case letters following the prefix - e.g.,20
PMIx_server_register_nspace .21

• The PMIx_ prefix is used to denote functions.22

• The pmix_ prefix is used to denote function pointer and type definitions.23

Users should not use the PMIX, PMIx, or pmix prefixes in their applications or libraries so as to24
avoid symbol conflicts with current and later versions of the PMIx standard and implementations25
such as the PRI.26

CHAPTER 2. PMIX TERMS AND CONVENTIONS 15

2.4 Procedure Conventions1

While the current PMIx Reference Implementation (PRI) is solely based on the C programming2
language, it is not the intent of the PMIx Standard to preclude the use of other languages.3
Accordingly, the procedure specifications in the PMIx Standard are written in a4
language-independent syntax with the arguments marked as IN, OUT, or INOUT. The meanings of5
these are:6

• IN: The call may use the input value but does not update the argument from the perspective of7
the caller at any time during the calls execution,8

• OUT: The call may update the argument but does not use its input value9

• INOUT: The call may both use and update the argument.10

2.5 Standard vs Reference Implementation11

The PMIx Standard is implementation independent. The PMIx Reference Implementation (PRI) is12
one implementation of the Standard and the PMIx community strives to ensure that it fully13
implements the Standard. Given its role as the community’s testbed and its widespread use, this14
document cites the attributes supported by the PRI for each API where relevant by marking them in15
red. This is not meant to imply nor confer any special role to the PRI with respect to the Standard16
itself, but instead to provide a convenience to users of the Standard and PRI.17

Similarly, the PMIx Reference RunTime Environment (PRRTE) is provided by the community to18
enable users operating in non-PMIx environments to develop and execute PMIx-enabled19
applications and tools. Attributes supported by the PRRTE are marked in green.20

16 PMIx Standard – Version 3.0 – December 2018

CHAPTER 3

Data Structures and Types

This chapter defines PMIx standard data structures (along with macros for convenient use), types,1
and constants. These apply to all consumers of the PMIx interface. Where necessary for2
clarification, the description of, for example, an attribute may be copied from this chapter into a3
section where it is used.4

A PMIx implementation may define additional attributes beyond those specified in this document.5

Advice to PMIx library implementers

Structures, types, and macros in the PMIx Standard are defined in terms of the C-programming6
language. Implementers wishing to support other languages should provide the equivalent7
definitions in a language-appropriate manner.8

If a PMIx implementation chooses to define additional attributes they should avoid using the PMIX9
prefix in their name or starting the attribute string with a pmix prefix. This helps the end user10
distinguish between what is defined by the PMIx standard and what is specific to that PMIx11
implementation, and avoids potential conflicts with attributes defined by the standard.12

Advice to users

Use of increment/decrement operations on indices inside PMIx macros is discouraged due to13
unpredictable behavior. For example, the following sequence:14

PMIX_INFO_LOAD(&array[n++], "mykey", &mystring, PMIX_STRING);15
PMIX_INFO_LOAD(&array[n++], "mykey2", &myint, PMIX_INT);16

will load the given key-values into incorrect locations if the macro is implemented as:17

define PMIX_INFO_LOAD(m, k, v, t) \18
do { \19
if (NULL != (k)) { \20

pmix_strncpy((m)->key, (k), PMIX_MAX_KEYLEN); \21
} \22
(m)->flags = 0; \23
pmix_value_load(&((m)->value), (v), (t)); \24

} while (0)25

since the index is cited more than once in the macro. The PMIx standard only governs the existence26
and syntax of macros - it does not specify their implementation. Given the freedom of27
implementation, a safer call sequence might be as follows:28

17

PMIX_INFO_LOAD(&array[n], "mykey", &mystring, PMIX_STRING);1
++n;2
PMIX_INFO_LOAD(&array[n], "mykey2", &myint, PMIX_INT);3
++n;4

3.1 Constants5

PMIx defines a few values that are used throughout the standard to set the size of fixed arrays or as6
a means of identifying values with special meaning. The community makes every attempt to7
minimize the number of such definitions. The constants defined in this section may be used before8
calling any PMIx library initialization routine. Additional constants associated with specific data9
structures or types are defined in the section describing that data structure or type.10

PMIX_MAX_NSLEN Maximum namespace string length as an integer.11

Advice to PMIx library implementers

PMIX_MAX_NSLEN should have a minimum value of 63 characters. Namespace arrays in PMIx12
defined structures must reserve a space of size PMIX_MAX_NSLEN +1 to allow room for the NULL13
terminator14

PMIX_MAX_KEYLEN Maximum key string length as an integer.15

Advice to PMIx library implementers

PMIX_MAX_KEYLEN should have a minimum value of 63 characters. Key arrays in PMIx defined16
structures must reserve a space of size PMIX_MAX_KEYLEN +1 to allow room for the NULL17
terminator18

18 PMIx Standard – Version 3.0 – December 2018

3.1.1 PMIx Error Constants1

The pmix_status_t structure is an int type for return status.2

The tables shown in this section define the possible values for pmix_status_t . PMIx errors are3
required to always be negative, with 0 reserved for PMIX_SUCCESS . Values in the list that were4
deprecated in later standards are denoted as such. Values added to the list in this version of the5
standard are shown in magenta.6

Advice to PMIx library implementers

A PMIx implementation must define all of the constants defined in this section, even if they will7
never return the specific value to the caller.8

Advice to users

Other than PMIX_SUCCESS (which is required to be zero), the actual value of any PMIx error9
constant is left to the PMIx library implementer. Thus, users are advised to always refer to constant10
by name, and not a specific implementation’s value, for portability between implementations and11
compatibility across library versions.12

3.1.1.1 General Error Constants13

PMIX_SUCCESS Success14
PMIX_ERROR General Error15
PMIX_ERR_SILENT Silent error16
PMIX_ERR_DEBUGGER_RELEASE Error in debugger release17
PMIX_ERR_PROC_RESTART Fault tolerance: Error in process restart18
PMIX_ERR_PROC_CHECKPOINT Fault tolerance: Error in process checkpoint19
PMIX_ERR_PROC_MIGRATE Fault tolerance: Error in process migration20
PMIX_ERR_PROC_ABORTED Process was aborted21
PMIX_ERR_PROC_REQUESTED_ABORT Process is already requested to abort22
PMIX_ERR_PROC_ABORTING Process is being aborted23
PMIX_ERR_SERVER_FAILED_REQUEST Failed to connect to the server24
PMIX_EXISTS Requested operation would overwrite an existing value25
PMIX_ERR_INVALID_CRED Invalid security credentials26
PMIX_ERR_HANDSHAKE_FAILED Connection handshake failed27
PMIX_ERR_READY_FOR_HANDSHAKE Ready for handshake28
PMIX_ERR_WOULD_BLOCK Operation would block29
PMIX_ERR_UNKNOWN_DATA_TYPE Unknown data type30
PMIX_ERR_PROC_ENTRY_NOT_FOUND Process not found31
PMIX_ERR_TYPE_MISMATCH Invalid type32
PMIX_ERR_UNPACK_INADEQUATE_SPACE Inadequate space to unpack data33

CHAPTER 3. DATA STRUCTURES AND TYPES 19

PMIX_ERR_UNPACK_FAILURE Unpack failed1
PMIX_ERR_PACK_FAILURE Pack failed2
PMIX_ERR_PACK_MISMATCH Pack mismatch3
PMIX_ERR_NO_PERMISSIONS No permissions4
PMIX_ERR_TIMEOUT Timeout expired5
PMIX_ERR_UNREACH Unreachable6
PMIX_ERR_IN_ERRNO Error defined in errno7
PMIX_ERR_BAD_PARAM Bad parameter8
PMIX_ERR_RESOURCE_BUSY Resource busy9
PMIX_ERR_OUT_OF_RESOURCE Resource exhausted10
PMIX_ERR_DATA_VALUE_NOT_FOUND Data value not found11
PMIX_ERR_INIT Error during initialization12
PMIX_ERR_NOMEM Out of memory13
PMIX_ERR_INVALID_ARG Invalid argument14
PMIX_ERR_INVALID_KEY Invalid key15
PMIX_ERR_INVALID_KEY_LENGTH Invalid key length16
PMIX_ERR_INVALID_VAL Invalid value17
PMIX_ERR_INVALID_VAL_LENGTH Invalid value length18
PMIX_ERR_INVALID_LENGTH Invalid argument length19
PMIX_ERR_INVALID_NUM_ARGS Invalid number of arguments20
PMIX_ERR_INVALID_ARGS Invalid arguments21
PMIX_ERR_INVALID_NUM_PARSED Invalid number parsed22
PMIX_ERR_INVALID_KEYVALP Invalid key/value pair23
PMIX_ERR_INVALID_SIZE Invalid size24
PMIX_ERR_INVALID_NAMESPACE Invalid namespace25
PMIX_ERR_SERVER_NOT_AVAIL Server is not available26
PMIX_ERR_NOT_FOUND Not found27
PMIX_ERR_NOT_SUPPORTED Not supported28
PMIX_ERR_NOT_IMPLEMENTED Not implemented29
PMIX_ERR_COMM_FAILURE Communication failure30
PMIX_ERR_UNPACK_READ_PAST_END_OF_BUFFER Unpacking past the end of the buffer31

provided32
PMIX_ERR_LOST_CONNECTION_TO_SERVER Lost connection to server33
PMIX_ERR_LOST_PEER_CONNECTION Lost connection to peer34
PMIX_ERR_LOST_CONNECTION_TO_CLIENT Lost connection to client35
PMIX_QUERY_PARTIAL_SUCCESS Query partial success (used by query system)36
PMIX_NOTIFY_ALLOC_COMPLETE Notify that allocation is complete37
PMIX_JCTRL_CHECKPOINT Job control: Monitored by PMIx client to trigger checkpoint38

operation39
PMIX_JCTRL_CHECKPOINT_COMPLETE Job control: Sent by PMIx client and monitored40

by PMIx server to notify that requested checkpoint operation has completed.41
PMIX_JCTRL_PREEMPT_ALERT Job control: Monitored by PMIx client to detect an RM42

intending to preempt the job.43

20 PMIx Standard – Version 3.0 – December 2018

PMIX_MONITOR_HEARTBEAT_ALERT Job monitoring: Heartbeat alert1
PMIX_MONITOR_FILE_ALERT Job monitoring: File alert2
PMIX_PROC_TERMINATED Process terminated - can be either normal or abnormal3

termination4
PMIX_ERR_INVALID_TERMINATION Process terminated without calling5

PMIx_Finalize , or was a member of an assemblage formed via PMIx_Connect and6
terminated or called PMIx_Finalize without first calling PMIx_Disconnect (or its7
non-blocking form) from that assemblage.8

3.1.1.2 Operational Error Constants9

PMIX_ERR_EVENT_REGISTRATION Error in event registration10
PMIX_ERR_JOB_TERMINATED Error job terminated11
PMIX_ERR_UPDATE_ENDPOINTS Error updating endpoints12
PMIX_MODEL_DECLARED Model declared13
PMIX_GDS_ACTION_COMPLETE The global data storage (GDS) action has completed14
PMIX_ERR_INVALID_OPERATION The requested operation is supported by the15

implementation and host environment, but fails to meet a requirement (e.g., requesting to16
disconnect from processes without first connecting to them).17

PMIX_PROC_HAS_CONNECTED A tool or client has connected to the PMIx server18
PMIX_CONNECT_REQUESTED Connection has been requested by a PMIx-based tool19
PMIX_MODEL_RESOURCES Resource usage by a programming model has changed20
PMIX_OPENMP_PARALLEL_ENTERED An OpenMP parallel code region has been entered21
PMIX_OPENMP_PARALLEL_EXITED An OpenMP parallel code region has completed22
PMIX_LAUNCH_DIRECTIVE Launcher directives have been received from a PMIx-enabled23

tool24
PMIX_LAUNCHER_READY Application launcher (e.g., mpiexec) is ready to receive directives25

from a PMIx-enabled tool26
PMIX_OPERATION_IN_PROGRESS A requested operation is already in proigress27
PMIX_OPERATION_SUCCEEDED The requested operation was performed atomically - no28

callback function will be executed29

3.1.1.3 System error constants30

PMIX_ERR_NODE_DOWN Node down31
PMIX_ERR_NODE_OFFLINE Node is marked as offline32

3.1.1.4 Event handler error constants33

PMIX_EVENT_NO_ACTION_TAKEN Event handler: No action taken34
PMIX_EVENT_PARTIAL_ACTION_TAKEN Event handler: Partial action taken35
PMIX_EVENT_ACTION_DEFERRED Event handler: Action deferred36
PMIX_EVENT_ACTION_COMPLETE Event handler: Action complete37

CHAPTER 3. DATA STRUCTURES AND TYPES 21

3.1.1.5 User-Defined Error Constants1

PMIx establishes an error code boundary for constants defined in the PMIx standard. Negative2
values larger than this (and any positive values greater than zero) are guaranteed not to conflict with3
PMIx values.4

PMIX_EXTERNAL_ERR_BASE A starting point for user-level defined error constants.5
Negative values lower than this are guaranteed not to conflict with PMIx values. Definitions6
should always be based on the PMIX_EXTERNAL_ERR_BASE constant and not a specific7
value as the value of the constant may change.8

3.2 Data Types9

This section defines various data types used by the PMIx APIs. The version of the standard in10
which a particular data type was introduced is shown in the margin.11

3.2.1 Key Structure12

The pmix_key_t structure is a statically defined character array of length PMIX_MAX_KEYLEN13
+1, thus supporting keys of maximum length PMIX_MAX_KEYLEN while preserving space for a14
mandatory NULL terminator.15

PMIx v2.0 C
typedef char pmix_key_t[PMIX_MAX_KEYLEN+1];16

C

Characters in the key must be standard alphanumeric values supported by common utilities such as17
strcmp.18

Advice to users

References to keys in PMIx v1 rwere defined simply as an array of characters of size19
PMIX_MAX_KEYLEN+1. The pmix_key_t type definition was introduced in version 2 of the20
standard. The two definitions are code-compatible and thus do not represent a break in backward21
compatibility.22

Passing a pmix_key_t value to the standard sizeof utility can result in compiler warnings of23
incorrect returned value. Users are advised to avoid using sizeof(pmix_key_t) and instead rely on24
the PMIX_MAX_KEYLEN constant.25

22 PMIx Standard – Version 3.0 – December 2018

3.2.1.1 Key support macro1

Compare the key in a pmix_info_t to a given value2

PMIx v3.0 C
PMIX_CHECK_KEY(a, b)3

C

IN a4
Pointer to the structure whose key is to be checked (pointer to pmix_info_t)5

IN b6
String value to be compared against (char*)7

Returns true if the key matches the given value8

3.2.2 Namespace Structure9

The pmix_nspace_t structure is a statically defined character array of length10
PMIX_MAX_NSLEN +1, thus supporting namespaces of maximum length PMIX_MAX_NSLEN11
while preserving space for a mandatory NULL terminator.12

PMIx v2.0 C
typedef char pmix_nspace_t[PMIX_MAX_NSLEN+1];13

C

Characters in the namespace must be standard alphanumeric values supported by common utilities14
such as strcmp.15

Advice to users

References to namespace values in PMIx v1 rwere defined simply as an array of characters of size16
PMIX_MAX_NSLEN+1. The pmix_nspace_t type definition was introduced in version 2 of the17
standard. The two definitions are code-compatible and thus do not represent a break in backward18
compatibility.19

Passing a pmix_nspace_t value to the standard sizeof utility can result in compiler warnings of20
incorrect returned value. Users are advised to avoid using sizeof(pmix_nspace_t) and instead rely21
on the PMIX_MAX_NSLEN constant.22

CHAPTER 3. DATA STRUCTURES AND TYPES 23

3.2.2.1 Namespace support macro1

Compare the string in a pmix_nspace_t to a given value2

PMIx v3.0 C
PMIX_CHECK_NSPACE(a, b)3

C
IN a4

Pointer to the structure whose value is to be checked (pointer to pmix_nspace_t)5
IN b6

String value to be compared against (char*)7

Returns true if the namespace matches the given value8

3.2.3 Rank Structure9

The pmix_rank_t structure is a uint32_t type for rank values.10

PMIx v1.0 C
typedef uint32_t pmix_rank_t;11

C
The following constants can be used to set a variable of the type pmix_rank_t . All definitions12
were introduced in version 1 of the standard unless otherwise marked. Valid rank values start at13
zero.14

PMIX_RANK_UNDEF A value to request job-level data where the information itself is not15
associated with any specific rank, or when passing a pmix_proc_t identifier to an16
operation that only references the namespace field of that structure.17

PMIX_RANK_WILDCARD A value to indicate that the user wants the data for the given key18
from every rank that posted that key.19

PMIx v2.0 PMIX_RANK_LOCAL_NODE Special rank value used to define groups of ranks for use in20
collectives. This constant defines the group of all ranks on a local node.21

3.2.4 Process Structure22

The pmix_proc_t structure is used to identify a single process in the PMIx universe. It contains23
a reference to the namespace and the pmix_rank_t within that namespace.24

PMIx v1.0 C
typedef struct pmix_proc {25

pmix_nspace_t nspace;26
pmix_rank_t rank;27

} pmix_proc_t;28

C

24 PMIx Standard – Version 3.0 – December 2018

3.2.5 Process structure support macros1

The following macros are provided to support the pmix_proc_t structure.2

3.2.5.1 Initialize the pmix_proc_t structure3

PMIX_PROC_CONSTRUCT4

Initialize the pmix_proc_t fields5

PMIx v1.0 C
PMIX_PROC_CONSTRUCT(m)6

C
IN m7

Pointer to the structure to be initialized (pointer to pmix_proc_t)8

3.2.5.2 Destruct the pmix_proc_t structure9

There is nothing to release here as the fields in pmix_proc_t are all declared static. However,10
the macro is provided for symmetry in the code and for future-proofing should some allocated field11
be included some day.12

3.2.5.3 Create a pmix_proc_t array13

Allocate and initialize an array of pmix_proc_t structures14

PMIx v1.0 C
PMIX_PROC_CREATE(m, n)15

C
INOUT m16

Address where the pointer to the array of pmix_proc_t structures shall be stored (handle)17
IN n18

Number of structures to be allocated (size_t)19

3.2.5.4 Free a pmix_proc_t array20

Release an array of pmix_proc_t structures21

PMIx v1.0 C
PMIX_PROC_FREE(m, n)22

C
IN m23

Pointer to the array of pmix_proc_t structures (handle)24
IN n25

Number of structures in the array (size_t)26

CHAPTER 3. DATA STRUCTURES AND TYPES 25

3.2.5.5 Load a pmix_proc_t structure1

Load values into a pmix_proc_t2

PMIx v2.0 C
PMIX_PROC_LOAD(m, n, r)3

C

IN m4
Pointer to the structure to be loaded (pointer to pmix_proc_t)5

IN n6
Namespace to be loaded (pmix_nspace_t)7

IN r8
Rank to be assigned (pmix_rank_t)9

3.2.5.6 Compare identifiers10

Compare two pmix_proc_t identifiers11

PMIx v3.0 C
PMIX_CHECK_PROCID(a, b)12

C

IN a13
Pointer to a structure whose ID is to be compared (pointer to pmix_proc_t)14

IN b15
Pointer to a structure whose ID is to be compared (pointer to pmix_proc_t)16

Returns true if the two structures contain matching namespaces and:17

• the ranks are the same value18

• one of the ranks is PMIX_RANK_WILDCARD19

3.2.6 Process State Structure20

PMIx v2.0 The pmix_proc_state_t structure is a uint8_t type for process state values. The following21
constants can be used to set a variable of the type pmix_proc_state_t . All values were22
originally defined in version 2 of the standard unless otherwise marked.23

Advice to users

The fine-grained nature of the following constants may exceed the ability of an RM to provide24
updated process state values during the process lifetime. This is particularly true of states in the25
launch process, and for short-lived processes.26

26 PMIx Standard – Version 3.0 – December 2018

PMIX_PROC_STATE_UNDEF Undefined process state1
PMIX_PROC_STATE_PREPPED Process is ready to be launched2
PMIX_PROC_STATE_LAUNCH_UNDERWAY Process launch is underway3
PMIX_PROC_STATE_RESTART Process is ready for restart4
PMIX_PROC_STATE_TERMINATE Process is marked for termination5
PMIX_PROC_STATE_RUNNING Process has been locally fork’ed by the RM6
PMIX_PROC_STATE_CONNECTED Process has connected to PMIx server7
PMIX_PROC_STATE_UNTERMINATED Define a “boundary” between this constant and8

PMIX_PROC_STATE_CONNECTED so users can easily and quickly determine if a process9
is still running or not. Any value less than this constant means that the process has not10
terminated.11

PMIX_PROC_STATE_TERMINATED Process has terminated and is no longer running12
PMIX_PROC_STATE_ERROR Define a boundary so users can easily and quickly determine if13

a process abnormally terminated. Any value above this constant means that the process has14
terminated abnormally.15

PMIX_PROC_STATE_KILLED_BY_CMD Process was killed by a command16
PMIX_PROC_STATE_ABORTED Process was aborted by a call to PMIx_Abort17
PMIX_PROC_STATE_FAILED_TO_START Process failed to start18
PMIX_PROC_STATE_ABORTED_BY_SIG Process aborted by a signal19
PMIX_PROC_STATE_TERM_WO_SYNC Process exited without calling PMIx_Finalize20
PMIX_PROC_STATE_COMM_FAILED Process communication has failed21
PMIX_PROC_STATE_CALLED_ABORT Process called PMIx_Abort22
PMIX_PROC_STATE_MIGRATING Process failed and is waiting for resources before23

restarting24
PMIX_PROC_STATE_CANNOT_RESTART Process failed and cannot be restarted25
PMIX_PROC_STATE_TERM_NON_ZERO Process exited with a non-zero status26
PMIX_PROC_STATE_FAILED_TO_LAUNCH Unable to launch process27

3.2.7 Process Information Structure28

The pmix_proc_info_t structure defines a set of information about a specific process29
including it’s name, location, and state.30

PMIx v2.0

CHAPTER 3. DATA STRUCTURES AND TYPES 27

C
typedef struct pmix_proc_info {1

/** Process structure */2
pmix_proc_t proc;3
/** Hostname where process resides */4
char *hostname;5
/** Name of the executable */6
char *executable_name;7
/** Process ID on the host */8
pid_t pid;9
/** Exit code of the process. Default: 0 */10
int exit_code;11
/** Current state of the process */12
pmix_proc_state_t state;13

} pmix_proc_info_t;14

C

3.2.8 Process Information Structure support macros15

The following macros are provided to support the pmix_proc_info_t structure.16

3.2.8.1 Initialize the pmix_proc_info_t structure17

Initialize the pmix_proc_info_t fields18

PMIx v2.0 C
PMIX_PROC_INFO_CONSTRUCT(m)19

C

IN m20
Pointer to the structure to be initialized (pointer to pmix_proc_info_t)21

3.2.8.2 Destruct the pmix_proc_info_t structure22

Destruct the pmix_proc_info_t fields23

PMIx v2.0 C
PMIX_PROC_INFO_DESTRUCT(m)24

C

IN m25
Pointer to the structure to be destructed (pointer to pmix_proc_info_t)26

28 PMIx Standard – Version 3.0 – December 2018

3.2.8.3 Create a pmix_proc_info_t array1

Allocate and initialize a pmix_proc_info_t array2

PMIx v2.0 C
PMIX_PROC_INFO_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_proc_info_t structures shall be stored5
(handle)6

IN n7
Number of structures to be allocated (size_t)8

3.2.8.4 Free a pmix_proc_info_t array9

Release an array of pmix_proc_info_t structures10

PMIx v2.0 C
PMIX_PROC_INFO_FREE(m, n)11

C

IN m12
Pointer to the array of pmix_proc_info_t structures (handle)13

IN n14
Number of structures in the array (size_t)15

3.2.9 Scope of Put Data16

PMIx v1.0 The pmix_scope_t structure is a uint8_t type that defines the scope for data passed to17
PMIx_Put . The following constants can be used to set a variable of the type pmix_scope_t .18
All definitions were introduced in version 1 of the standard unless otherwise marked.19

Specific implementations may support different scope values, but all implementations must support20
at least PMIX_GLOBAL . If a scope value is not supported, then the PMIx_Put call must return21
PMIX_ERR_NOT_SUPPORTED .22

PMIX_SCOPE_UNDEF Undefined scope23
PMIX_LOCAL The data is intended only for other application processes on the same node.24

Data marked in this way will not be included in data packages sent to remote requestors —25
i.e., it is only available to processes on the local node.26

PMIX_REMOTE The data is intended solely for applications processes on remote nodes. Data27
marked in this way will not be shared with other processes on the same node — i.e., it is only28
available to processes on remote nodes.29

CHAPTER 3. DATA STRUCTURES AND TYPES 29

PMIX_GLOBAL The data is to be shared with all other requesting processes, regardless of1
location.2

PMIx v2.0 PMIX_INTERNAL The data is intended solely for this process and is not shared with other3
processes.4

3.2.10 Range of Published Data5

PMIx v1.0 The pmix_data_range_t structure is a uint8_t type that defines a range for data published6
via functions other than PMIx_Put - e.g., the PMIx_Publish API. The following constants7
can be used to set a variable of the type pmix_data_range_t . Several values were initially8
defined in version 1 of the standard but subsequently renamed and other values added in version 2.9
Thus, all values shown below are as they were defined in version 2 except where noted.10

PMIX_RANGE_UNDEF Undefined range11
PMIX_RANGE_RM Data is intended for the host resource manager.12
PMIX_RANGE_LOCAL Data is only available to processes on the local node.13
PMIX_RANGE_NAMESPACE Data is only available to processes in the same namespace.14
PMIX_RANGE_SESSION Data is only available to all processes in the session.15
PMIX_RANGE_GLOBAL Data is available to all processes.16
PMIX_RANGE_CUSTOM Range is specified in the pmix_info_t associated with this call.17
PMIX_RANGE_PROC_LOCAL Data is only available to this process.18
PMIX_RANGE_INVALID Invalid value19

Advice to users

The names of the pmix_data_range_t values changed between version 1 and version 2 of the20
standard, thereby breaking backward compatibility21

3.2.11 Data Persistence Structure22

PMIx v1.0 The pmix_persistence_t structure is a uint8_t type that defines the policy for data23
published by clients via the PMIx_Publish API. The following constants can be used to set a24
variable of the type pmix_persistence_t . All definitions were introduced in version 1 of the25
standard unless otherwise marked.26

PMIX_PERSIST_INDEF Retain data until specifically deleted.27
PMIX_PERSIST_FIRST_READ Retain data until the first access, then the data is deleted.28
PMIX_PERSIST_PROC Retain data until the publishing process terminates.29
PMIX_PERSIST_APP Retain data until the application terminates.30
PMIX_PERSIST_SESSION Retain data until the session/allocation terminates.31
PMIX_PERSIST_INVALID Invalid value32

30 PMIx Standard – Version 3.0 – December 2018

3.2.12 Value Structure1

The pmix_value_t structure is used to represent the value passed to PMIx_Put and retrieved2
by PMIx_Get , as well as many of the other PMIx functions.3

A collection of values may be specified under a single key by passing a pmix_value_t4
containing an array of type pmix_data_array_t , with each array element containing its own5
object. All members shown below were introduced in version 1 of the standard unless otherwise6
marked.7

PMIx v1.0 C
typedef struct pmix_value {8

pmix_data_type_t type;9
union {10

bool flag;11
uint8_t byte;12
char *string;13
size_t size;14
pid_t pid;15
int integer;16
int8_t int8;17
int16_t int16;18
int32_t int32;19
int64_t int64;20
unsigned int uint;21
uint8_t uint8;22
uint16_t uint16;23
uint32_t uint32;24
uint64_t uint64;25
float fval;26
double dval;27
struct timeval tv;28
time_t time; // version 2.029
pmix_status_t status; // version 2.030
pmix_rank_t rank; // version 2.031
pmix_proc_t *proc; // version 2.032
pmix_byte_object_t bo;33
pmix_persistence_t persist; // version 2.034
pmix_scope_t scope; // version 2.035
pmix_data_range_t range; // version 2.036
pmix_proc_state_t state; // version 2.037
pmix_proc_info_t *pinfo; // version 2.038
pmix_data_array_t *darray; // version 2.039
void *ptr; // version 2.040

CHAPTER 3. DATA STRUCTURES AND TYPES 31

pmix_alloc_directive_t adir; // version 2.01
} data;2

} pmix_value_t;3

C

3.2.13 Value structure support macros4

The following macros are provided to support the pmix_value_t structure.5

3.2.13.1 Initialize the pmix_value_t structure6

Initialize the pmix_value_t fields7

PMIx v1.0 C
PMIX_VALUE_CONSTRUCT(m)8

C

IN m9
Pointer to the structure to be initialized (pointer to pmix_value_t)10

3.2.13.2 Destruct the pmix_value_t structure11

Destruct the pmix_value_t fields12

PMIx v1.0 C
PMIX_VALUE_DESTRUCT(m)13

C

IN m14
Pointer to the structure to be destructed (pointer to pmix_value_t)15

3.2.13.3 Create a pmix_value_t array16

Allocate and initialize an array of pmix_value_t structures17

PMIx v1.0 C
PMIX_VALUE_CREATE(m, n)18

C

INOUT m19
Address where the pointer to the array of pmix_value_t structures shall be stored20
(handle)21

IN n22
Number of structures to be allocated (size_t)23

32 PMIx Standard – Version 3.0 – December 2018

3.2.13.4 Free a pmix_value_t array1

Release an array of pmix_value_t structures2

PMIx v1.0 C
PMIX_VALUE_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_value_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

3.2.13.5 Load a value structure8

Summary9

Load data into a pmix_value_t structure.10

PMIx v2.0 C
PMIX_VALUE_LOAD(v, d, t);11

C

IN v12
The pmix_value_t into which the data is to be loaded (pointer to pmix_value_t)13

IN d14
Pointer to the data value to be loaded (handle)15

IN t16
Type of the provided data value (pmix_data_type_t)17

Description18

This macro simplifies the loading of data into a pmix_value_t by correctly assigning values to19
the structure’s fields.20

Advice to users

The data will be copied into the pmix_value_t - thus, any data stored in the source value can be21
modified or free’d without affecting the copied data once the macro has completed.22

CHAPTER 3. DATA STRUCTURES AND TYPES 33

3.2.13.6 Transfer data between pmix_value_t structures1

Summary2

Transfer the data value between two pmix_value_t structures.3

PMIx v2.0 C
PMIX_VALUE_XFER(r, d, s);4

C
OUT r5

Status code indicating success or failure of the transfer (pmix_status_t)6
IN d7

Pointer to the pmix_value_t destination (handle)8
IN s9

Pointer to the pmix_value_t source (handle)10

Description11

This macro simplifies the transfer of data between two pmix_value_t structures, ensuring that12
all fields are properly copied.13

Advice to users
The data will be copied into the destination pmix_value_t - thus, any data stored in the source14
value can be modified or free’d without affecting the copied data once the macro has completed.15

3.2.13.7 Retrieve a numerical value from a pmix_value_t16

Retrieve a numerical value from a pmix_value_t structure17

PMIx v3.0 C
PMIX_VALUE_GET_NUMBER(s, m, n, t)18

C
OUT s19

Status code for the request (pmix_status_t)20
IN m21

Pointer to the pmix_value_t structure (handle)22
OUT n23

Variable to be set to the value (match expected type)24
IN t25

Type of number expected in m (pmix_data_type_t)26

Sets the provided variable equal to the numerical value contained in the given pmix_value_t ,27
returning success if the data type of the value matches the expected type and28
PMIX_ERR_BAD_PARAM if it doesn’t29

34 PMIx Standard – Version 3.0 – December 2018

3.2.14 Info and Info Array Structures1

The pmix_info_t structure defines a key/value pair with associated directive. All fields were2
defined in version 1.0 unless otherwise marked.3

PMIx v1.0 C
typedef struct pmix_info_t {4

pmix_key_t key;5
pmix_info_directives_t flags; // version 2.06
pmix_value_t value;7

} pmix_info_t;8

C

3.2.15 Info structure support macros9

The following macros are provided to support the pmix_info_t structure.10

3.2.15.1 Initialize the pmix_info_t structure11

Initialize the pmix_info_t fields12

PMIx v1.0 C
PMIX_INFO_CONSTRUCT(m)13

C

IN m14
Pointer to the structure to be initialized (pointer to pmix_info_t)15

3.2.15.2 Destruct the pmix_info_t structure16

Destruct the pmix_info_t fields17

PMIx v1.0 C
PMIX_INFO_DESTRUCT(m)18

C

IN m19
Pointer to the structure to be destructed (pointer to pmix_info_t)20

CHAPTER 3. DATA STRUCTURES AND TYPES 35

3.2.15.3 Create a pmix_info_t array1

Allocate and initialize an array of pmix_info_t structures2

PMIx v1.0 C
PMIX_INFO_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_info_t structures shall be stored (handle)5

IN n6
Number of structures to be allocated (size_t)7

3.2.15.4 Free a pmix_info_t array8

Release an array of pmix_info_t structures9

PMIx v1.0 C
PMIX_INFO_FREE(m, n)10

C

IN m11
Pointer to the array of pmix_info_t structures (handle)12

IN n13
Number of structures in the array (size_t)14

3.2.15.5 Load key and value data into a pmix_info_t15

PMIx v1.0 C
PMIX_INFO_LOAD(v, k, d, t);16

C

IN v17
Pointer to the pmix_info_t into which the key and data are to be loaded (pointer to18
pmix_info_t)19

IN k20
String key to be loaded - must be less than or equal to PMIX_MAX_KEYLEN in length21
(handle)22

IN d23
Pointer to the data value to be loaded (handle)24

IN t25
Type of the provided data value (pmix_data_type_t)26

This macro simplifies the loading of key and data into a pmix_info_t by correctly assigning27
values to the structure’s fields.28

36 PMIx Standard – Version 3.0 – December 2018

Advice to users

Both key and data will be copied into the pmix_info_t - thus, the key and any data stored in the1
source value can be modified or free’d without affecting the copied data once the macro has2
completed.3

3.2.15.6 Copy data between pmix_info_t structures4

Copy all data (including key, value, and directives) between two pmix_info_t structures.5

PMIx v2.0 C
PMIX_INFO_XFER(d, s);6

C

IN d7
Pointer to the destination pmix_info_t (pointer to pmix_info_t)8

IN s9
Pointer to the source pmix_info_t (pointer to pmix_info_t)10

This macro simplifies the transfer of data between two pmix_info_t structures.11

Advice to users

All data (including key, value, and directives) will be copied into the destination pmix_info_t -12
thus, the source pmix_info_t may be free’d without affecting the copied data once the macro13
has completed.14

3.2.15.7 Test a boolean pmix_info_t15

A special macro for checking if a boolean pmix_info_t is true16

PMIx v2.0 C
PMIX_INFO_TRUE(m)17

C

IN m18
Pointer to a pmix_info_t structure (handle)19

A pmix_info_t structure is considered to be of type PMIX_BOOL and value true if:20

• the structure reports a type of PMIX_UNDEF , or21

• the structure reports a type of PMIX_BOOL and the data flag is true22

CHAPTER 3. DATA STRUCTURES AND TYPES 37

3.2.16 Info Type Directives1

PMIx v2.0 The pmix_info_directives_t structure is a uint32_t type that defines the behavior of2
command directives via pmix_info_t arrays. By default, the values in the pmix_info_t3
array passed to a PMIx are optional.4

Advice to users

A PMIx implementation or PMIx-enabled RM may ignore any pmix_info_t value passed to a5
PMIx API if it is not explicitly marked as PMIX_INFO_REQD . This is because the values6
specified default to optional, meaning they can be ignored. This may lead to unexpected behavior if7
the user is relying on the behavior specified by the pmix_info_t value. If the user relies on the8
behavior defined by the pmix_info_t then they must set the PMIX_INFO_REQD flag using the9
PMIX_INFO_REQUIRED macro.10

Advice to PMIx library implementers

The top 16-bits of the pmix_info_directives_t are reserved for internal use by PMIx11
library implementers - the PMIx standard will not specify their intent, leaving them for customized12
use by implementers. Implementers are advised to use the provided PMIX_INFO_IS_REQUIRED13
macro for testing this flag, and must return PMIX_ERR_NOT_SUPPORTED as soon as possible to14
the caller if the required behavior is not supported.15

The following constants were introduced in version 2.0 (unless otherwise marked) and can be used16
to set a variable of the type pmix_info_directives_t .17

PMIX_INFO_REQD The behavior defined in the pmix_info_t array is required, and not18
optional. This is a bit-mask value.19

Advice to PMIx server hosts

Host environments are advised to use the provided PMIX_INFO_IS_REQUIRED macro for20
testing this flag and must return PMIX_ERR_NOT_SUPPORTED as soon as possible to the caller21
if the required behavior is not supported.22

3.2.17 Info Directive support macros23

The following macros are provided to support the setting and testing of pmix_info_t directives.24

38 PMIx Standard – Version 3.0 – December 2018

3.2.17.1 Mark an info structure as required1

Summary2

Set the PMIX_INFO_REQD flag in a pmix_info_t structure.3

PMIx v2.0 C
PMIX_INFO_REQUIRED(info);4

C

IN info5
Pointer to the pmix_info_t (pointer to pmix_info_t)6

This macro simplifies the setting of the PMIX_INFO_REQD flag in pmix_info_t structures.7

3.2.17.2 Mark an info structure as optional8

Summary9

Unsets the PMIX_INFO_REQD flag in a pmix_info_t structure.10

PMIx v3.0 C
PMIX_INFO_OPTIONAL(info);11

C

IN info12
Pointer to the pmix_info_t (pointer to pmix_info_t)13

This macro simplifies marking a pmix_info_t structure as optional.14

3.2.17.3 Test an info structure for required directive15

Summary16

Test the PMIX_INFO_REQD flag in a pmix_info_t structure, returning true if the flag is set.17

PMIx v2.0 C
PMIX_INFO_IS_REQUIRED(info);18

C

IN info19
Pointer to the pmix_info_t (pointer to pmix_info_t)20

This macro simplifies the testing of the required flag in pmix_info_t structures.21

CHAPTER 3. DATA STRUCTURES AND TYPES 39

3.2.17.4 Test an info structure for optional directive1

Summary2

Test a pmix_info_t structure, returning true if the structure is optional.3

PMIx v3.0 C
PMIX_INFO_IS_OPTIONAL(info);4

C
IN info5

Pointer to the pmix_info_t (pointer to pmix_info_t)6

This macro simplifies the testing of the required flag in pmix_info_t structures.7

3.2.18 Job Allocation Directives8

PMIx v2.0 The pmix_alloc_directive_t structure is a uint8_t type that defines the behavior of9
allocation requests. The following constants can be used to set a variable of the type10
pmix_alloc_directive_t . All definitions were introduced in version 2 of the standard11
unless otherwise marked.12

PMIX_ALLOC_NEW A new allocation is being requested. The resulting allocation will be13
disjoint (i.e., not connected in a job sense) from the requesting allocation.14

PMIX_ALLOC_EXTEND Extend the existing allocation, either in time or as additional15
resources.16

PMIX_ALLOC_RELEASE Release part of the existing allocation. Attributes in the17
accompanying pmix_info_t array may be used to specify permanent release of the18
identified resources, or “lending” of those resources for some period of time.19

PMIX_ALLOC_REAQUIRE Reacquire resources that were previously “lent” back to the20
scheduler.21

PMIX_ALLOC_EXTERNAL A value boundary above which implementers are free to define22
their own directive values.23

3.2.19 IO Forwarding Channels24

PMIx v3.0 The pmix_iof_channel_t structure is a uint16_t type that defines a set of bit-mask flags25
for specifying IO forwarding channels. These can be bitwise OR’d together to reference multiple26
channels.27

PMIX_FWD_NO_CHANNELS Forward no channels28
PMIX_FWD_STDIN_CHANNEL Forward stdin29
PMIX_FWD_STDOUT_CHANNEL Forward stdout30
PMIX_FWD_STDERR_CHANNEL Forward stderr31
PMIX_FWD_STDDIAG_CHANNEL Forward stddiag, if available32
PMIX_FWD_ALL_CHANNELS Forward all available channels33

40 PMIx Standard – Version 3.0 – December 2018

3.2.20 Environmental Variable Structure1

PMIx v3.0 Define a structure for specifying environment variable modifications. Standard environment2
variables (e.g., PATH, LD_LIBRARY_PATH, and LD_PRELOAD) take multiple arguments3
separated by delimiters. Unfortunately, the delimiters depend upon the variable itself - some use4
semi-colons, some colons, etc. Thus, the operation requires not only the name of the variable to be5
modified and the value to be inserted, but also the separator to be used when composing the6
aggregate value.7

C
typedef struct8

char *envar;9
char *value;10
char separator;11

pmix_envar_t;12

C

3.2.21 Environmental variable support macros13

The following macros are provided to support the pmix_envar_t structure.14

3.2.21.1 Initialize the pmix_envar_t structure15

Initialize the pmix_envar_t fields16

PMIx v3.0 C
PMIX_ENVAR_CONSTRUCT(m)17

C

IN m18
Pointer to the structure to be initialized (pointer to pmix_envar_t)19

3.2.21.2 Destruct the pmix_envar_t structure20

Clear the pmix_envar_t fields21

PMIx v3.0 C
PMIX_ENVAR_DESTRUCT(m)22

C

IN m23
Pointer to the structure to be destructed (pointer to pmix_envar_t)24

CHAPTER 3. DATA STRUCTURES AND TYPES 41

3.2.21.3 Create a pmix_envar_t array1

Allocate and initialize an array of pmix_envar_t structures2

PMIx v3.0 C
PMIX_ENVAR_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_envar_t structures shall be stored5
(handle)6

IN n7
Number of structures to be allocated (size_t)8

3.2.21.4 Free a pmix_envar_t array9

Release an array of pmix_envar_t structures10

PMIx v3.0 C
PMIX_ENVAR_FREE(m, n)11

C

IN m12
Pointer to the array of pmix_envar_t structures (handle)13

IN n14
Number of structures in the array (size_t)15

3.2.21.5 Load a pmix_envar_t structure16

Load values into a pmix_envar_t17

PMIx v2.0 C
PMIX_ENVAR_LOAD(m, e, v, s)18

C

IN m19
Pointer to the structure to be loaded (pointer to pmix_envar_t)20

IN e21
Environmental variable name (char*)22

IN v23
Value of variable (char*)24

IN v25
Separator character (char)26

42 PMIx Standard – Version 3.0 – December 2018

3.2.22 Lookup Returned Data Structure1

The pmix_pdata_t structure is used by PMIx_Lookup to describe the data being accessed.2

PMIx v1.0 C
typedef struct pmix_pdata {3

pmix_proc_t proc;4
pmix_key_t key;5
pmix_value_t value;6

} pmix_pdata_t;7

C

3.2.23 Lookup data structure support macros8

The following macros are provided to support the pmix_pdata_t structure.9

3.2.23.1 Initialize the pmix_pdata_t structure10

Initialize the pmix_pdata_t fields11

PMIx v1.0 C
PMIX_PDATA_CONSTRUCT(m)12

C

IN m13
Pointer to the structure to be initialized (pointer to pmix_pdata_t)14

3.2.23.2 Destruct the pmix_pdata_t structure15

Destruct the pmix_pdata_t fields16

PMIx v1.0 C
PMIX_PDATA_DESTRUCT(m)17

C

IN m18
Pointer to the structure to be destructed (pointer to pmix_pdata_t)19

CHAPTER 3. DATA STRUCTURES AND TYPES 43

3.2.23.3 Create a pmix_pdata_t array1

Allocate and initialize an array of pmix_pdata_t structures2

PMIx v1.0 C
PMIX_PDATA_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_pdata_t structures shall be stored5
(handle)6

IN n7
Number of structures to be allocated (size_t)8

3.2.23.4 Free a pmix_pdata_t array9

Release an array of pmix_pdata_t structures10

PMIx v1.0 C
PMIX_PDATA_FREE(m, n)11

C

IN m12
Pointer to the array of pmix_pdata_t structures (handle)13

IN n14
Number of structures in the array (size_t)15

3.2.23.5 Load a lookup data structure16

Summary17

Load key, process identifier, and data value into a pmix_pdata_t structure.18

PMIx v1.0 C
PMIX_PDATA_LOAD(m, p, k, d, t);19

C

IN m20
Pointer to the pmix_pdata_t structure into which the key and data are to be loaded21
(pointer to pmix_pdata_t)22

IN p23
Pointer to the pmix_proc_t structure containing the identifier of the process being24
referenced (pointer to pmix_proc_t)25

IN k26
String key to be loaded - must be less than or equal to PMIX_MAX_KEYLEN in length27
(handle)28

44 PMIx Standard – Version 3.0 – December 2018

IN d1
Pointer to the data value to be loaded (handle)2

IN t3
Type of the provided data value (pmix_data_type_t)4

This macro simplifies the loading of key, process identifier, and data into a pmix_proc_t by5
correctly assigning values to the structure’s fields.6

Advice to users

Key, process identifier, and data will all be copied into the pmix_pdata_t - thus, the source7
information can be modified or free’d without affecting the copied data once the macro has8
completed.9

3.2.23.6 Transfer a lookup data structure10

Summary11

Transfer key, process identifier, and data value between two pmix_pdata_t structures.12

PMIx v2.0 C
PMIX_PDATA_XFER(d, s);13

C

IN d14
Pointer to the destination pmix_pdata_t (pointer to pmix_pdata_t)15

IN s16
Pointer to the source pmix_pdata_t (pointer to pmix_pdata_t)17

This macro simplifies the transfer of key and data between two pmix_pdata_t structures.18

Advice to users

Key, process identifier, and data will all be copied into the destination pmix_pdata_t - thus, the19
source pmix_pdata_t may free’d without affecting the copied data once the macro has20
completed.21

CHAPTER 3. DATA STRUCTURES AND TYPES 45

3.2.24 Application Structure1

The pmix_app_t structure describes the application context for the PMIx_Spawn and2
PMIx_Spawn_nb operations.3

PMIx v1.0 C
typedef struct pmix_app {4

/** Executable */5
char *cmd;6
/** Argument set, NULL terminated */7
char **argv;8
/** Environment set, NULL terminated */9
char **env;10
/** Current working directory */11
char *cwd;12
/** Maximum processes with this profile */13
int maxprocs;14
/** Array of info keys describing this application*/15
pmix_info_t *info;16
/** Number of info keys in ’info’ array */17
size_t ninfo;18

} pmix_app_t;19

C

3.2.25 App structure support macros20

The following macros are provided to support the pmix_app_t structure.21

3.2.25.1 Initialize the pmix_app_t structure22

Initialize the pmix_app_t fields23

PMIx v1.0 C
PMIX_APP_CONSTRUCT(m)24

C

IN m25
Pointer to the structure to be initialized (pointer to pmix_app_t)26

46 PMIx Standard – Version 3.0 – December 2018

3.2.25.2 Destruct the pmix_app_t structure1

Destruct the pmix_app_t fields2

PMIx v1.0 C
PMIX_APP_DESTRUCT(m)3

C

IN m4
Pointer to the structure to be destructed (pointer to pmix_app_t)5

3.2.25.3 Create a pmix_app_t array6

Allocate and initialize an array of pmix_app_t structures7

PMIx v1.0 C
PMIX_APP_CREATE(m, n)8

C

INOUT m9
Address where the pointer to the array of pmix_app_t structures shall be stored (handle)10

IN n11
Number of structures to be allocated (size_t)12

3.2.25.4 Free a pmix_app_t array13

Release an array of pmix_app_t structures14

PMIx v1.0 C
PMIX_APP_FREE(m, n)15

C

IN m16
Pointer to the array of pmix_app_t structures (handle)17

IN n18
Number of structures in the array (size_t)19

CHAPTER 3. DATA STRUCTURES AND TYPES 47

3.2.26 Query Structure1

The pmix_query_t structure is used by PMIx_Query_info_nb to describe a single query2
operation.3

PMIx v2.0 C
typedef struct pmix_query {4

char **keys;5
pmix_info_t *qualifiers;6
size_t nqual;7

} pmix_query_t;8

C

3.2.27 Query structure support macros9

The following macros are provided to support the pmix_query_t structure.10

3.2.27.1 Initialize the pmix_query_t structure11

Initialize the pmix_query_t fields12

PMIx v2.0 C
PMIX_QUERY_CONSTRUCT(m)13

C

IN m14
Pointer to the structure to be initialized (pointer to pmix_query_t)15

3.2.27.2 Destruct the pmix_query_t structure16

Destruct the pmix_query_t fields17

PMIx v2.0 C
PMIX_QUERY_DESTRUCT(m)18

C

IN m19
Pointer to the structure to be destructed (pointer to pmix_query_t)20

48 PMIx Standard – Version 3.0 – December 2018

3.2.27.3 Create a pmix_query_t array1

Allocate and initialize an array of pmix_query_t structures2

PMIx v2.0 C
PMIX_QUERY_CREATE(m, n)3

C

INOUT m4
Address where the pointer to the array of pmix_query_t structures shall be stored5
(handle)6

IN n7
Number of structures to be allocated (size_t)8

3.2.27.4 Free a pmix_query_t array9

Release an array of pmix_query_t structures10

PMIx v2.0 C
PMIX_QUERY_FREE(m, n)11

C

IN m12
Pointer to the array of pmix_query_t structures (handle)13

IN n14
Number of structures in the array (size_t)15

3.3 Packing/Unpacking Types & Structures16

This section defines types and structures used to pack and unpack data passed through the PMIx17
API.18

3.3.1 Byte Object Type19

The pmix_byte_object_t structure describes a raw byte sequence.20

PMIx v1.0 C
typedef struct pmix_byte_object {21

char *bytes;22
size_t size;23

} pmix_byte_object_t;24

C

CHAPTER 3. DATA STRUCTURES AND TYPES 49

3.3.2 Byte object support macros1

The following macros support the pmix_byte_object_t structure.2

3.3.2.1 Initialize the pmix_byte_object_t structure3

Initialize the pmix_byte_object_t fields4

PMIx v2.0 C
PMIX_BYTE_OBJECT_CONSTRUCT(m)5

C

IN m6
Pointer to the structure to be initialized (pointer to pmix_byte_object_t)7

3.3.2.2 Destruct the pmix_byte_object_t structure8

Clear the pmix_byte_object_t fields9

PMIx v2.0 C
PMIX_BYTE_OBJECT_DESTRUCT(m)10

C

IN m11
Pointer to the structure to be destructed (pointer to pmix_byte_object_t)12

3.3.2.3 Create a pmix_byte_object_t structure13

Allocate and intitialize an array of pmix_byte_object_t structures14

PMIx v2.0 C
PMIX_BYTE_OBJECT_CREATE(m, n)15

C

INOUT m16
Address where the pointer to the array of pmix_byte_object_t structures shall be17
stored (handle)18

IN n19
Number of structures to be allocated (size_t)20

50 PMIx Standard – Version 3.0 – December 2018

3.3.2.4 Free a pmix_byte_object_t array1

Release an array of pmix_byte_object_t structures2

PMIx v2.0 C
PMIX_BYTE_OBJECT_FREE(m, n)3

C

IN m4
Pointer to the array of pmix_byte_object_t structures (handle)5

IN n6
Number of structures in the array (size_t)7

3.3.2.5 Load a pmix_byte_object_t structure8

Load values into a pmix_byte_object_t9

PMIx v2.0 C
PMIX_BYTE_OBJECT_LOAD(b, d, s)10

C

IN b11
Pointer to the structure to be loaded (pointer to pmix_byte_object_t)12

IN d13
Pointer to the data to be loaded (char*)14

IN s15
Number of bytes in the data array (size_t)16

3.3.3 Data Buffer Type17

The pmix_data_buffer_t structure describes a data buffer used for packing and unpacking.18

PMIx v2.0

CHAPTER 3. DATA STRUCTURES AND TYPES 51

C
typedef struct pmix_data_buffer {1

/** Start of my memory */2
char *base_ptr;3
/** Where the next data will be packed to4

(within the allocated memory starting5
at base_ptr) */6

char *pack_ptr;7
/** Where the next data will be unpacked8

from (within the allocated memory9
starting as base_ptr) */10

char *unpack_ptr;11
/** Number of bytes allocated (starting12

at base_ptr) */13
size_t bytes_allocated;14
/** Number of bytes used by the buffer15

(i.e., amount of data -- including16
overhead -- packed in the buffer) */17

size_t bytes_used;18
} pmix_data_buffer_t;19

C

3.3.4 Data buffer support macros20

The following macros support the pmix_data_buffer_t structure.21

3.3.4.1 Initialize the pmix_data_buffer_t structure22

Initialize the pmix_data_buffer_t fields23

PMIx v2.0 C
PMIX_DATA_BUFFER_CONSTRUCT(m)24

C

IN m25
Pointer to the structure to be initialized (pointer to pmix_data_buffer_t)26

52 PMIx Standard – Version 3.0 – December 2018

3.3.4.2 Destruct the pmix_data_buffer_t structure1

Clear the pmix_data_buffer_t fields2

PMIx v2.0 C
PMIX_DATA_BUFFER_DESTRUCT(m)3

C

IN m4
Pointer to the structure to be destructed (pointer to pmix_data_buffer_t)5

3.3.4.3 Create a pmix_data_buffer_t structure6

Allocate and intitialize a pmix_data_buffer_t structure7

PMIx v2.0 C
PMIX_DATA_BUFFER_CREATE(m)8

C

INOUT m9
Address where the pointer to the pmix_data_buffer_t structure shall be stored10
(handle)11

3.3.4.4 Free a pmix_data_buffer_t12

Release a pmix_data_buffer_t structure13

PMIx v2.0 C
PMIX_DATA_BUFFER_RELEASE(m)14

C

IN m15
Pointer to the pmix_data_buffer_t structure to be released (handle)16

3.3.5 Data Array Structure17

The pmix_data_array_t structure defines an array data structure.18

PMIx v2.0 C
typedef struct pmix_data_array {19

pmix_data_type_t type;20
size_t size;21
void *array;22

} pmix_data_array_t;23

C

CHAPTER 3. DATA STRUCTURES AND TYPES 53

3.3.6 Generalized Data Types Used for Packing/Unpacking1

The pmix_data_type_t structure is a uint16_t type for identifying the data type for2
packing/unpacking purposes. New data type values introduced in this version of the Standard are3
shown in magenta.4

Advice to PMIx library implementers

The following constants can be used to set a variable of the type pmix_data_type_t . Data5
types in the PMIx Standard are defined in terms of the C-programming language. Implementers6
wishing to support other languages should provide the equivalent definitions in a7
language-appropriate manner. Additionally, a PMIx implementation may choose to add additional8
types.9

PMIX_UNDEF Undefined10
PMIX_BOOL Boolean (converted to/from native true/false) (bool)11
PMIX_BYTE A byte of data (uint8_t)12
PMIX_STRING NULL terminated string (char*)13
PMIX_SIZE Size size_t14
PMIX_PID Operating process identifier (PID) (pid_t)15
PMIX_INT Integer (int)16
PMIX_INT8 8-byte integer (int8_t)17
PMIX_INT16 16-byte integer (int16_t)18
PMIX_INT32 32-byte integer (int32_t)19
PMIX_INT64 64-byte integer (int64_t)20
PMIX_UINT Unsigned integer (unsigned int)21
PMIX_UINT8 Unsigned 8-byte integer (uint8_t)22
PMIX_UINT16 Unsigned 16-byte integer (uint16_t)23
PMIX_UINT32 Unsigned 32-byte integer (uint32_t)24
PMIX_UINT64 Unsigned 64-byte integer (uint64_t)25
PMIX_FLOAT Float (float)26
PMIX_DOUBLE Double (double)27
PMIX_TIMEVAL Time value (struct timeval)28
PMIX_TIME Time (time_t)29
PMIX_STATUS Status code pmix_status_t30
PMIX_VALUE Value (pmix_value_t)31
PMIX_PROC Process (pmix_proc_t)32
PMIX_APP Application context33
PMIX_INFO Info object34
PMIX_PDATA Pointer to data35
PMIX_BUFFER Buffer36
PMIX_BYTE_OBJECT Byte object (pmix_byte_object_t)37
PMIX_KVAL Key/value pair38

54 PMIx Standard – Version 3.0 – December 2018

PMIX_MODEX (Deprecated in PMIx 2.0) Modex1
PMIX_PERSIST Persistance (pmix_persistence_t)2
PMIX_POINTER Pointer to an object (void*)3
PMIX_SCOPE Scope (pmix_scope_t)4
PMIX_DATA_RANGE Range for data (pmix_data_range_t)5
PMIX_COMMAND PMIx command code (used internally)6
PMIX_INFO_DIRECTIVES Directives flag for pmix_info_t (7

pmix_info_directives_t)8
PMIX_DATA_TYPE Data type code (pmix_data_type_t)9
PMIX_PROC_STATE Process state (pmix_proc_state_t)10
PMIX_PROC_INFO Process information (pmix_proc_info_t)11
PMIX_DATA_ARRAY Data array (pmix_data_array_t)12
PMIX_PROC_RANK Process rank (pmix_rank_t)13
PMIX_QUERY Query structure (pmix_query_t)14
PMIX_COMPRESSED_STRING String compressed with zlib (char*)15
PMIX_ALLOC_DIRECTIVE Allocation directive (pmix_alloc_directive_t)16
PMIX_IOF_CHANNEL Input/output forwarding channel (pmix_iof_channel_t)17
PMIX_ENVAR Environmental variable structure (pmix_envar_t)18

3.4 Reserved attributes19

The PMIx standard defines a relatively small set of APIs and the caller may customize the behavior20
of the API by passing one or more attributes to that API. Additionally, attributes may be keys21
passed to PMIx_Get calls to access the specified values from the system.22

Each attribute is represented by a key string, and a type for the associated value. This section23
defines a set of reserved keys which are prefixed with pmix. to designate them as PMIx standard24
reserved keys. All definitions were introduced in version 1 of the standard unless otherwise marked.25

Applications or associated libraries (e.g., MPI) may choose to define additional attributes. The26
attributes defined in this section are of the system and job as opposed to the attributes that the27
application (or associated libraries) might choose to expose. Due to this extensibility the28
PMIx_Get API will return PMIX_ERR_NOT_FOUND if the provided key cannot be found.29

Attributes added in this version of the standard are shown in magenta to distinguish them from30
those defined in prior versions, which are shown in black. Deprecated attributes are shown in green31
and will be removed in future versions of the standard.32

PMIX_ATTR_UNDEF NULL (NULL)33
Constant representing an undefined attribute.34

CHAPTER 3. DATA STRUCTURES AND TYPES 55

3.4.1 Initialization attributes1

These attributes are defined to assist the caller with initialization by passing them into the2
appropriate initialization API - thus, they are not typically accessed via the PMIx_Get API.3

PMIX_EVENT_BASE "pmix.evbase" (struct event_base *)4
Pointer to libevent1 event_base to use in place of the internal progress thread.5

PMIX_SERVER_TOOL_SUPPORT "pmix.srvr.tool" (bool)6
The host RM wants to declare itself as willing to accept tool connection requests.7

PMIX_SERVER_REMOTE_CONNECTIONS "pmix.srvr.remote" (bool)8
Allow connections from remote tools. Forces the PMIx server to not exclusively use9
loopback device.10

PMIX_SERVER_SYSTEM_SUPPORT "pmix.srvr.sys" (bool)11
The host RM wants to declare itself as being the local system server for PMIx connection12
requests.13

PMIX_SERVER_TMPDIR "pmix.srvr.tmpdir" (char*)14
Top-level temporary directory for all client processes connected to this server, and where the15
PMIx server will place its tool rendezvous point and contact information.16

PMIX_SYSTEM_TMPDIR "pmix.sys.tmpdir" (char*)17
Temporary directory for this system, and where a PMIx server that declares itself to be a18
system-level server will place a tool rendezvous point and contact information.19

PMIX_SERVER_ENABLE_MONITORING "pmix.srv.monitor" (bool)20
Enable PMIx internal monitoring by the PMIx server.21

PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)22
Name of the namespace to use for this PMIx server.23

PMIX_SERVER_RANK "pmix.srv.rank" (pmix_rank_t)24
Rank of this PMIx server25

PMIX_SERVER_GATEWAY "pmix.srv.gway" (bool)26
Server is acting as a gateway for PMIx requests that cannot be serviced on backend nodes27
(e.g., logging to email)28

3.4.2 Tool-related attributes29

These attributes are defined to assist PMIx-enabled tools to connect with the PMIx server by30
passing them into the PMIx_tool_init API - thus, they are not typically accessed via the31
PMIx_Get API.32

PMIX_TOOL_NSPACE "pmix.tool.nspace" (char*)33
Name of the namespace to use for this tool.34

PMIX_TOOL_RANK "pmix.tool.rank" (uint32_t)35
Rank of this tool.36

PMIX_SERVER_PIDINFO "pmix.srvr.pidinfo" (pid_t)37

1http://libevent.org/

56 PMIx Standard – Version 3.0 – December 2018

http://libevent.org/

PID of the target PMIx server for a tool.1
PMIX_CONNECT_TO_SYSTEM "pmix.cnct.sys" (bool)2

The requestor requires that a connection be made only to a local, system-level PMIx server.3
PMIX_CONNECT_SYSTEM_FIRST "pmix.cnct.sys.first" (bool)4

Preferentially, look for a system-level PMIx server first.5
PMIX_SERVER_URI "pmix.srvr.uri" (char*)6

uniform resource identifier (URI) of the PMIx server to be contacted.7
PMIX_SERVER_HOSTNAME "pmix.srvr.host" (char*)8

Host where target PMIx server is located.9
PMIX_CONNECT_MAX_RETRIES "pmix.tool.mretries" (uint32_t)10

Maximum number of times to try to connect to PMIx server.11
PMIX_CONNECT_RETRY_DELAY "pmix.tool.retry" (uint32_t)12

Time in seconds between connection attempts to a PMIx server.13
PMIX_TOOL_DO_NOT_CONNECT "pmix.tool.nocon" (bool)14

The tool wants to use internal PMIx support, but does not want to connect to a PMIx server.15
PMIX_RECONNECT_SERVER "pmix.tool.recon" (bool)16

Tool is requesting to change server connections17
PMIX_LAUNCHER "pmix.tool.launcher" (bool)18

Tool is a launcher and needs rendezvous files created19

3.4.3 Identification attributes20

These attributes are defined to identify a process and it’s associated PMIx-enabled library. They are21
not typically accessed via the PMIx_Get API, and thus are not associated with a particular rank.22

PMIX_USERID "pmix.euid" (uint32_t)23
Effective user id.24

PMIX_GRPID "pmix.egid" (uint32_t)25
Effective group id.26

PMIX_DSTPATH "pmix.dstpath" (char*)27
Path to shared memory data storage (dstore) files.28

PMIX_VERSION_INFO "pmix.version" (char*)29
PMIx version of contractor.30

PMIX_REQUESTOR_IS_TOOL "pmix.req.tool" (bool)31
The requesting process is a PMIx tool.32

PMIX_REQUESTOR_IS_CLIENT "pmix.req.client" (bool)33
The requesting process is a PMIx client.34

CHAPTER 3. DATA STRUCTURES AND TYPES 57

3.4.4 Programming model attributes1

These attributes are associated with programming models.2

PMIX_PROGRAMMING_MODEL "pmix.pgm.model" (char*)3
Programming model being initialized (e.g., “MPI” or “OpenMP”)4

PMIX_MODEL_LIBRARY_NAME "pmix.mdl.name" (char*)5
Programming model implementation ID (e.g., “OpenMPI” or “MPICH”)6

PMIX_MODEL_LIBRARY_VERSION "pmix.mld.vrs" (char*)7
Programming model version string (e.g., “2.1.1”)8

PMIX_THREADING_MODEL "pmix.threads" (char*)9
Threading model used (e.g., “pthreads”)10

PMIX_MODEL_NUM_THREADS "pmix.mdl.nthrds" (uint64_t)11
Number of active threads being used by the model12

PMIX_MODEL_NUM_CPUS "pmix.mdl.ncpu" (uint64_t)13
Number of cpus being used by the model14

PMIX_MODEL_CPU_TYPE "pmix.mdl.cputype" (char*)15
Granularity - “hwthread”, “core”, etc.16

PMIX_MODEL_PHASE_NAME "pmix.mdl.phase" (char*)17
User-assigned name for a phase in the application execution (e.g., “cfd reduction”)18

PMIX_MODEL_PHASE_TYPE "pmix.mdl.ptype" (char*)19
Type of phase being executed (e.g., “matrix multiply”)20

PMIX_MODEL_AFFINITY_POLICY "pmix.mdl.tap" (char*)21
Thread affinity policy - e.g.: "master" (thread co-located with master thread), "close" (thread22
located on cpu close to master thread), "spread" (threads load-balanced across available cpus)23

3.4.5 UNIX socket rendezvous socket attributes24

These attributes are used to describe a UNIX socket for rendezvous with the local RM by passing25
them into the relevant initialization API - thus, they are not typically accessed via the PMIx_Get26
API.27

PMIX_USOCK_DISABLE "pmix.usock.disable" (bool)28
Disable legacy UNIX socket (usock) support29

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)30
POSIX mode_t (9 bits valid)31

PMIX_SINGLE_LISTENER "pmix.sing.listnr" (bool)32
Use only one rendezvous socket, letting priorities and/or environment parameters select the33
active transport.34

58 PMIx Standard – Version 3.0 – December 2018

3.4.6 TCP connection attributes1

These attributes are used to describe a TCP socket for rendezvous with the local RM by passing2
them into the relevant initialization API - thus, they are not typically accessed via the PMIx_Get3
API.4

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)5
If provided, directs that the TCP URI be reported and indicates the desired method of6
reporting: ’-’ for stdout, ’+’ for stderr, or filename.7

PMIX_TCP_URI "pmix.tcp.uri" (char*)8
The URI of the PMIx server to connect to, or a file name containing it in the form of9
file:<name of file containing it>.10

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)11
Comma-delimited list of devices and/or Classless Inter-Domain Routing (CIDR) notation to12
include when establishing the TCP connection.13

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)14
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the15
TCP connection.16

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)17
The IPv4 port to be used.18

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)19
The IPv6 port to be used.20

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)21
Set to true to disable IPv4 family of addresses.22

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)23
Set to true to disable IPv6 family of addresses.24

3.4.7 Global Data Storage (GDS) attributes25

These attributes are used to define the behavior of the GDS used to manage key/value pairs by26
passing them into the relevant initialization API - thus, they are not typically accessed via the27
PMIx_Get API.28

PMIX_GDS_MODULE "pmix.gds.mod" (char*)29
Comma-delimited string of desired modules.30

3.4.8 General process-level attributes31

These attributes are used to define process attributes and are referenced by their process rank.32

PMIX_CPUSET "pmix.cpuset" (char*)33
hwloc2 bitmap to be applied to the process upon launch.34

2https://www.open-mpi.org/projects/hwloc/

CHAPTER 3. DATA STRUCTURES AND TYPES 59

https://www.open-mpi.org/projects/hwloc/

PMIX_CREDENTIAL "pmix.cred" (char*)1
Security credential assigned to the process.2

PMIX_SPAWNED "pmix.spawned" (bool)3
true if this process resulted from a call to PMIx_Spawn .4

PMIX_ARCH "pmix.arch" (uint32_t)5
Architecture flag.6

3.4.9 Scratch directory attributes7

These attributes are used to define an application scratch directory and are referenced using the8
PMIX_RANK_WILDCARD rank.9

PMIX_TMPDIR "pmix.tmpdir" (char*)10
Full path to the top-level temporary directory assigned to the session.11

PMIX_NSDIR "pmix.nsdir" (char*)12
Full path to the temporary directory assigned to the namespace, under PMIX_TMPDIR .13

PMIX_PROCDIR "pmix.pdir" (char*)14
Full path to the subdirectory under PMIX_NSDIR assigned to the process.15

PMIX_TDIR_RMCLEAN "pmix.tdir.rmclean" (bool)16
Resource Manager will clean session directories17

3.4.10 Relative Rank Descriptive Attributes18

These attributes are used to describe information about relative ranks as assigned by the RM, and19
thus are referenced using the process rank except where noted.20

PMIX_CLUSTER_ID "pmix.clid" (char*)21
A string name for the cluster this proc is executing on22

PMIX_PROCID "pmix.procid" (pmix_proc_t)23
Process identifier24

PMIX_NSPACE "pmix.nspace" (char*)25
Namespace of the job.26

PMIX_JOBID "pmix.jobid" (char*)27
Job identifier assigned by the scheduler.28

PMIX_APPNUM "pmix.appnum" (uint32_t)29
Application number within the job.30

PMIX_RANK "pmix.rank" (pmix_rank_t)31
Process rank within the job.32

PMIX_GLOBAL_RANK "pmix.grank" (pmix_rank_t)33
Process rank spanning across all jobs in this session.34

PMIX_APP_RANK "pmix.apprank" (pmix_rank_t)35
Process rank within this application.36

PMIX_NPROC_OFFSET "pmix.offset" (pmix_rank_t)37

60 PMIx Standard – Version 3.0 – December 2018

Starting global rank of this job - referenced using PMIX_RANK_WILDCARD .1
PMIX_LOCAL_RANK "pmix.lrank" (uint16_t)2

Local rank on this node within this job.3
PMIX_NODE_RANK "pmix.nrank" (uint16_t)4

Process rank on this node spanning all jobs.5
PMIX_LOCALLDR "pmix.lldr" (pmix_rank_t)6

Lowest rank on this node within this job - referenced using PMIX_RANK_WILDCARD .7
PMIX_APPLDR "pmix.aldr" (pmix_rank_t)8

Lowest rank in this application within this job - referenced using PMIX_RANK_WILDCARD .9
PMIX_PROC_PID "pmix.ppid" (pid_t)10

PID of specified process.11
PMIX_SESSION_ID "pmix.session.id" (uint32_t)12

Session identifier - referenced using PMIX_RANK_WILDCARD .13
PMIX_NODE_LIST "pmix.nlist" (char*)14

Comma-delimited list of nodes running processes for the specified namespace - referenced15
using PMIX_RANK_WILDCARD .16

PMIX_ALLOCATED_NODELIST "pmix.alist" (char*)17
Comma-delimited list of all nodes in this allocation regardless of whether or not they18
currently host processes - referenced using PMIX_RANK_WILDCARD .19

PMIX_HOSTNAME "pmix.hname" (char*)20
Name of the host where the specified process is running.21

PMIX_NODEID "pmix.nodeid" (uint32_t)22
Node identifier where the specified process is located, expressed as the node’s index23
(beginning at zero) in the array resulting from expansion of the PMIX_NODE_MAP regular24
expression for the job25

PMIX_LOCAL_PEERS "pmix.lpeers" (char*)26
Comma-delimited list of ranks on this node within the specified namespace - referenced27
using PMIX_RANK_WILDCARD .28

PMIX_LOCAL_PROCS "pmix.lprocs" (pmix_proc_t array)29
Array of pmix_proc_t of all processes on the specified node - referenced using30
PMIX_RANK_WILDCARD .31

PMIX_LOCAL_CPUSETS "pmix.lcpus" (char*)32
Colon-delimited cpusets of local peers within the specified namespace - referenced using33
PMIX_RANK_WILDCARD .34

PMIX_PROC_URI "pmix.puri" (char*)35
URI containing contact information for a given process.36

PMIX_LOCALITY "pmix.loc" (uint16_t)37
Relative locality of the specified process to the requestor.38

PMIX_PARENT_ID "pmix.parent" (pmix_proc_t)39
Process identifier of the parent process of the calling process.40

PMIX_EXIT_CODE "pmix.exit.code" (int)41
Exit code returned when process terminated42

CHAPTER 3. DATA STRUCTURES AND TYPES 61

3.4.11 Information retrieval attributes1

The following attributes are used to specify the level of information (e.g., session , job , or2
application) being requested where ambiguity may exist - see 5.1.5 for examples of their use.3

PMIX_SESSION_INFO "pmix.ssn.info" (bool)4
Return information about the specified session. If information about a session other than the5
one containing the requesting process is desired, then the attribute array must contain a6
PMIX_SESSION_ID attribute identifying the desired target.7

PMIX_JOB_INFO "pmix.job.info" (bool)8
Return information about the specified job or namespace. If information about a job or9
namespace other than the one containing the requesting process is desired, then the attribute10
array must contain a PMIX_JOBID or PMIX_NSPACE attribute identifying the desired11
target. Similarly, if information is requested about a job or namespace in a session other than12
the one containing the requesting process, then an attribute identifying the target session13
must be provided.14

PMIX_APP_INFO "pmix.app.info" (bool)15
Return information about the specified application. If information about an application other16
than the one containing the requesting process is desired, then the attribute array must17
contain a PMIX_APPNUM attribute identifying the desired target. Similarly, if information18
is requested about an application in a job or session other than the one containing the19
requesting process, then attributes identifying the target job and/or session must be provided.20

PMIX_NODE_INFO "pmix.node.info" (bool)21
Return information about the specified node. If information about a node other than the one22
containing the requesting process is desired, then the attribute array must contain either the23
PMIX_NODEID or PMIX_HOSTNAME attribute identifying the desired target.24

3.4.12 Information storage attributes25

The following attributes are used to assemble information by its level (e.g., session , job , or26
application) for storage where ambiguity may exist - see 11.1.3.1 for examples of their use.27

PMIX_SESSION_INFO_ARRAY "pmix.ssn.arr" (pmix_data_array_t)28
Provide an array of pmix_info_t containing session-level information. The29
PMIX_SESSION_ID attribute is required to be included in the array.30

PMIX_JOB_INFO_ARRAY "pmix.job.arr" (pmix_data_array_t)31
Provide an array of pmix_info_t containing job-level information. Information is32
registered one job (aka namespace) at a time via the PMIx_server_register_nspace33
API. Thus, there is no requirement that the array contain either the PMIX_NSPACE or34
PMIX_JOBID attributes, though either or both of them may be included.35

PMIX_APP_INFO_ARRAY "pmix.app.arr" (pmix_data_array_t)36
Provide an array of pmix_info_t containing app-level information. The PMIX_NSPACE37
or PMIX_JOBID attributes of the job containing the appplication, plus its38
PMIX_APPNUM attribute, are required to be included in the array.39

62 PMIx Standard – Version 3.0 – December 2018

PMIX_NODE_INFO_ARRAY "pmix.node.arr" (pmix_data_array_t)1
Provide an array of pmix_info_t containing node-level information. At a minimum,2
either the PMIX_NODEID or PMIX_HOSTNAME attribute is required to be included in the3
array, though both may be included.4

3.4.13 Size information attributes5

These attributes are used to describe the size of various dimensions of the PMIx universe - all are6
referenced using PMIX_RANK_WILDCARD .7

PMIX_UNIV_SIZE "pmix.univ.size" (uint32_t)8
Number of allocated slots in a session - each slot may or may not be occupied by an9
executing process. Note that this attribute is the equivalent to the combination of10
PMIX_SESSION_INFO_ARRAY with the PMIX_NUM_SLOTS entry in the array - it is11
included in the Standard for historical reasons.12

PMIX_JOB_SIZE "pmix.job.size" (uint32_t)13
Total number of processes in this job across all contained applications14

PMIX_JOB_NUM_APPS "pmix.job.napps" (uint32_t)15
Number of applications in this job.16

PMIX_APP_SIZE "pmix.app.size" (uint32_t)17
Number of processes in this application.18

PMIX_LOCAL_SIZE "pmix.local.size" (uint32_t)19
Number of processes in this job on this node.20

PMIX_NODE_SIZE "pmix.node.size" (uint32_t)21
Number of processes across all jobs on this node.22

PMIX_MAX_PROCS "pmix.max.size" (uint32_t)23
Maximum number of processes for this job.24

PMIX_NUM_NODES "pmix.num.nodes" (uint32_t)25
Number of nodes in this session or namespace.26

PMIX_NUM_SLOTS "pmix.num.slots" (uint32_t)27
Number of slots allocated to the session, namespace, or application.28

3.4.14 Memory information attributes29

These attributes are used to describe memory available and used in the system - all are referenced30
using PMIX_RANK_WILDCARD .31

PMIX_AVAIL_PHYS_MEMORY "pmix.pmem" (uint64_t)32
Total available physical memory on this node.33

PMIX_DAEMON_MEMORY "pmix.dmn.mem" (float)34
Megabytes of memory currently used by the RM daemon.35

PMIX_CLIENT_AVG_MEMORY "pmix.cl.mem.avg" (float)36
Average Megabytes of memory used by client processes.37

CHAPTER 3. DATA STRUCTURES AND TYPES 63

3.4.15 Topology information attributes1

These attributes are used to describe topology information in the PMIx universe - all are referenced2
using PMIX_RANK_WILDCARD except where noted.3

PMIX_NET_TOPO "pmix.ntopo" (char*)4
eXtensible Markup Language (XML) representation of the network topology.5

PMIX_LOCAL_TOPO "pmix.ltopo" (char*)6
XML representation of local node topology.7

PMIX_TOPOLOGY "pmix.topo" (hwloc_topology_t)8
Pointer to the PMIx client’s internal hwloc topology object.9

PMIX_TOPOLOGY_XML "pmix.topo.xml" (char*)10
XML-based description of topology11

PMIX_TOPOLOGY_FILE "pmix.topo.file" (char*)12
Full path to file containing XML topology description13

PMIX_TOPOLOGY_SIGNATURE "pmix.toposig" (char*)14
Topology signature string.15

PMIX_LOCALITY_STRING "pmix.locstr" (char*)16
String describing a process’s bound location - referenced using the process’s rank. The string17
is of the form:18
NM%s:SK%s:L3%s:L2%s:L1%s:CR%s:HT%s19
Where the %s is replaced with an integer index or inclusive range for hwloc. NM identifies20
the numa node(s). SK identifies the socket(s). L3 identifies the L3 cache(s). L2 identifies the21
L2 cache(s). L1 identifies the L1 cache(s). CR identifies the cores(s). HT identifies the22
hardware thread(s). If your architecture does not have the specified hardware designation23
then it can be omitted from the signature.24
For example: NM0:SK0:L30-4:L20-4:L10-4:CR0-4:HT0-39.25
This means numa node 0, socket 0, L3 caches 0,1,2,3,4, L2 caches 0-4, L1 caches26
0-4, cores 0,1,2,3,4, and hardware threads 0-39.27

PMIX_HWLOC_SHMEM_ADDR "pmix.hwlocaddr" (size_t)28
Address of the HWLOC shared memory segment.29

PMIX_HWLOC_SHMEM_SIZE "pmix.hwlocsize" (size_t)30
Size of the HWLOC shared memory segment.31

PMIX_HWLOC_SHMEM_FILE "pmix.hwlocfile" (char*)32
Path to the HWLOC shared memory file.33

PMIX_HWLOC_XML_V1 "pmix.hwlocxml1" (char*)34
XML representation of local topology using HWLOC’s v1.x format.35

PMIX_HWLOC_XML_V2 "pmix.hwlocxml2" (char*)36
XML representation of local topology using HWLOC’s v2.x format.37

PMIX_HWLOC_SHARE_TOPO "pmix.hwlocsh" (bool)38
Share the HWLOC topology via shared memory39

PMIX_HWLOC_HOLE_KIND "pmix.hwlocholek" (char*)40
Kind of VM “hole” HWLOC should use for shared memory41

64 PMIx Standard – Version 3.0 – December 2018

3.4.16 Request-related attributes1

These attributes are used to influence the behavior of various PMIx operations - they do not2
represent values accessed using the PMIx_Get API.3

PMIX_COLLECT_DATA "pmix.collect" (bool)4
Collect data and return it at the end of the operation.5

PMIX_TIMEOUT "pmix.timeout" (int)6
Time in seconds before the specified operation should time out (0 indicating infinite) in7
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent8
the target process from ever exposing its data.9

PMIX_IMMEDIATE "pmix.immediate" (bool)10
Specified operation should immediately return an error from the PMIx server if the requested11
data cannot be found - do not request it from the host RM.12

PMIX_WAIT "pmix.wait" (int)13
Caller requests that the PMIx server wait until at least the specified number of values are14
found (0 indicates all and is the default).15

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)16
Comma-delimited list of algorithms to use for the collective operation. PMIx does not17
impose any requirements on a host environment’s collective algorithms. Thus, the18
acceptable values for this attribute will be environment-dependent - users are encouraged to19
check their host environment for supported values.20

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)21
If true, indicates that the requested choice of algorithm is mandatory.22

PMIX_NOTIFY_COMPLETION "pmix.notecomp" (bool)23
Notify the parent process upon termination of child job.24

PMIX_RANGE "pmix.range" (pmix_data_range_t)25
Value for calls to publish/lookup/unpublish or for monitoring event notifications.26

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)27
Value for calls to PMIx_Publish .28

PMIX_DATA_SCOPE "pmix.scope" (pmix_scope_t)29
Scope of the data to be found in a PMIx_Get call.30

PMIX_OPTIONAL "pmix.optional" (bool)31
Look only in the client’s local data store for the requested value - do not request data from32
the PMIx server if not found.33

PMIX_EMBED_BARRIER "pmix.embed.barrier" (bool)34
Execute a blocking fence operation before executing the specified operation. For example,35
PMIx_Finalize does not include an internal barrier operation by default. This attribute36
would direct PMIx_Finalize to execute a barrier as part of the finalize operation.37

PMIX_JOB_TERM_STATUS "pmix.job.term.status" (pmix_status_t)38
Status to be returned upon job termination.39

PMIX_PROC_STATE_STATUS "pmix.proc.state" (pmix_proc_state_t)40
Process state41

CHAPTER 3. DATA STRUCTURES AND TYPES 65

3.4.17 Server-to-PMIx library attributes1

Attributes used by the host environment to pass data to its PMIx server library. The data will then2
be parsed and provided to the local PMIx clients. These attributes are all referenced using3
PMIX_RANK_WILDCARD except where noted.4

PMIX_REGISTER_NODATA "pmix.reg.nodata" (bool)5
Registration is for this namespace only, do not copy job data - this attribute is not accessed6
using the PMIx_Get7

PMIX_PROC_DATA "pmix.pdata" (pmix_data_array_t)8
Array of process data. Starts with rank, then contains more data.9

PMIX_NODE_MAP "pmix.nmap" (char*)10
Regular expression of nodes - see 11.1.3.1 for an explanation of its generation.11

PMIX_PROC_MAP "pmix.pmap" (char*)12
Regular expression describing processes on each node - see 11.1.3.1 for an explanation of its13
generation.14

PMIX_ANL_MAP "pmix.anlmap" (char*)15
Process mapping in Argonne National Laboratory’s PMI-1/PMI-2 notation.16

PMIX_APP_MAP_TYPE "pmix.apmap.type" (char*)17
Type of mapping used to layout the application (e.g., cyclic).18

PMIX_APP_MAP_REGEX "pmix.apmap.regex" (char*)19
Regular expression describing the result of the process mapping.20

3.4.18 Server-to-Client attributes21

Attributes used internally to communicate data from the PMIx server to the PMIx client - they do22
not represent values accessed using the PMIx_Get API.23

PMIX_PROC_BLOB "pmix.pblob" (pmix_byte_object_t)24
Packed blob of process data.25

PMIX_MAP_BLOB "pmix.mblob" (pmix_byte_object_t)26
Packed blob of process location.27

3.4.19 Event handler registration and notification attributes28

Attributes to support event registration and notification - they are values passed to the event29
registration and notification APIs and therefore are not accessed using the PMIx_Get API.30

PMIX_EVENT_HDLR_NAME "pmix.evname" (char*)31
String name identifying this handler.32

PMIX_EVENT_HDLR_FIRST "pmix.evfirst" (bool)33
Invoke this event handler before any other handlers.34

PMIX_EVENT_HDLR_LAST "pmix.evlast" (bool)35

66 PMIx Standard – Version 3.0 – December 2018

Invoke this event handler after all other handlers have been called.1
PMIX_EVENT_HDLR_FIRST_IN_CATEGORY "pmix.evfirstcat" (bool)2

Invoke this event handler before any other handlers in this category.3
PMIX_EVENT_HDLR_LAST_IN_CATEGORY "pmix.evlastcat" (bool)4

Invoke this event handler after all other handlers in this category have been called.5
PMIX_EVENT_HDLR_BEFORE "pmix.evbefore" (char*)6

Put this event handler immediately before the one specified in the (char*) value.7
PMIX_EVENT_HDLR_AFTER "pmix.evafter" (char*)8

Put this event handler immediately after the one specified in the (char*) value.9
PMIX_EVENT_HDLR_PREPEND "pmix.evprepend" (bool)10

Prepend this handler to the precedence list within its category.11
PMIX_EVENT_HDLR_APPEND "pmix.evappend" (bool)12

Append this handler to the precedence list within its category.13
PMIX_EVENT_CUSTOM_RANGE "pmix.evrange" (pmix_data_array_t*)14

Array of pmix_proc_t defining range of event notification.15
PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)16

The single process that was affected.17
PMIX_EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_t*)18

Array of pmix_proc_t defining affected processes.19
PMIX_EVENT_NON_DEFAULT "pmix.evnondef" (bool)20

Event is not to be delivered to default event handlers.21
PMIX_EVENT_RETURN_OBJECT "pmix.evobject" (void *)22

Object to be returned whenever the registered callback function cbfunc is invoked. The23
object will only be returned to the process that registered it.24

PMIX_EVENT_DO_NOT_CACHE "pmix.evnocache" (bool)25
Instruct the PMIx server not to cache the event.26

PMIX_EVENT_SILENT_TERMINATION "pmix.evsilentterm" (bool)27
Do not generate an event when this job normally terminates.28

3.4.20 Fault tolerance attributes29

Attributes to support fault tolerance behaviors - they are values passed to the event notification API30
and therefore are not accessed using the PMIx_Get API.31

PMIX_EVENT_TERMINATE_SESSION "pmix.evterm.sess" (bool)32
The RM intends to terminate this session.33

PMIX_EVENT_TERMINATE_JOB "pmix.evterm.job" (bool)34
The RM intends to terminate this job.35

PMIX_EVENT_TERMINATE_NODE "pmix.evterm.node" (bool)36
The RM intends to terminate all processes on this node.37

PMIX_EVENT_TERMINATE_PROC "pmix.evterm.proc" (bool)38
The RM intends to terminate just this process.39

PMIX_EVENT_ACTION_TIMEOUT "pmix.evtimeout" (int)40

CHAPTER 3. DATA STRUCTURES AND TYPES 67

The time in seconds before the RM will execute error response.1
PMIX_EVENT_NO_TERMINATION "pmix.evnoterm" (bool)2

Indicates that the handler has satisfactorily handled the event and believes termination of the3
application is not required.4

PMIX_EVENT_WANT_TERMINATION "pmix.evterm" (bool)5
Indicates that the handler has determined that the application should be terminated6

3.4.21 Spawn attributes7

Attributes used to describe PMIx_Spawn behavior - they are values passed to the PMIx_Spawn8
API and therefore are not accessed using the PMIx_Get API when used in that context. However,9
some of the attributes defined in this section can be provided by the host environment for other10
purposes - e.g., the environment might provide the PMIX_MAPPER attribute in the job-related11
information so that an application can use PMIx_Get to discover the layout algorithm used for12
determining process locations. Multi-use attributes and their respective access reference rank are13
denoted below.14

PMIX_PERSONALITY "pmix.pers" (char*)15
Name of personality to use.16

PMIX_HOST "pmix.host" (char*)17
Comma-delimited list of hosts to use for spawned processes.18

PMIX_HOSTFILE "pmix.hostfile" (char*)19
Hostfile to use for spawned processes.20

PMIX_ADD_HOST "pmix.addhost" (char*)21
Comma-delimited list of hosts to add to the allocation.22

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)23
Hostfile listing hosts to add to existing allocation.24

PMIX_PREFIX "pmix.prefix" (char*)25
Prefix to use for starting spawned processes.26

PMIX_WDIR "pmix.wdir" (char*)27
Working directory for spawned processes.28

PMIX_MAPPER "pmix.mapper" (char*)29
Mapping mechanism to use for placing spawned processes - when accessed using30
PMIx_Get , use the PMIX_RANK_WILDCARD value for the rank to discover the mapping31
mechanism used for the provided namespace.32

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)33
Display process mapping upon spawn.34

PMIX_PPR "pmix.ppr" (char*)35
Number of processes to spawn on each identified resource.36

PMIX_MAPBY "pmix.mapby" (char*)37
Process mapping policy - when accessed using PMIx_Get , use the38
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the39
provided namespace40

68 PMIx Standard – Version 3.0 – December 2018

PMIX_RANKBY "pmix.rankby" (char*)1
Process ranking policy - when accessed using PMIx_Get , use the2
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for the3
provided namespace4

PMIX_BINDTO "pmix.bindto" (char*)5
Process binding policy - when accessed using PMIx_Get , use the6
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the7
provided namespace8

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)9
Preload binaries onto nodes.10

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)11
Comma-delimited list of files to pre-position on nodes.12

PMIX_NON_PMI "pmix.nonpmi" (bool)13
Spawned processes will not call PMIx_Init .14

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)15
Spawned process rank that is to receive stdin.16

PMIX_FWD_STDIN "pmix.fwd.stdin" (bool)17
Forward this process’s stdin to the designated process.18

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)19
Forward stdout from spawned processes to this process.20

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)21
Forward stderr from spawned processes to this process.22

PMIX_FWD_STDDOAG "pmix.fwd.stddiag" (bool)23
If a diagnostic channel exists, forward any output on it from the spawned processes to this24
process (typically used by a tool)25

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)26
Spawned application consists of debugger daemons.27

PMIX_COSPAWN_APP "pmix.cospawn" (bool)28
Designated application is to be spawned as a disconnected job. Meaning that it is not part of29
the “comm_world” of the parent process.30

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)31
Set the application’s current working directory to the session working directory assigned by32
the RM - when accessed using PMIx_Get , use the PMIX_RANK_WILDCARD value for33
the rank to discover the session working directory assigned to the provided namespace34

PMIX_TAG_OUTPUT "pmix.tagout" (bool)35
Tag application output with the identity of the source process.36

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)37
Timestamp output from applications.38

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)39
Merge stdout and stderr streams from application processes.40

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)41
Output application output to the specified file.42

PMIX_INDEX_ARGV "pmix.indxargv" (bool)43

CHAPTER 3. DATA STRUCTURES AND TYPES 69

Mark the argv with the rank of the process.1
PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)2

Number of cpus to assign to each rank - when accessed using PMIx_Get , use the3
PMIX_RANK_WILDCARD value for the rank to discover the cpus/process assigned to the4
provided namespace5

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)6
Do not place processes on the head node.7

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)8
Do not oversubscribe the cpus.9

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)10
Report bindings of the individual processes.11

PMIX_CPU_LIST "pmix.cpulist" (char*)12
List of cpus to use for this job - when accessed using PMIx_Get , use the13
PMIX_RANK_WILDCARD value for the rank to discover the cpu list used for the provided14
namespace15

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)16
Application supports recoverable operations.17

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)18
Application is continuous, all failed processes should be immediately restarted.19

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)20
Maximum number of times to restart a job - when accessed using PMIx_Get , use the21
PMIX_RANK_WILDCARD value for the rank to discover the max restarts for the provided22
namespace23

PMIX_SPAWN_TOOL "pmix.spwn.tool" (bool)24
Indicate that the job being spawned is a tool25

3.4.22 Query attributes26

Attributes used to describe PMIx_Query_info_nb behavior - these are values passed to the27
PMIx_Query_info_nb API and therefore are not passed to the PMIx_Get API.28

PMIX_QUERY_REFRESH_CACHE "pmix.qry.rfsh" (bool)29
Retrieve updated information from server.30

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)31
Request a comma-delimited list of active namespaces.32

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)33
Status of a specified, currently executing job.34

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)35
Request a comma-delimited list of scheduler queues.36

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (TBD)37
Status of a specified scheduler queue.38

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)39

70 PMIx Standard – Version 3.0 – December 2018

Input namespace of the job whose information is being requested returns (1
pmix_data_array_t) an array of pmix_proc_info_t .2

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)3
Input namespace of the job whose information is being requested returns (4
pmix_data_array_t) an array of pmix_proc_info_t for processes in job on same5
node.6

PMIX_QUERY_AUTHORIZATIONS "pmix.qry.auths" (bool)7
Return operations the PMIx tool is authorized to perform.8

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)9
Return a comma-delimited list of supported spawn attributes.10

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)11
Return a comma-delimited list of supported debug attributes.12

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)13
Return information on memory usage for the processes indicated in the qualifiers.14

PMIX_QUERY_LOCAL_ONLY "pmix.qry.local" (bool)15
Constrain the query to local information only.16

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)17
Report only average values for sampled information.18

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)19
Report minimum and maximum values.20

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)21
String identifier of the allocation whose status is being requested.22

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)23
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.24

3.4.23 Log attributes25

Attributes used to describe PMIx_Log_nb behavior - these are values passed to the26
PMIx_Log_nb API and therefore are not accessed using the PMIx_Get API.27

PMIX_LOG_SOURCE "pmix.log.source" (pmix_proc_t*)28
ID of source of the log request29

PMIX_LOG_STDERR "pmix.log.stderr" (char*)30
Log string to stderr.31

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)32
Log string to stdout.33

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)34
Log data to syslog. Defaults to ERROR priority. Will log to global syslog if available,35
otherwise to local syslog36

PMIX_LOG_LOCAL_SYSLOG "pmix.log.lsys" (char*)37
Log data to local syslog. Defaults to ERROR priority.38

PMIX_LOG_GLOBAL_SYSLOG "pmix.log.gsys" (char*)39
Forward data to system “gateway” and log msg to that syslog Defaults to ERROR priority.40

CHAPTER 3. DATA STRUCTURES AND TYPES 71

PMIX_LOG_SYSLOG_PRI "pmix.log.syspri" (int)1
Syslog priority level2

PMIX_LOG_TIMESTAMP "pmix.log.tstmp" (time_t)3
Timestamp for log report4

PMIX_LOG_GENERATE_TIMESTAMP "pmix.log.gtstmp" (bool)5
Generate timestamp for log6

PMIX_LOG_TAG_OUTPUT "pmix.log.tag" (bool)7
Label the output stream with the channel name (e.g., “stdout”)8

PMIX_LOG_TIMESTAMP_OUTPUT "pmix.log.tsout" (bool)9
Print timestamp in output string10

PMIX_LOG_XML_OUTPUT "pmix.log.xml" (bool)11
Print the output stream in XML format12

PMIX_LOG_ONCE "pmix.log.once" (bool)13
Only log this once with whichever channel can first support it, taking the channels in priority14
order15

PMIX_LOG_MSG "pmix.log.msg" (pmix_byte_object_t)16
Message blob to be sent somewhere.17

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)18
Log via email based on pmix_info_t containing directives.19

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)20
Comma-delimited list of email addresses that are to receive the message.21

PMIX_LOG_EMAIL_SENDER_ADDR "pmix.log.emfaddr" (char*)22
Return email address of sender23

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)24
Subject line for email.25

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)26
Message to be included in email.27

PMIX_LOG_EMAIL_SERVER "pmix.log.esrvr" (char*)28
Hostname (or IP address) of estmp server29

PMIX_LOG_EMAIL_SRVR_PORT "pmix.log.esrvrprt" (int32_t)30
Port the email server is listening to31

PMIX_LOG_GLOBAL_DATASTORE "pmix.log.gstore" (bool)32
Store the log data in a global data store (e.g., database)33

PMIX_LOG_JOB_RECORD "pmix.log.jrec" (bool)34
Log the provided information to the host environment’s job record35

3.4.24 Debugger attributes36

Attributes used to assist debuggers - these are values that can be passed to the PMIx_Spawn or37
PMIx_Init APIs. Some may be accessed using the PMIx_Get API with the38
PMIX_RANK_WILDCARD rank.39

PMIX_DEBUG_STOP_ON_EXEC "pmix.dbg.exec" (bool)40

72 PMIx Standard – Version 3.0 – December 2018

Passed to PMIx_Spawn to indicate that the specified application is being spawned under1
debugger, and that the launcher is to pause the resulting application processes on first2
instruction for debugger attach.3

PMIX_DEBUG_STOP_IN_INIT "pmix.dbg.init" (bool)4
Passed to PMIx_Spawn to indicate that the specified application is being spawned under5
debugger, and that the PMIx client library is to pause the resulting application processes6
during PMIx_Init until debugger attach and release.7

PMIX_DEBUG_WAIT_FOR_NOTIFY "pmix.dbg.notify" (bool)8
Passed to PMIx_Spawn to indicate that the specified application is being spawned under9
debugger, and that the resulting application processes are to pause at some10
application-determined location until debugger attach and release.11

PMIX_DEBUG_JOB "pmix.dbg.job" (char*)12
Namespace of the job to be debugged - provided to the debugger upon launch.13

PMIX_DEBUG_WAITING_FOR_NOTIFY "pmix.dbg.waiting" (bool)14
Job to be debugged is waiting for a release - this is not a value accessed using the15
PMIx_Get API.16

PMIX_DEBUG_JOB_DIRECTIVES "pmix.dbg.jdirs" (pmix_data_array_t*)17
Array of job-level directives18

PMIX_DEBUG_APP_DIRECTIVES "pmix.dbg.adirs" (pmix_data_array_t*)19
Array of app-level directives20

3.4.25 Resource manager attributes21

Attributes used to describe the RM - these are values assigned by the host environment and accessed22
using the PMIx_Get API. The value of the provided namespace is unimportant but should be23
given as the namespace of the requesting process and a rank of PMIX_RANK_WILDCARD used to24
indicate that the information will be found with the job-level information.25

PMIX_RM_NAME "pmix.rm.name" (char*)26
String name of the RM.27

PMIX_RM_VERSION "pmix.rm.version" (char*)28
RM version string.29

3.4.26 Environment variable attributes30

Attributes used to adjust environment variables - these are values passed to the PMIx_Spawn API31
and are not accessed using the PMIx_Get API.32

PMIX_SET_ENVAR "pmix.envar.set" (pmix_envar_t*)33
Set the envar to the given value, overwriting any pre-existing one34

PMIX_UNSET_ENVAR "pmix.envar.unset" (char*)35
Unset the environment variable specified in the string.36

PMIX_ADD_ENVAR "pmix.envar.add" (pmix_envar_t*)37

CHAPTER 3. DATA STRUCTURES AND TYPES 73

Add the environment variable, but do not overwrite any pre-existing one1
PMIX_PREPEND_ENVAR "pmix.envar.prepnd" (pmix_envar_t*)2

Prepend the given value to the specified environmental value using the given separator3
character, creating the variable if it doesn’t already exist4

PMIX_APPEND_ENVAR "pmix.envar.appnd" (pmix_envar_t*)5
Append the given value to the specified environmental value using the given separator6
character, creating the variable if it doesn’t already exist7

3.4.27 Job Allocation attributes8

Attributes used to describe the job allocation - these are values passed to the9
PMIx_Allocation_request_nb API and are not accessed using the PMIx_Get API10

PMIX_ALLOC_ID "pmix.alloc.id" (char*)11
Provide a string identifier for this allocation request which can later be used to query status12
of the request.13

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)14
The number of nodes.15

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)16
Regular expression of the specific nodes.17

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)18
Number of cpus.19

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)20
Regular expression of the number of cpus for each node.21

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)22
Regular expression of the specific cpus indicating the cpus involved.23

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)24
Number of Megabytes.25

PMIX_ALLOC_NETWORK "pmix.alloc.net" (array)26
Array of pmix_info_t describing requested network resources. This must include at27
least: PMIX_ALLOC_NETWORK_ID , PMIX_ALLOC_NETWORK_TYPE , and28
PMIX_ALLOC_NETWORK_ENDPTS , plus whatever other descriptors are desired.29

PMIX_ALLOC_NETWORK_ID "pmix.alloc.netid" (char*)30
The key to be used when accessing this requested network allocation. The allocation will be31
returned/stored as a pmix_data_array_t of pmix_info_t indexed by this key and32
containing at least one entry with the same key and the allocated resource description. The33
type of the included value depends upon the network support. For example, a TCP allocation34
might consist of a comma-delimited string of socket ranges such as35
"32000-32100,33005,38123-38146". Additional entries will consist of any provided36
resource request directives, along with their assigned values. Examples include:37
PMIX_ALLOC_NETWORK_TYPE - the type of resources provided;38
PMIX_ALLOC_NETWORK_PLANE - if applicable, what plane the resources were assigned39
from; PMIX_ALLOC_NETWORK_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -40

74 PMIx Standard – Version 3.0 – December 2018

the allocated bandwidth; PMIX_ALLOC_NETWORK_SEC_KEY - a security key for the1
requested network allocation. NOTE: the assigned values may differ from those requested,2
especially if PMIX_INFO_REQD was not set in the request.3

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)4
Mbits/sec.5

PMIX_ALLOC_NETWORK_QOS "pmix.alloc.netqos" (char*)6
Quality of service level.7

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)8
Time in seconds.9

PMIX_ALLOC_NETWORK_TYPE "pmix.alloc.nettype" (char*)10
Type of desired transport (e.g., “tcp”, “udp”)11

PMIX_ALLOC_NETWORK_PLANE "pmix.alloc.netplane" (char*)12
ID string for the NIC (aka plane) to be used for this allocation (e.g., CIDR for Ethernet)13

PMIX_ALLOC_NETWORK_ENDPTS "pmix.alloc.endpts" (size_t)14
Number of endpoints to allocate per process15

PMIX_ALLOC_NETWORK_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)16
Number of endpoints to allocate per node17

PMIX_ALLOC_NETWORK_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)18
Network security key19

3.4.28 Job control attributes20

Attributes used to request control operations on an executing application - these are values passed21
to the PMIx_Job_control_nb API and are not accessed using the PMIx_Get API.22

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)23
Provide a string identifier for this request.24

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)25
Pause the specified processes.26

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)27
Resume (“un-pause”) the specified processes.28

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)29
Cancel the specified request (NULL implies cancel all requests from this requestor).30

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)31
Forcibly terminate the specified processes and cleanup.32

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)33
Restart the specified processes using the given checkpoint ID.34

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)35
Checkpoint the specified processes and assign the given ID to it.36

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)37
Use event notification to trigger a process checkpoint.38

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)39
Use the given signal to trigger a process checkpoint.40

CHAPTER 3. DATA STRUCTURES AND TYPES 75

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)1
Time in seconds to wait for a checkpoint to complete.2

PMIX_JOB_CTRL_CHECKPOINT_METHOD3
"pmix.jctrl.ckmethod" (pmix_data_array_t)4

Array of pmix_info_t declaring each method and value supported by this application.5
PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)6

Send given signal to specified processes.7
PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)8

Regular expression identifying nodes that are to be provisioned.9
PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)10

Name of the image that is to be provisioned.11
PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)12

Indicate that the job can be pre-empted.13
PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)14

Politely terminate the specified processes.15
PMIX_REGISTER_CLEANUP "pmix.reg.cleanup" (char*)16

Comma-delimited list of files to be removed upon process termination17
PMIX_REGISTER_CLEANUP_DIR "pmix.reg.cleanupdir" (char*)18

Comma-delimited list of directories to be removed upon process termination19
PMIX_CLEANUP_RECURSIVE "pmix.clnup.recurse" (bool)20

Recursively cleanup all subdirectories under the specified one(s)21
PMIX_CLEANUP_EMPTY "pmix.clnup.empty" (bool)22

Only remove empty subdirectories23
PMIX_CLEANUP_IGNORE "pmix.clnup.ignore" (char*)24

Comma-delimited list of filenames that are not to be removed25
PMIX_CLEANUP_LEAVE_TOPDIR "pmix.clnup.lvtop" (bool)26

When recursively cleaning subdirectories, do not remove the top-level directory (the one27
given in the cleanup request)28

3.4.29 Monitoring attributes29

Attributes used to control monitoring of an executing application- these are values passed to the30
PMIx_Process_monitor_nb API and are not accessed using the PMIx_Get API.31

PMIX_MONITOR_ID "pmix.monitor.id" (char*)32
Provide a string identifier for this request.33

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)34
Identifier to be canceled (NULL means cancel all monitoring for this process).35

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)36
The application desires to control the response to a monitoring event.37

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)38
Register to have the PMIx server monitor the requestor for heartbeats.39

PMIX_SEND_HEARTBEAT "pmix.monitor.beat" (void)40

76 PMIx Standard – Version 3.0 – December 2018

Send heartbeat to local PMIx server.1
PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)2

Time in seconds before declaring heartbeat missed.3
PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)4

Number of heartbeats that can be missed before generating the event.5
PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)6

Register to monitor file for signs of life.7
PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)8

Monitor size of given file is growing to determine if the application is running.9
PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)10

Monitor time since last access of given file to determine if the application is running.11
PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)12

Monitor time since last modified of given file to determine if the application is running.13
PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)14

Time in seconds between checking the file.15
PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)16

Number of file checks that can be missed before generating the event.17

3.4.30 Security attributes18

PMIx v3.0 Attributes for managing security credentials19

PMIX_CRED_TYPE "pmix.sec.ctype" (char*)20
When passed in PMIx_Get_credential , a prioritized, comma-delimited list of desired21
credential types for use in environments where multiple authentication mechanisms may be22
available. When returned in a callback function, a string identifier of the credential type.23

PMIX_CRYPTO_KEY "pmix.sec.key" (pmix_byte_object_t)24
Blob containing crypto key25

3.4.31 IO Forwarding attributes26

PMIx v3.0 Attributes used to control IO forwarding behavior27

PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)28
The requested size of the server cache in bytes for each specified channel. By default, the29
server is allowed (but not required) to drop all bytes received beyond the max size.30

PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)31
In an overflow situation, drop the oldest bytes to make room in the cache.32

PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)33
In an overflow situation, drop any new bytes received until room becomes available in the34
cache (default).35

PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)36

CHAPTER 3. DATA STRUCTURES AND TYPES 77

Controls grouping of IO on the specified channel(s) to avoid being called every time a bit of1
IO arrives. The library will execute the callback whenever the specified number of bytes2
becomes available. Any remaining buffered data will be “flushed” upon call to deregister the3
respective channel.4

PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)5
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering6
size, this prevents IO from being held indefinitely while waiting for another payload to arrive.7

PMIX_IOF_COMPLETE "pmix.iof.cmp" (bool)8
Indicates whether or not the specified IO channel has been closed by the source.9

PMIX_IOF_TAG_OUTPUT "pmix.iof.tag" (bool)10
Tag output with the channel it comes from.11

PMIX_IOF_TIMESTAMP_OUTPUT "pmix.iof.ts" (bool)12
Timestamp output13

PMIX_IOF_XML_OUTPUT "pmix.iof.xml" (bool)14
Format output in XML15

3.4.32 Application setup attributes16

PMIx v3.0 Attributes for controlling contents of application setup data17

PMIX_SETUP_APP_ENVARS "pmix.setup.env" (bool)18
Harvest and include relevant environmental variables19

PMIX_SETUP_APP_NONENVARS ""pmix.setup.nenv" (bool)20
Include all relevant data other than environmental variables21

PMIX_SETUP_APP_ALL "pmix.setup.all" (bool)22
Include all relevant data23

3.5 Callback Functions24

PMIx provides blocking and nonblocking versions of most APIs. In the nonblocking versions, a25
callback is activated upon completion of the the operation. This section describes many of those26
callbacks.27

3.5.1 Release Callback Function28

Summary29

The pmix_release_cbfunc_t is used by the pmix_modex_cbfunc_t and30
pmix_info_cbfunc_t operations to indicate that the callback data may be reclaimed/freed by31
the caller.32

78 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
typedef void (*pmix_release_cbfunc_t)2

(void *cbdata)3

C

INOUT cbdata4
Callback data passed to original API call (memory reference)5

Description6

Since the data is “owned” by the host server, provide a callback function to notify the host server7
that we are done with the data so it can be released.8

3.5.2 Modex Callback Function9

Summary10

The pmix_modex_cbfunc_t is used by the pmix_server_fencenb_fn_t and11
pmix_server_dmodex_req_fn_t PMIx server operations to return modex business card12
exchange (BCX) data.13

PMIx v1.0 C
typedef void (*pmix_modex_cbfunc_t)14

(pmix_status_t status,15
const char *data, size_t ndata,16
void *cbdata,17
pmix_release_cbfunc_t release_fn,18
void *release_cbdata)19

C

IN status20
Status associated with the operation (handle)21

IN data22
Data to be passed (pointer)23

IN ndata24
size of the data (size_t)25

IN cbdata26
Callback data passed to original API call (memory reference)27

IN release_fn28
Callback for releasing data (function pointer)29

IN release_cbdata30
Pointer to be passed to release_fn (memory reference)31

CHAPTER 3. DATA STRUCTURES AND TYPES 79

Description1

A callback function that is solely used by PMIx servers, and not clients, to return modex BCX data2
in response to “fence” and “get” operations. The returned blob contains the data collected from3
each server participating in the operation.4

3.5.3 Spawn Callback Function5

Summary6

The pmix_spawn_cbfunc_t is used on the PMIx client side by PMIx_Spawn_nb and on7
the PMIx server side by pmix_server_spawn_fn_t .8

PMIx v1.0 C
typedef void (*pmix_spawn_cbfunc_t)9

(pmix_status_t status,10
pmix_nspace_t nspace, void *cbdata);11

C

IN status12
Status associated with the operation (handle)13

IN nspace14
Namespace string (pmix_nspace_t)15

IN cbdata16
Callback data passed to original API call (memory reference)17

Description18

The callback will be executed upon launch of the specified applications in PMIx_Spawn_nb , or19
upon failure to launch any of them.20

The status of the callback will indicate whether or not the spawn succeeded. The nspace of the21
spawned processes will be returned, along with any provided callback data. Note that the returned22
nspace value will not be protected by the PRI upon return from the callback function, so the23
receiver must copy it if it needs to be retained.24

3.5.4 Op Callback Function25

Summary26

The pmix_op_cbfunc_t is used by operations that simply return a status.27

PMIx v1.0

80 PMIx Standard – Version 3.0 – December 2018

C
typedef void (*pmix_op_cbfunc_t)1

(pmix_status_t status, void *cbdata);2

C

IN status3
Status associated with the operation (handle)4

IN cbdata5
Callback data passed to original API call (memory reference)6

Description7

Used by a wide range of PMIx API’s including PMIx_Fence_nb ,8
pmix_server_client_connected_fn_t , PMIx_server_register_nspace . This9
callback function is used to return a status to an often nonblocking operation.10

3.5.5 Lookup Callback Function11

Summary12

The pmix_lookup_cbfunc_t is used by PMIx_Lookup_nb to return data.13

PMIx v1.0 C
typedef void (*pmix_lookup_cbfunc_t)14

(pmix_status_t status,15
pmix_pdata_t data[], size_t ndata,16
void *cbdata);17

C

IN status18
Status associated with the operation (handle)19

IN data20
Array of data returned (pmix_pdata_t)21

IN ndata22
Number of elements in the data array (size_t)23

IN cbdata24
Callback data passed to original API call (memory reference)25

CHAPTER 3. DATA STRUCTURES AND TYPES 81

Description1

A callback function for calls to PMIx_Lookup_nb The function will be called upon completion2
of the command with the status indicating the success or failure of the request. Any retrieved data3
will be returned in an array of pmix_pdata_t structs. The namespace and rank of the process4
that provided each data element is also returned.5

Note that these structures will be released upon return from the callback function, so the receiver6
must copy/protect the data prior to returning if it needs to be retained.7

3.5.6 Value Callback Function8

Summary9

The pmix_value_cbfunc_t is used by PMIx_Get_nb to return data.10

PMIx v1.0 C
typedef void (*pmix_value_cbfunc_t)11

(pmix_status_t status,12
pmix_value_t *kv, void *cbdata);13

C

IN status14
Status associated with the operation (handle)15

IN kv16
Key/value pair representing the data (pmix_value_t)17

IN cbdata18
Callback data passed to original API call (memory reference)19

Description20

A callback function for calls to PMIx_Get_nb . The status indicates if the requested data was21
found or not. A pointer to the pmix_value_t structure containing the found data is returned.22
The pointer will be NULL if the requested data was not found.23

3.5.7 Info Callback Function24

Summary25

The pmix_info_cbfunc_t is a general information callback used by various APIs.26

PMIx v2.0

82 PMIx Standard – Version 3.0 – December 2018

C
typedef void (*pmix_info_cbfunc_t)1

(pmix_status_t status,2
pmix_info_t info[], size_t ninfo,3
void *cbdata,4
pmix_release_cbfunc_t release_fn,5
void *release_cbdata);6

C

IN status7
Status associated with the operation (pmix_status_t)8

IN info9
Array of pmix_info_t returned by the operation (pointer)10

IN ninfo11
Number of elements in the info array (size_t)12

IN cbdata13
Callback data passed to original API call (memory reference)14

IN release_fn15
Function to be called when done with the info data (function pointer)16

IN release_cbdata17
Callback data to be passed to release_fn (memory reference)18

Description19

The status indicates if requested data was found or not. An array of pmix_info_t will contain20
the key/value pairs.21

3.5.8 Event Handler Registration Callback Function22

The pmix_evhdlr_reg_cbfunc_t callback function.23

Advice to users

The PMIx ad hoc v1.0 Standard defined an error handler registration callback function with a24
compatible signature, but with a different type definition function name25
(pmix_errhandler_reg_cbfunc_t). It was removed from the v2.0 Standard and is not included in this26
document to avoid confusion.27

PMIx v2.0

CHAPTER 3. DATA STRUCTURES AND TYPES 83

C
typedef void (*pmix_evhdlr_reg_cbfunc_t)1

(pmix_status_t status,2
size_t evhdlr_ref,3
void *cbdata)4

C

IN status5
Status indicates if the request was successful or not (pmix_status_t)6

IN evhdlr_ref7
Reference assigned to the event handler by PMIx — this reference * must be used to8
deregister the err handler (size_t)9

IN cbdata10
Callback data passed to original API call (memory reference)11

Description12

Define a callback function for calls to PMIx_Register_event_handler13

3.5.9 Notification Handler Completion Callback Function14

Summary15

The pmix_event_notification_cbfunc_fn_t is called by event handlers to indicate16
completion of their operations.17

PMIx v2.0 C
typedef void (*pmix_event_notification_cbfunc_fn_t)18

(pmix_status_t status,19
pmix_info_t *results, size_t nresults,20
pmix_op_cbfunc_t cbfunc, void *thiscbdata,21
void *notification_cbdata);22

C

IN status23
Status returned by the event handler’s operation (pmix_status_t)24

IN results25
Results from this event handler’s operation on the event (pmix_info_t)26

IN nresults27
Number of elements in the results array (size_t)28

IN cbfunc29
pmix_op_cbfunc_t function to be executed when PMIx completes processing the30
callback (function reference)31

84 PMIx Standard – Version 3.0 – December 2018

IN thiscbdata1
Callback data that was passed in to the handler (memory reference)2

IN cbdata3
Callback data to be returned when PMIx executes cbfunc (memory reference)4

Description5

Define a callback by which an event handler can notify the PMIx library that it has completed its6
response to the notification. The handler is required to execute this callback so the library can7
determine if additional handlers need to be called. The handler shall return8
PMIX_ERR_EVENT_COMPLETE if no further action is required. The return status of each event9
handler and any returned pmix_info_t structures will be added to the results array of10
pmix_info_t passed to any subsequent event handlers to help guide their operation.11

If non-NULL, the provided callback function will be called to allow the event handler to release the12
provided info array and execute any other required cleanup operations.13

3.5.10 Notification Function14

Summary15

The pmix_notification_fn_t is called by PMIx to deliver notification of an event.16

Advice to users

The PMIx ad hoc v1.0 Standard defined an error notification function with an identical name, but17
different signature than the v2.0 Standard described below. The ad hoc v1.0 version was removed18
from the v2.0 Standard is not included in this document to avoid confusion.19

PMIx v2.0 C
typedef void (*pmix_notification_fn_t)20

(size_t evhdlr_registration_id,21
pmix_status_t status,22
const pmix_proc_t *source,23
pmix_info_t info[], size_t ninfo,24
pmix_info_t results[], size_t nresults,25
pmix_event_notification_cbfunc_fn_t cbfunc,26
void *cbdata);27

CHAPTER 3. DATA STRUCTURES AND TYPES 85

C

IN evhdlr_registration_id1
Registration number of the handler being called (size_t)2

IN status3
Status associated with the operation (pmix_status_t)4

IN source5
Identifier of the process that generated the event (pmix_proc_t). If the source is the6
SMS, then the nspace will be empty and the rank will be PMIX_RANK_UNDEF7

IN info8
Information describing the event (pmix_info_t). This argument will be NULL if no9
additional information was provided by the event generator.10

IN ninfo11
Number of elements in the info array (size_t)12

IN results13
Aggregated results from prior event handlers servicing this event (pmix_info_t). This14
argument will be NULL if this is the first handler servicing the event, or if no prior handlers15
provided results.16

IN nresults17
Number of elements in the results array (size_t)18

IN cbfunc19
pmix_event_notification_cbfunc_fn_t callback function to be executed upon20
completion of the handler’s operation and prior to handler return (function reference).21

IN cbdata22
Callback data to be passed to cbfunc (memory reference)23

Description24

Note that different RMs may provide differing levels of support for event notification to application25
processes. Thus, the info array may be NULL or may contain detailed information of the event. It is26
the responsibility of the application to parse any provided info array for defined key-values if it so27
desires.28

Advice to users

Possible uses of the info array include:29

• for the host RM to alert the process as to planned actions, such as aborting the session, in30
response to the reported event31

• provide a timeout for alternative action to occur, such as for the application to request an32
alternate response to the event33

86 PMIx Standard – Version 3.0 – December 2018

For example, the RM might alert the application to the failure of a node that resulted in termination1
of several processes, and indicate that the overall session will be aborted unless the application2
requests an alternative behavior in the next 5 seconds. The application then has time to respond3
with a checkpoint request, or a request to recover from the failure by obtaining replacement nodes4
and restarting from some earlier checkpoint.5

Support for these options is left to the discretion of the host RM. Info keys are included in the6
common definitions above but may be augmented by environment vendors.7

Advice to PMIx server hosts

On the server side, the notification function is used to inform the PMIx server library’s host of a8
detected event in the PMIx server library. Events generated by PMIx clients are communicated to9
the PMIx server library, but will be relayed to the host via the10
pmix_server_notify_event_fn_t function pointer, if provided.11

3.5.11 Server Setup Application Callback Function12

The PMIx_server_setup_application callback function.13

Summary14

Provide a function by which the resource manager can receive application-specific environmental15
variables and other setup data prior to launch of an application.16

CHAPTER 3. DATA STRUCTURES AND TYPES 87

Format1

PMIx v2.0 C
typedef void (*pmix_setup_application_cbfunc_t)(2

pmix_status_t status,3
pmix_info_t info[], size_t ninfo,4
void *provided_cbdata,5
pmix_op_cbfunc_t cbfunc, void *cbdata)6

C

IN status7
returned status of the request (pmix_status_t)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

IN provided_cbdata13
Data originally passed to call to PMIx_server_setup_application (memory14
reference)15

IN cbfunc16
pmix_op_cbfunc_t function to be called when processing completed (function17
reference)18

IN cbdata19
Data to be passed to the cbfunc callback function (memory reference)20

Description21

Define a function to be called by the PMIx server library for return of application-specific setup22
data in response to a request from the host RM. The returned info array is owned by the PMIx23
server library and will be free’d when the provided cbfunc is called.24

3.5.12 Server Direct Modex Response Callback Function25

The PMIx_server_dmodex_request callback function.26

Summary27

Provide a function by which the local PMIx server library can return connection and other data28
posted by local application processes to the host resource manager.29

88 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
typedef void (*pmix_dmodex_response_fn_t)(pmix_status_t status,2

char *data, size_t sz,3
void *cbdata);4

C

IN status5
Returned status of the request (pmix_status_t)6

IN data7
Pointer to a data "blob" containing the requested information (handle)8

IN sz9
Number of bytes in the data blob (integer)10

IN cbdata11
Data passed into the initial call to PMIx_server_dmodex_request (memory12
reference)13

Description14

Define a function to be called by the PMIx server library for return of information posted by a local15
application process (via PMIx_Put with subsequent PMIx_Commit) in response to a request16
from the host RM. The returned data blob is owned by the PMIx server library and will be free’d17
upon return from the function.18

3.5.13 Tool connection request callback function19

Summary20

Callback function for incoming connection request from a local client21

Format22

PMIx v1.0 C
typedef void (*pmix_connection_cbfunc_t)(23

int incoming_sd, void *cbdata)24

C

IN incoming_sd25
(integer)26

IN cbdata27
(memory reference)28

CHAPTER 3. DATA STRUCTURES AND TYPES 89

Description1

Callback function for incoming connection requests from local clients - only used by host2
environments that wish to directly handle socket connection requests.3

3.5.14 Tool connection callback function4

Summary5

Callback function for incoming tool connections.6

Format7

PMIx v2.0 C
typedef void (*pmix_tool_connection_cbfunc_t)(8

pmix_status_t status,9
pmix_proc_t *proc, void *cbdata)10

C

IN status11
pmix_status_t value (handle)12

IN proc13
pmix_proc_t structure containing the identifier assigned to the tool (handle)14

IN cbdata15
Data to be passed (memory reference)16

Description17

Callback function for incoming tool connections. The host environment shall provide a18
namespace/rank identifier for the connecting tool.19

Advice to PMIx server hosts

It is assumed that rank=0 will be the normal assignment, but allow for the future possibility of a20
parallel set of tools connecting, and thus each process requiring a unique rank.21

3.5.15 Credential callback function22

Summary23

Callback function to return a requested security credential24

90 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v3.0 C
typedef void (*pmix_credential_cbfunc_t)(2

pmix_status_t status,3
pmix_byte_object_t *credential,4
pmix_info_t info[], size_t ninfo,5
void *cbdata)6

C

IN status7
pmix_status_t value (handle)8

IN credential9
pmix_byte_object_t structure containing the security credential (handle)10

IN info11
Array of provided by the system to pass any additional information about the credential -12
e.g., the identity of the issuing agent. (handle)13

IN ninfo14
Number of elements in info (size_t)15

IN cbdata16
Object passed in original request (memory reference)17

Description18

Define a callback function to return a requested security credential. Information provided by the19
issuing agent can subsequently be used by the application for a variety of purposes. Examples20
include:21

• checking identified authorizations to determine what requests/operations are feasible as a means22
to steering workflows23

• compare the credential type to that of the local SMS for compatibility24

Advice to users

The credential is opaque and therefore understandable only by a service compatible with the issuer.25
The info array is owned by the PMIx library and is not to be released or altered by the receiving26
party.27

3.5.16 Credential validation callback function28

Summary29

Callback function for security credential validation30

CHAPTER 3. DATA STRUCTURES AND TYPES 91

Format1

PMIx v3.0 C
typedef void (*pmix_validation_cbfunc_t)(2

pmix_status_t status,3
pmix_info_t info[], size_t ninfo,4
void *cbdata);5

C

IN status6
pmix_status_t value (handle)7

IN info8
Array of pmix_info_t provided by the system to pass any additional information about9
the authentication - e.g., the effective userid and group id of the certificate holder, and any10
related authorizations (handle)11

IN ninfo12
Number of elements in info (size_t)13

IN cbdata14
Object passed in original request (memory reference)15

Description16

Define a validation callback function to indicate if a provided credential is valid, and any17
corresponding information regarding authorizations and other security matters.18

Advice to users

The precise contents of the array will depend on the host environment and its associated security19
system. At the minimum, it is expected (but not required) that the array will contain entries for the20
PMIX_USERID and PMIX_GRPID of the client described in the credential. The info array is21
owned by the PMIx library and is not to be released or altered by the receiving party.22

3.5.17 IOF delivery function23

Summary24

Callback function for delivering forwarded IO to a process25

92 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v3.0 C
typedef void (*pmix_iof_cbfunc_t)(2

size_t iofhdlr, pmix_iof_channel_t channel,3
pmix_proc_t *source, char *payload,4
pmix_info_t info[], size_t ninfo);5

C

IN iofhdlr6
Registration number of the handler being invoked (size_t)7

IN channel8
bitmask identifying the channel the data arrived on (pmix_iof_channel_t)9

IN source10
Pointer to a pmix_proc_t identifying the namespace/rank of the process that generated11
the data (char*)12

IN payload13
Pointer to character array containing the data.14

IN info15
Array of pmix_info_t provided by the source containing metadata about the payload.16
This could include PMIX_IOF_COMPLETE (handle)17

IN ninfo18
Number of elements in info (size_t)19

Description20

Define a callback function for delivering forwarded IO to a process. This function will be called21
whenever data becomes available, or a specified buffering size and/or time has been met.22

Advice to users

Multiple strings may be included in a given payload, and the payload may not be NULL terminated.23
The user is responsible for releasing the payload memory. The info array is owned by the PMIx24
library and is not to be released or altered by the receiving party.25

3.5.18 IOF and Event registration function26

Summary27

Callback function for calls to register handlers, e.g., event notification and IOF requests.28

CHAPTER 3. DATA STRUCTURES AND TYPES 93

Format1

PMIx v3.0 C
typedef void (*pmix_hdlr_reg_cbfunc_t)(pmix_status_t status,2

size_t refid,3
void *cbdata);4

C

IN status5
PMIX_SUCCESS or an appropriate error constant (pmix_status_t)6

IN refid7
reference identifier assigned to the handler by PMIx, used to deregister the handler8
(size_t)9

IN cbdata10
object provided to the registration call (pointer)11

Description12

Callback function for calls to register handlers, e.g., event notification and IOF requests.13

3.6 Constant String Functions14

Provide a string representation for several types of values. Note that the provided string is statically15
defined and must NOT be free’d.16

Summary17

String representation of a pmix_status_t .18

PMIx v1.0 C
const char*19
PMIx_Error_string(pmix_status_t status);20

C

Summary21

String representation of a pmix_proc_state_t .22

PMIx v2.0 C
const char*23
PMIx_Proc_state_string(pmix_proc_state_t state);24

C

94 PMIx Standard – Version 3.0 – December 2018

Summary1

String representation of a pmix_scope_t .2

PMIx v2.0 C
const char*3
PMIx_Scope_string(pmix_scope_t scope);4

C

Summary5

String representation of a pmix_persistence_t .6

PMIx v2.0 C
const char*7
PMIx_Persistence_string(pmix_persistence_t persist);8

C

Summary9

String representation of a pmix_data_range_t .10

PMIx v2.0 C
const char*11
PMIx_Data_range_string(pmix_data_range_t range);12

C

Summary13

String representation of a pmix_info_directives_t .14

PMIx v2.0 C
const char*15
PMIx_Info_directives_string(pmix_info_directives_t directives);16

C

Summary17

String representation of a pmix_data_type_t .18

PMIx v2.0 C
const char*19
PMIx_Data_type_string(pmix_data_type_t type);20

C

CHAPTER 3. DATA STRUCTURES AND TYPES 95

Summary1

String representation of a pmix_alloc_directive_t .2

PMIx v2.0 C
const char*3
PMIx_Alloc_directive_string(pmix_alloc_directive_t directive);4

C

Summary5

String representation of a pmix_iof_channel_t .6

PMIx v3.0 C
const char*7
PMIx_IOF_channel_string(pmix_iof_channel_t channel);8

C

96 PMIx Standard – Version 3.0 – December 2018

CHAPTER 4

Initialization and Finalization

The PMIx library is required to be initialized and finalized around the usage of most of the APIs.1
The APIs that may be used outside of the initialized and finalized region are noted. All other APIs2
must be used inside this region.3

There are three sets of initialization and finalization functions depending upon the role of the4
process in the PMIx universe. Each of these functional sets are described in this chapter. Note that5
a process can only call one of the init/finalize functional pairs - e.g., a process that calls the client6
initialization function cannot also call the tool or server initialization functions, and must call the7
corresponding client finalize.8

Advice to users
Processes that initialize as a server or tool automatically are given access to all client APIs. Server9
initialization includes setting up the infrastructure to support local clients - thus, it necessarily10
includes overhead and an increased memory footprint. Tool initialization automatically searches for11
a server to which it can connect — if declared as a launcher, the PMIx library sets up the required12
“hooks” for other tools (e.g., debuggers) to attach to it.13

4.1 Query14

The API defined in this section can be used by any PMIx process, regardless of their role in the15
PMIx universe.16

4.1.1 PMIx_Initialized17

Format18

PMIx v1.0 C
int PMIx_Initialized(void)19

C
A value of 1 (true) will be returned if the PMIx library has been initialized, and 0 (false) otherwise.20

Rationale
The return value is an integer for historical reasons as that was the signature of prior PMI libraries.21

97

Description1

Check to see if the PMIx library has been initialized using any of the init functions: PMIx_Init ,2
PMIx_server_init , or PMIx_tool_init .3

4.1.2 PMIx_Get_version4

Summary5

Get the PMIx version information.6

Format7

PMIx v1.0 C
const char* PMIx_Get_version(void)8

C

Description9

Get the PMIx version string. Note that the provided string is statically defined and must not be10
free’d.11

4.2 Client Initialization and Finalization12

Initialization and finalization routines for PMIx clients.13

Advice to users

The PMIx ad hoc v1.0 Standard defined the PMIx_Init function, but modified the function14
signature in the v1.2 version. The ad hoc v1.0 version is not included in this document to avoid15
confusion.16

4.2.1 PMIx_Init17

Summary18

Initialize the PMIx client library19

98 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.2 C
pmix_status_t2
PMIx_Init(pmix_proc_t *proc,3

pmix_info_t info[], size_t ninfo)4

C

INOUT proc5
proc structure (handle)6

IN info7
Array of pmix_info_t structures (array of handles)8

IN ninfo9
Number of element in the info array (size_t)10

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.11

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:12

PMIX_USOCK_DISABLE "pmix.usock.disable" (bool)13
Disable legacy UNIX socket (usock) support If the library supports Unix socket14
connections, this attribute may be supported for disabling it.15

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)16
POSIX mode_t (9 bits valid) If the library supports socket connections, this attribute may17
be supported for setting the socket mode.18

PMIX_SINGLE_LISTENER "pmix.sing.listnr" (bool)19
Use only one rendezvous socket, letting priorities and/or environment parameters select the20
active transport. If the library supports multiple methods for clients to connect to servers,21
this attribute may be supported for disabling all but one of them.22

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)23
If provided, directs that the TCP URI be reported and indicates the desired method of24
reporting: ’-’ for stdout, ’+’ for stderr, or filename. If the library supports TCP socket25
connections, this attribute may be supported for reporting the URI.26

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)27
Comma-delimited list of devices and/or CIDR notation to include when establishing the28
TCP connection. If the library supports TCP socket connections, this attribute may be29
supported for specifying the interfaces to be used.30

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)31
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the32
TCP connection. If the library supports TCP socket connections, this attribute may be33
supported for specifying the interfaces that are not to be used.34

CHAPTER 4. INITIALIZATION AND FINALIZATION 99

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)1
The IPv4 port to be used. If the library supports IPV4 connections, this attribute may be2
supported for specifying the port to be used.3

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)4
The IPv6 port to be used. If the library supports IPV6 connections, this attribute may be5
supported for specifying the port to be used.6

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)7
Set to true to disable IPv4 family of addresses. If the library supports IPV4 connections,8
this attribute may be supported for disabling it.9

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)10
Set to true to disable IPv6 family of addresses. If the library supports IPV6 connections,11
this attribute may be supported for disabling it.12

PMIX_EVENT_BASE "pmix.evbase" (struct event_base *)13
Pointer to libevent1 event_base to use in place of the internal progress thread.14

PMIX_GDS_MODULE "pmix.gds.mod" (char*)15
Comma-delimited string of desired modules. This attribute is specific to the PRI and16
controls only the selection of GDS module for internal use by the process. Module selection17
for interacting with the server is performed dynamically during the connection process.18

Description19

Initialize the PMIx client, returning the process identifier assigned to this client’s application in the20
provided pmix_proc_t struct. Passing a value of NULL for this parameter is allowed if the user21
wishes solely to initialize the PMIx system and does not require return of the identifier at that time.22

When called, the PMIx client shall check for the required connection information of the local PMIx23
server and establish the connection. If the information is not found, or the server connection fails,24
then an appropriate error constant shall be returned.25

If successful, the function shall return PMIX_SUCCESS and fill the proc structure (if provided)26
with the server-assigned namespace and rank of the process within the application. In addition, all27
startup information provided by the resource manager shall be made available to the client process28
via subsequent calls to PMIx_Get .29

The PMIx client library shall be reference counted, and so multiple calls to PMIx_Init are30
allowed by the standard. Thus, one way for an application process to obtain its namespace and rank31
is to simply call PMIx_Init with a non-NULL proc parameter. Note that each call to32
PMIx_Init must be balanced with a call to PMIx_Finalize to maintain the reference count.33

1http://libevent.org/

100 PMIx Standard – Version 3.0 – December 2018

http://libevent.org/

Each call to PMIx_Init may contain an array of pmix_info_t structures passing directives to1
the PMIx client library as per the above attributes.2

Multiple calls to PMIx_Init shall not include conflicting directives. The PMIx_Init function3
will return an error when directives that conflict with prior directives are encountered.4

4.2.2 PMIx_Finalize5

Summary6

Finalize the PMIx client library.7

Format8

PMIx v1.0 C
pmix_status_t9
PMIx_Finalize(const pmix_info_t info[], size_t ninfo)10

C

IN info11
Array of pmix_info_t structures (array of handles)12

IN ninfo13
Number of element in the info array (size_t)14

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.15

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:16

PMIX_EMBED_BARRIER "pmix.embed.barrier" (bool)17
Execute a blocking fence operation before executing the specified operation. For example,18
PMIx_Finalize does not include an internal barrier operation by default. This attribute19
would direct PMIx_Finalize to execute a barrier as part of the finalize operation.20

Description21

Decrement the PMIx client library reference count. When the reference count reaches zero, the22
library will finalize the PMIx client, closing the connection with the local PMIx server and23
releasing all internally allocated memory.24

CHAPTER 4. INITIALIZATION AND FINALIZATION 101

4.3 Tool Initialization and Finalization1

Initialization and finalization routines for PMIx tools.2

4.3.1 PMIx_tool_init3

Summary4

Initialize the PMIx library for operating as a tool.5

Format6

PMIx v2.0 C
pmix_status_t7
PMIx_tool_init(pmix_proc_t *proc,8

pmix_info_t info[], size_t ninfo)9

C

INOUT proc10
pmix_proc_t structure (handle)11

IN info12
Array of pmix_info_t structures (array of handles)13

IN ninfo14
Number of element in the info array (size_t)15

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.16

Required Attributes

The following attributes are required to be supported by all PMIx libraries:17

PMIX_TOOL_NSPACE "pmix.tool.nspace" (char*)18
Name of the namespace to use for this tool.19

PMIX_TOOL_RANK "pmix.tool.rank" (uint32_t)20
Rank of this tool.21

PMIX_TOOL_DO_NOT_CONNECT "pmix.tool.nocon" (bool)22
The tool wants to use internal PMIx support, but does not want to connect to a PMIx server.23

PMIX_SERVER_URI "pmix.srvr.uri" (char*)24
URI of the PMIx server to be contacted.25

102 PMIx Standard – Version 3.0 – December 2018

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:1

PMIX_CONNECT_TO_SYSTEM "pmix.cnct.sys" (bool)2
The requestor requires that a connection be made only to a local, system-level PMIx server.3

PMIX_CONNECT_SYSTEM_FIRST "pmix.cnct.sys.first" (bool)4
Preferentially, look for a system-level PMIx server first.5

PMIX_SERVER_PIDINFO "pmix.srvr.pidinfo" (pid_t)6
PID of the target PMIx server for a tool.7

PMIX_TCP_URI "pmix.tcp.uri" (char*)8
The URI of the PMIx server to connect to, or a file name containing it in the form of9
file:<name of file containing it>.10

PMIX_CONNECT_RETRY_DELAY "pmix.tool.retry" (uint32_t)11
Time in seconds between connection attempts to a PMIx server.12

PMIX_CONNECT_MAX_RETRIES "pmix.tool.mretries" (uint32_t)13
Maximum number of times to try to connect to PMIx server.14

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)15
POSIX mode_t (9 bits valid) If the library supports socket connections, this attribute may16
be supported for setting the socket mode.17

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)18
If provided, directs that the TCP URI be reported and indicates the desired method of19
reporting: ’-’ for stdout, ’+’ for stderr, or filename. If the library supports TCP socket20
connections, this attribute may be supported for reporting the URI.21

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)22
Comma-delimited list of devices and/or CIDR notation to include when establishing the23
TCP connection. If the library supports TCP socket connections, this attribute may be24
supported for specifying the interfaces to be used.25

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)26
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the27
TCP connection. If the library supports TCP socket connections, this attribute may be28
supported for specifying the interfaces that are not to be used.29

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)30
The IPv4 port to be used. If the library supports IPV4 connections, this attribute may be31
supported for specifying the port to be used.32

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)33
The IPv6 port to be used. If the library supports IPV6 connections, this attribute may be34
supported for specifying the port to be used.35

CHAPTER 4. INITIALIZATION AND FINALIZATION 103

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)1
Set to true to disable IPv4 family of addresses. If the library supports IPV4 connections,2
this attribute may be supported for disabling it.3

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)4
Set to true to disable IPv6 family of addresses. If the library supports IPV6 connections,5
this attribute may be supported for disabling it.6

PMIX_EVENT_BASE "pmix.evbase" (struct event_base *)7
Pointer to libevent2 event_base to use in place of the internal progress thread.8

PMIX_GDS_MODULE "pmix.gds.mod" (char*)9
Comma-delimited string of desired modules. This attribute is specific to the PRI and10
controls only the selection of GDS module for internal use by the process. Module selection11
for interacting with the server is performed dynamically during the connection process.12

Description13

Initialize the PMIx tool, returning the process identifier assigned to this tool in the provided14
pmix_proc_t struct. The info array is used to pass user requests pertaining to the init and15
subsequent operations. Passing a NULL value for the array pointer is supported if no directives are16
desired.17

If called with the PMIX_TOOL_DO_NOT_CONNECT attribute, the PMIx tool library will fully18
initialize but not attempt to connect to a PMIx server. The tool can connect to a server at a later19
point in time, if desired. In all other cases, the PMIx tool library will attempt to connect to20
according to the following precedence chain:21

• if PMIX_SERVER_URI or PMIX_TCP_URI is given, then connection will be attempted to the22
server at the specified URI. Note that it is an error for both of these attributes to be specified.23
PMIX_SERVER_URI is the preferred method as it is more generalized — PMIX_TCP_URI is24
provided for those cases where the user specifically wants to use a TCP transport for the25
connection and wants to error out if it isn’t available or cannot succeed. The PMIx library will26
return an error if connection fails — it will not proceed to check for other connection options as27
the user specified a particular one to use28

• if PMIX_SERVER_PIDINFO was provided, then the tool will search under the directory29
provided by the PMIX_SERVER_TMPDIR environmental variable for a rendezvous file created30
by the process corresponding to that PID. The PMIx library will return an error if the rendezvous31
file cannot be found, or the connection is refused by the server32

2http://libevent.org/

104 PMIx Standard – Version 3.0 – December 2018

http://libevent.org/

• if PMIX_CONNECT_TO_SYSTEM is given, then the tool will search for a system-level1
rendezvous file created by a PMIx server in the directory specified by the2
PMIX_SYSTEM_TMPDIR environmental variable. If found, then the tool will attempt to3
connect to it. An error is returned if the rendezvous file cannot be found or the connection is4
refused.5

• if PMIX_CONNECT_SYSTEM_FIRST is given, then the tool will search for a system-level6
rendezvous file created by a PMIx server in the directory specified by the7
PMIX_SYSTEM_TMPDIR environmental variable. If found, then the tool will attempt to8
connect to it. In this case, no error will be returned if the rendezvous file is not found or9
connection is refused — the PMIx library will silently continue to the next option10

• by default, the tool will search the directory tree under the directory provided by the11
PMIX_SERVER_TMPDIR environmental variable for rendezvous files of PMIx servers,12
attempting to connect to each it finds until one accepts the connection. If no rendezvous files are13
found, or all contacted servers refuse connection, then the PMIx library will return an error.14

If successful, the function will return PMIX_SUCCESS and will fill the provided structure (if15
provided) with the server-assigned namespace and rank of the tool. Note that each connection16
attempt in the above precedence chain will retry (with delay between each retry) a number of times17
according to the values of the corresponding attributes. Default is no retries.18

Note that the PMIx tool library is referenced counted, and so multiple calls to PMIx_tool_init19
are allowed. Thus, one way to obtain the namespace and rank of the process is to simply call20
PMIx_tool_init with a non-NULL parameter.21

4.3.2 PMIx_tool_finalize22

Summary23

Finalize the PMIx library for a tool connection.24

Format25

PMIx v2.0 C
pmix_status_t26
PMIx_tool_finalize(void)27

C

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.28

Description29

Finalize the PMIx tool library, closing the connection to the server. An error code will be returned30
if, for some reason, the connection cannot be cleanly terminated — in this case, the connection is31
dropped.32

CHAPTER 4. INITIALIZATION AND FINALIZATION 105

4.3.3 PMIx_tool_connect_to_server1

Summary2

Switch connection from the current PMIx server to another one, or initialize a connection to a3
specified server.4

Format5

PMIx v3.0 C
pmix_status_t6
PMIx_tool_connect_to_server(pmix_proc_t *proc,7

pmix_info_t info[], size_t ninfo)8

C

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.9

Required Attributes

The following attributes are required to be supported by all PMIx libraries:10

PMIX_CONNECT_TO_SYSTEM "pmix.cnct.sys" (bool)11
The requestor requires that a connection be made only to a local, system-level PMIx server.12

PMIX_CONNECT_SYSTEM_FIRST "pmix.cnct.sys.first" (bool)13
Preferentially, look for a system-level PMIx server first.14

PMIX_SERVER_URI "pmix.srvr.uri" (char*)15
URI of the PMIx server to be contacted.16

PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)17
Name of the namespace to use for this PMIx server.18

PMIX_SERVER_PIDINFO "pmix.srvr.pidinfo" (pid_t)19
PID of the target PMIx server for a tool.20

106 PMIx Standard – Version 3.0 – December 2018

Description1

Switch connection from the current PMIx server to another one, or initialize a connection to a2
specified server. Closes the connection, if existing, to a server and establishes a connection to the3
specified server. This function can be called at any time by a PMIx tool to shift connections4
between servers. The process identifier assigned to this tool is returned in the provided5
pmix_proc_t struct. Passing a value of NULL for this parameter is allowed if the user wishes6
solely to connect to the PMIx server and does not require return of the identifier at that time.7

Advice to PMIx library implementers

PMIx tools and clients are prohibited from being connected to more than one server at a time to8
avoid confusion in subsystems such as event notification.9

When a tool connects to a server that is under a different namespace manager (e.g., host RM) as the10
prior server, the identifier of the tool must remain unique in the namespaces. This may require the11
identifier of the tool to be changed on-the-fly, that is, the proc parameter would be filled (if12
non-NULL) with a different nspace/rank from the current tool identifier.13

Advice to users

Passing a NULL value for the info pointer is not allowed and will result in returning an error.14

Some PMIx implementations (for example, the current PRI) may not support connecting to a server15
that is not under the same namespace manager (e.g., host RM) as the tool.16

4.4 Server Initialization and Finalization17

Initialization and finalization routines for PMIx servers.18

4.4.1 PMIx_server_init19

Summary20

Initialize the PMIx server.21

CHAPTER 4. INITIALIZATION AND FINALIZATION 107

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_server_init(pmix_server_module_t *module,3

pmix_info_t info[], size_t ninfo)4

C

INOUT module5
pmix_server_module_t structure (handle)6

IN info7
Array of pmix_info_t structures (array of handles)8

IN ninfo9
Number of elements in the info array (size_t)10

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.11

Required Attributes

The following attributes are required to be supported by all PMIx libraries:12

PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)13
Name of the namespace to use for this PMIx server.14

PMIX_SERVER_RANK "pmix.srv.rank" (pmix_rank_t)15
Rank of this PMIx server16

PMIX_SERVER_TMPDIR "pmix.srvr.tmpdir" (char*)17
Top-level temporary directory for all client processes connected to this server, and where the18
PMIx server will place its tool rendezvous point and contact information.19

PMIX_SYSTEM_TMPDIR "pmix.sys.tmpdir" (char*)20
Temporary directory for this system, and where a PMIx server that declares itself to be a21
system-level server will place a tool rendezvous point and contact information.22

PMIX_SERVER_TOOL_SUPPORT "pmix.srvr.tool" (bool)23
The host RM wants to declare itself as willing to accept tool connection requests.24

PMIX_SERVER_SYSTEM_SUPPORT "pmix.srvr.sys" (bool)25
The host RM wants to declare itself as being the local system server for PMIx connection26
requests.27

108 PMIx Standard – Version 3.0 – December 2018

Optional Attributes

The following attributes are optional for implementers of PMIx libraries:1

PMIX_USOCK_DISABLE "pmix.usock.disable" (bool)2
Disable legacy UNIX socket (usock) support If the library supports Unix socket3
connections, this attribute may be supported for disabling it.4

PMIX_SOCKET_MODE "pmix.sockmode" (uint32_t)5
POSIX mode_t (9 bits valid) If the library supports socket connections, this attribute may6
be supported for setting the socket mode.7

PMIX_TCP_REPORT_URI "pmix.tcp.repuri" (char*)8
If provided, directs that the TCP URI be reported and indicates the desired method of9
reporting: ’-’ for stdout, ’+’ for stderr, or filename. If the library supports TCP socket10
connections, this attribute may be supported for reporting the URI.11

PMIX_TCP_IF_INCLUDE "pmix.tcp.ifinclude" (char*)12
Comma-delimited list of devices and/or CIDR notation to include when establishing the13
TCP connection. If the library supports TCP socket connections, this attribute may be14
supported for specifying the interfaces to be used.15

PMIX_TCP_IF_EXCLUDE "pmix.tcp.ifexclude" (char*)16
Comma-delimited list of devices and/or CIDR notation to exclude when establishing the17
TCP connection. If the library supports TCP socket connections, this attribute may be18
supported for specifying the interfaces that are not to be used.19

PMIX_TCP_IPV4_PORT "pmix.tcp.ipv4" (int)20
The IPv4 port to be used. If the library supports IPV4 connections, this attribute may be21
supported for specifying the port to be used.22

PMIX_TCP_IPV6_PORT "pmix.tcp.ipv6" (int)23
The IPv6 port to be used. If the library supports IPV6 connections, this attribute may be24
supported for specifying the port to be used.25

PMIX_TCP_DISABLE_IPV4 "pmix.tcp.disipv4" (bool)26
Set to true to disable IPv4 family of addresses. If the library supports IPV4 connections,27
this attribute may be supported for disabling it.28

PMIX_TCP_DISABLE_IPV6 "pmix.tcp.disipv6" (bool)29
Set to true to disable IPv6 family of addresses. If the library supports IPV6 connections,30
this attribute may be supported for disabling it.31

PMIX_SERVER_REMOTE_CONNECTIONS "pmix.srvr.remote" (bool)32
Allow connections from remote tools. Forces the PMIx server to not exclusively use33
loopback device. If the library supports connections from remote tools, this attribute may34
be supported for enabling or disabling it.35

PMIX_EVENT_BASE "pmix.evbase" (struct event_base *)36

CHAPTER 4. INITIALIZATION AND FINALIZATION 109

Pointer to libevent3 event_base to use in place of the internal progress thread.1

PMIX_GDS_MODULE "pmix.gds.mod" (char*)2
Comma-delimited string of desired modules. This attribute is specific to the PRI and3
controls only the selection of GDS module for internal use by the process. Module selection4
for interacting with the server is performed dynamically during the connection process.5

Description6

Initialize the PMIx server support library, and provide a pointer to a pmix_server_module_t7
structure containing the caller’s callback functions. The array of pmix_info_t structs is used to8
pass additional info that may be required by the server when initializing. For example, it may9
include the PMIX_SERVER_TOOL_SUPPORT key, thereby indicating that the daemon is willing10
to accept connection requests from tools.11

Advice to PMIx server hosts

Providing a value of NULL for the module argument is permitted, as is passing an empty module12
structure. Doing so indicates that the host environment will not provide support for multi-node13
operations such as PMIx_Fence , but does intend to support local clients access to information.14

4.4.2 PMIx_server_finalize15

Summary16

Finalize the PMIx server library.17

Format18

PMIx v1.0 C
pmix_status_t19
PMIx_server_finalize(void)20

C

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.21

Description22

Finalize the PMIx server support library, terminating all connections to attached tools and any local23
clients. All memory usage is released.24

3http://libevent.org/

110 PMIx Standard – Version 3.0 – December 2018

http://libevent.org/

CHAPTER 5

Key/Value Management

Management of key-value pairs in PMIx is a distributed responsibility. While the stated objective of1
the PMIx community is to eliminate collective operations, it is recognized that the traditional2
method of publishing/exchanging data must be supported until that objective can be met. This3
method relies on processes to discover and publish their local information which is collected by the4
local PMIx server library. Global exchange of the published information is then executed via a5
collective operation performed by the host SMS servers.6

Keys are required to be unique within a specific level of informarion as defined in 3.4.11. For7
example, a value for PMIX_NUM_NODES can be specified for each of the session , job , and8
application levels. However, subsequently specifying another value for that attribute in the9
session level will overwrite the prior value.10

5.1 Setting and Accessing Key/Value Pairs11

5.1.1 PMIx_Put12

Summary13

Push a key/value pair into the client’s namespace.14

Format15

PMIx v1.0 C
pmix_status_t16
PMIx_Put(pmix_scope_t scope,17

const pmix_key_t key,18
pmix_value_t *val)19

C
IN scope20

Distribution scope of the provided value (handle)21
IN key22

key (pmix_key_t)23
IN value24

Reference to a pmix_value_t structure (handle)25

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.26

111

Description1

Push a value into the client’s namespace. The client’s PMIx library will cache the information2
locally until PMIx_Commit is called.3

The provided scope is passed to the local PMIx server, which will distribute the data to other4
processes according to the provided scope. The pmix_scope_t values are defined in5
Section 3.2.9 on page 29. Specific implementations may support different scope values, but all6
implementations must support at least PMIX_GLOBAL.7

The pmix_value_t structure supports both string and binary values. PMIx implementations8
will support heterogeneous environments by properly converting binary values between host9
architectures, and will copy the provided value into internal memory.10

Advice to PMIx library implementers

The PMIx server library will properly pack/unpack data to accommodate heterogeneous11
environments. The host SMS is not involved in this action. The value argument must be copied -12
the caller is free to release it following return from the function.13

Advice to users

The value is copied by the PMIx client library. Thus, the application is free to release and/or14
modify the value once the call to PMIx_Put has completed.15

Note that keys starting with a string of “pmix” are exclusively reserved for the PMIx standard and16
must not be used in calls to PMIx_Put . Thus, applications should never use a defined “PMIX_”17
attribute as the key in a call to PMIx_Put .18

5.1.2 PMIx_Get19

Summary20

Retrieve a key/value pair from the client’s namespace.21

112 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Get(const pmix_proc_t *proc, const pmix_key_t key,3

const pmix_info_t info[], size_t ninfo,4
pmix_value_t **val)5

C

IN proc6
process reference (handle)7

IN key8
key to retrieve (pmix_key_t)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of element in the info array (integer)13

OUT val14
value (handle)15

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.16

Required Attributes

The following attributes are required to be supported by all PMIx libraries:17

PMIX_OPTIONAL "pmix.optional" (bool)18
Look only in the client’s local data store for the requested value - do not request data from19
the PMIx server if not found.20

PMIX_IMMEDIATE "pmix.immediate" (bool)21
Specified operation should immediately return an error from the PMIx server if the requested22
data cannot be found - do not request it from the host RM.23

PMIX_DATA_SCOPE "pmix.scope" (pmix_scope_t)24
Scope of the data to be found in a PMIx_Get call.25

PMIX_SESSION_INFO "pmix.ssn.info" (bool)26
Return information about the specified session. If information about a session other than the27
one containing the requesting process is desired, then the attribute array must contain a28
PMIX_SESSION_ID attribute identifying the desired target.29

PMIX_JOB_INFO "pmix.job.info" (bool)30

CHAPTER 5. KEY/VALUE MANAGEMENT 113

Return information about the specified job or namespace. If information about a job or1
namespace other than the one containing the requesting process is desired, then the attribute2
array must contain a PMIX_JOBID or PMIX_NSPACE attribute identifying the desired3
target. Similarly, if information is requested about a job or namespace in a session other than4
the one containing the requesting process, then an attribute identifying the target session5
must be provided.6

PMIX_APP_INFO "pmix.app.info" (bool)7
Return information about the specified application. If information about an application other8
than the one containing the requesting process is desired, then the attribute array must9
contain a PMIX_APPNUM attribute identifying the desired target. Similarly, if information is10
requested about an application in a job or session other than the one containing the requesting11
process, then attributes identifying the target job and/or session must be provided.12

PMIX_NODE_INFO "pmix.node.info" (bool)13
Return information about the specified node. If information about a node other than the one14
containing the requesting process is desired, then the attribute array must contain either the15
PMIX_NODEID or PMIX_HOSTNAME attribute identifying the desired target.16

Optional Attributes

The following attributes are optional for host environments:17

PMIX_TIMEOUT "pmix.timeout" (int)18
Time in seconds before the specified operation should time out (0 indicating infinite) in19
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent20
the target process from ever exposing its data.21

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host22
environment due to race condition considerations between delivery of the data by the host23
environment versus internal timeout in the PMIx server library. Implementers that choose to24
support PMIX_TIMEOUT directly in the PMIx server library must take care to resolve the race25
condition and should avoid passing PMIX_TIMEOUT to the host environment so that multiple26
competing timeouts are not created.27

114 PMIx Standard – Version 3.0 – December 2018

Description1

Retrieve information for the specified key as published by the process identified in the given2
pmix_proc_t , returning a pointer to the value in the given address.3

This is a blocking operation - the caller will block until either the specified data becomes available4
from the specified rank in the proc structure or the operation times out should the PMIX_TIMEOUT5
attribute have been given. The caller is responsible for freeing all memory associated with the6
returned value when no longer required.7

The info array is used to pass user requests regarding the get operation.8

Advice to users

Information provided by the PMIx server at time of process start is accessed by providing the9
namespace of the job with the rank set to PMIX_RANK_WILDCARD . The list of data referenced in10
this way is maintained on the PMIx web site at https://pmix.org/support/faq/wildcard-rank-access/11
but includes items such as the number of processes in the namespace (PMIX_JOB_SIZE), total12
available slots in the allocation (PMIX_UNIV_SIZE), and the number of nodes in the allocation (13
PMIX_NUM_NODES).14

Data posted by a process via PMIx_Put needs to be retrieved by specifying the rank of the15
posting process. All other information is retrievable using a rank of PMIX_RANK_WILDCARD16
when the information being retrieved refers to something non-rank specific (e.g., number of17
processes on a node, number of processes in a job), and using the rank of the relevant process when18
requesting information that is rank-specific (e.g., the URI of the process, or the node upon which it19
is executing). Each subsection of Section 3.4 indicates the appropriate rank value for referencing20
the defined attribute.21

5.1.3 PMIx_Get_nb22

Summary23

Nonblocking PMIx_Get operation.24

CHAPTER 5. KEY/VALUE MANAGEMENT 115

https://pmix.org/support/faq/wildcard-rank-access/

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Get_nb(const pmix_proc_t *proc, const char key[],3

const pmix_info_t info[], size_t ninfo,4
pmix_value_cbfunc_t cbfunc, void *cbdata)5

C

IN proc6
process reference (handle)7

IN key8
key to retrieve (string)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of elements in the info array (integer)13

IN cbfunc14
Callback function (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the library must not invoke the callback20
function prior to returning from the API.21

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and22
returned success - the cbfunc will not be called23

• a PMIx error constant indicating either an error in the input or that the request was immediately24
processed and failed - the cbfunc will not be called25

If executed, the status returned in the provided callback function will be one of the following26
constants:27

• PMIX_SUCCESS The requested data has been returned28

• PMIX_ERR_NOT_FOUND The requested data was not available29

• a non-zero PMIx error constant indicating a reason for the request’s failure30

Required Attributes

The following attributes are required to be supported by all PMIx libraries:31

PMIX_OPTIONAL "pmix.optional" (bool)32

116 PMIx Standard – Version 3.0 – December 2018

Look only in the client’s local data store for the requested value - do not request data from1
the PMIx server if not found.2

PMIX_IMMEDIATE "pmix.immediate" (bool)3
Specified operation should immediately return an error from the PMIx server if the requested4
data cannot be found - do not request it from the host RM.5

PMIX_DATA_SCOPE "pmix.scope" (pmix_scope_t)6
Scope of the data to be found in a PMIx_Get call.7

PMIX_SESSION_INFO "pmix.ssn.info" (bool)8
Return information about the specified session. If information about a session other than the9
one containing the requesting process is desired, then the attribute array must contain a10
PMIX_SESSION_ID attribute identifying the desired target.11

PMIX_JOB_INFO "pmix.job.info" (bool)12
Return information about the specified job or namespace. If information about a job or13
namespace other than the one containing the requesting process is desired, then the attribute14
array must contain a PMIX_JOBID or PMIX_NSPACE attribute identifying the desired15
target. Similarly, if information is requested about a job or namespace in a session other than16
the one containing the requesting process, then an attribute identifying the target session17
must be provided.18

PMIX_APP_INFO "pmix.app.info" (bool)19
Return information about the specified application. If information about an application other20
than the one containing the requesting process is desired, then the attribute array must21
contain a PMIX_APPNUM attribute identifying the desired target. Similarly, if information is22
requested about an application in a job or session other than the one containing the requesting23
process, then attributes identifying the target job and/or session must be provided.24

PMIX_NODE_INFO "pmix.node.info" (bool)25
Return information about the specified node. If information about a node other than the one26
containing the requesting process is desired, then the attribute array must contain either the27
PMIX_NODEID or PMIX_HOSTNAME attribute identifying the desired target.28

Optional Attributes

The following attributes are optional for host environments that support this operation:29

PMIX_TIMEOUT "pmix.timeout" (int)30
Time in seconds before the specified operation should time out (0 indicating infinite) in31
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent32
the target process from ever exposing its data.33

CHAPTER 5. KEY/VALUE MANAGEMENT 117

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host1
environment due to race condition considerations between delivery of the data by the host2
environment versus internal timeout in the PMIx server library. Implementers that choose to3
support PMIX_TIMEOUT directly in the PMIx server library must take care to resolve the race4
condition and should avoid passing PMIX_TIMEOUT to the host environment so that multiple5
competing timeouts are not created.6

Description7

The callback function will be executed once the specified data becomes available from the8
identified process and retrieved by the local server. The info array is used as described by the9
PMIx_Get routine.10

Advice to users

Information provided by the PMIx server at time of process start is accessed by providing the11
namespace of the job with the rank set to PMIX_RANK_WILDCARD . Attributes referenced in this12
way are identified in 3.4 but includes items such as the number of processes in the namespace (13
PMIX_JOB_SIZE), total available slots in the allocation (PMIX_UNIV_SIZE), and the number14
of nodes in the allocation (PMIX_NUM_NODES).15

In general, data posted by a process via PMIx_Put and data that refers directly to a16
process-related value needs to be retrieved by specifying the rank of the posting process. All other17
information is retrievable using a rank of PMIX_RANK_WILDCARD , as illustrated in 5.1.5. See18
3.4.11 for an explanation regarding use of the level attributes.19

5.1.4 PMIx_Store_internal20

Summary21

Store some data locally for retrieval by other areas of the proc.22

118 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Store_internal(const pmix_proc_t *proc,3

const pmix_key_t key,4
pmix_value_t *val);5

C

IN proc6
process reference (handle)7

IN key8
key to retrieve (string)9

IN val10
Value to store (handle)11

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.12

Description13

Store some data locally for retrieval by other areas of the proc. This is data that has only internal14
scope - it will never be “pushed” externally.15

5.1.5 Accessing information: examples16

This section provides examples illustrating methods for accessing information at various levels.17
The intent of the examples is not to provide comprehensive coding guidance, but rather to illustrate18
how PMIx_Get can be used to obtain information on a session , job , application ,19
process, and node.20

5.1.5.1 Session-level information21

The PMIx_Get API does not include an argument for specifying the session associated with22
the information being requested. Information regarding the session containing the requestor can be23
obtained by the following methods:24

• for session-level attributes (e.g., PMIX_UNIV_SIZE), specifying the requestor’s namespace25
and a rank of PMIX_RANK_WILDCARD ; or26

• for non-specific attributes (e.g., PMIX_NUM_NODES), including the PMIX_SESSION_INFO27
attribute to indicate that the session-level information for that attribute is being requested28

Example requests are shown below:29

CHAPTER 5. KEY/VALUE MANAGEMENT 119

C
pmix_info_t info;1
pmix_value_t *value;2
pmix_status_t rc;3
pmix_proc_t myproc, wildcard;4

5
/* initialize the client library */6
PMIx_Init(&myproc, NULL, 0);7

8
/* get the #slots in our session */9
PMIX_PROC_LOAD(&wildcard, myproc.nspace, PMIX_RANK_WILDCARD);10
rc = PMIx_Get(&wildcard, PMIX_UNIV_SIZE, NULL, 0, &value);11

12
/* get the #nodes in our session */13
PMIX_INFO_LOAD(&info, PMIX_SESSION_INFO, NULL, PMIX_BOOL);14
rc = PMIx_Get(&wildcard, PMIX_NUM_NODES, &info, 1, &value);15

C

Information regarding a different session can be requested by either specifying the namespace and a16
rank of PMIX_RANK_WILDCARD for a process in the target session, or adding the17
PMIX_SESSION_ID attribute identifying the target session. In the latter case, the proc argument18
to PMIx_Get will be ignored:19

C
pmix_info_t info[2];20
pmix_value_t *value;21
pmix_status_t rc;22
pmix_proc_t myproc;23
uint32_t sid;24

25
/* initialize the client library */26
PMIx_Init(&myproc, NULL, 0);27

28
/* get the #nodes in a different session */29
sid = 12345;30
PMIX_INFO_LOAD(&info[0], PMIX_SESSION_INFO, NULL, PMIX_BOOL);31
PMIX_INFO_LOAD(&info[1], PMIX_SESSION_ID, &sid, PMIX_UINT32);32
rc = PMIx_Get(&myproc, PMIX_NUM_NODES, info, 2, &value);33

C

120 PMIx Standard – Version 3.0 – December 2018

5.1.5.2 Job-level information1

Information regarding a job can be obtained by the following methods:2

• for job-level attributes (e.g., PMIX_JOB_SIZE or PMIX_JOB_NUM_APPS), specifying the3
namespace of the job and a rank of PMIX_RANK_WILDCARD for the proc argument to4
PMIx_Get ; or5

• for non-specific attributes (e.g., PMIX_NUM_NODES), including the PMIX_JOB_INFO6
attribute to indicate that the job-level information for that attribute is being requested7

Example requests are shown below:8

C
pmix_info_t info;9
pmix_value_t *value;10
pmix_status_t rc;11
pmix_proc_t myproc, wildcard;12

13
/* initialize the client library */14
PMIx_Init(&myproc, NULL, 0);15

16
/* get the #apps in our job */17
PMIX_PROC_LOAD(&wildcard, myproc.nspace, PMIX_RANK_WILDCARD);18
rc = PMIx_Get(&wildcard, PMIX_JOB_NUM_APPS, NULL, 0, &value);19

20
/* get the #nodes in our job */21
PMIX_INFO_LOAD(&info, PMIX_JOB_INFO, NULL, PMIX_BOOL);22
rc = PMIx_Get(&wildcard, PMIX_NUM_NODES, &info, 1, &value);23

C

5.1.5.3 Application-level information24

Information regarding an application can be obtained by the following methods:25

• for application-level attributes (e.g., PMIX_APP_SIZE), specifying the namespace and rank of26
a process within that application;27

• for application-level attributes (e.g., PMIX_APP_SIZE), including the PMIX_APPNUM28
attribute specifying the application whose information is being requested. In this case, the29
namespace field of the proc argument is used to reference the job containing the application -30
the rank field is ignored;31

• or application-level attributes (e.g., PMIX_APP_SIZE), including the PMIX_APPNUM and32
PMIX_NSPACE or PMIX_JOBID attributes specifying the job/application whose information33
is being requested. In this case, the proc argument is ignored;34

CHAPTER 5. KEY/VALUE MANAGEMENT 121

• for non-specific attributes (e.g., PMIX_NUM_NODES), including the PMIX_APP_INFO1
attribute to indicate that the application-level information for that attribute is being requested2

Example requests are shown below:3

C
pmix_info_t info;4
pmix_value_t *value;5
pmix_status_t rc;6
pmix_proc_t myproc, otherproc;7
uint32_t appsize, appnum;8

9
/* initialize the client library */10
PMIx_Init(&myproc, NULL, 0);11

12
/* get the #processes in our application */13
rc = PMIx_Get(&myproc, PMIX_APP_SIZE, NULL, 0, &value);14
appsize = value->data.uint32;15

16
/* get the #nodes in an application containing "otherproc".17
* Note that the rank of a process in the other application18
* must be obtained first - a simple method is shown here */19

20
/* assume for this example that we are in the first application21
* and we want the #nodes in the second application - use the22
* rank of the first process in that application, remembering23
* that ranks start at zero */24

PMIX_PROC_LOAD(&otherproc, myproc.nspace, appsize);25
26

PMIX_INFO_LOAD(&info, PMIX_APP_INFO, NULL, PMIX_BOOL);27
rc = PMIx_Get(&otherproc, PMIX_NUM_NODES, &info, 1, &value);28

29
/* alternatively, we can directly ask for the #nodes in30
* the second application in our job, again remembering that31
* application numbers start with zero */32

appnum = 1;33
PMIX_INFO_LOAD(&appinfo[0], PMIX_APP_INFO, NULL, PMIX_BOOL);34
PMIX_INFO_LOAD(&appinfo[1], PMIX_APPNUM, &appnum, PMIX_UINT32);35
rc = PMIx_Get(&myproc, PMIX_NUM_NODES, appinfo, 2, &value);36

37
C

122 PMIx Standard – Version 3.0 – December 2018

5.1.5.4 Process-level information1

Process-level information is accessed by providing the namespace and rank of the target process. In2
the absence of any directive as to the level of information being requested, the PMIx library will3
always return the process-level value.4

5.1.5.5 Node-level information5

Information regarding a node within the system can be obtained by the following methods:6

• for node-level attributes (e.g., PMIX_NODE_SIZE), specifying the namespace and rank of a7
process executing on the target node;8

• for node-level attributes (e.g., PMIX_NODE_SIZE), including the PMIX_NODEID or9
PMIX_HOSTNAME attribute specifying the node whose information is being requested. In this10
case, the proc argument’s values are ignored; or11

• for non-specific attributes (e.g., PMIX_NUM_SLOTS), including the PMIX_NODE_INFO12
attribute to indicate that the node-level information for that attribute is being requested13

Example requests are shown below:14

C
pmix_info_t info[2];15
pmix_value_t *value;16
pmix_status_t rc;17
pmix_proc_t myproc, otherproc;18
uint32_t nodeid;19

20
/* initialize the client library */21
PMIx_Init(&myproc, NULL, 0);22

23
/* get the #procs on our node */24
rc = PMIx_Get(&myproc, PMIX_NODE_SIZE, NULL, 0, &value);25

26
/* get the #slots on another node */27
PMIX_INFO_LOAD(&info[0], PMIX_NODE_INFO, NULL, PMIX_BOOL);28
PMIX_INFO_LOAD(&info[1], PMIX_HOSTNAME, "remotehost", PMIX_STRING);29
rc = PMIx_Get(&myproc, PMIX_NUM_SLOTS, info, 2, &value);30

31
C

Advice to users

An explanation of the use of PMIx_Get versus PMIx_Query_info_nb is provided in 7.1.3.1.32

CHAPTER 5. KEY/VALUE MANAGEMENT 123

5.2 Exchanging Key/Value Pairs1

The APIs defined in this section push key/value pairs from the client to the local PMIx server, and2
circulate the data between PMIx servers for subsequent retrieval by the local clients.3

5.2.1 PMIx_Commit4

Summary5

Push all previously PMIx_Put values to the local PMIx server.6

Format7

PMIx v1.0 C
pmix_status_t PMIx_Commit(void)8

C

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.9

Description10

This is an asynchronous operation. The PRI will immediately return to the caller while the data is11
transmitted to the local server in the background.12

Advice to users

The local PMIx server will cache the information locally - i.e., the committed data will not be13
circulated during PMIx_Commit . Availability of the data upon completion of PMIx_Commit is14
therefore implementation-dependent.15

5.2.2 PMIx_Fence16

Summary17

Execute a blocking barrier across the processes identified in the specified array, collecting18
information posted via PMIx_Put as directed.19

124 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Fence(const pmix_proc_t procs[], size_t nprocs,3

const pmix_info_t info[], size_t ninfo)4

C

IN procs5
Array of pmix_proc_t structures (array of handles)6

IN nprocs7
Number of element in the procs array (integer)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of element in the info array (integer)12

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.13

Required Attributes

The following attributes are required to be supported by all PMIx libraries:14

PMIX_COLLECT_DATA "pmix.collect" (bool)15
Collect data and return it at the end of the operation.16

Optional Attributes

The following attributes are optional for host environments:17

PMIX_TIMEOUT "pmix.timeout" (int)18
Time in seconds before the specified operation should time out (0 indicating infinite) in19
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent20
the target process from ever exposing its data.21

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)22
Comma-delimited list of algorithms to use for the collective operation. PMIx does not23
impose any requirements on a host environment’s collective algorithms. Thus, the24
acceptable values for this attribute will be environment-dependent - users are encouraged to25
check their host environment for supported values.26

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)27
If true, indicates that the requested choice of algorithm is mandatory.28

CHAPTER 5. KEY/VALUE MANAGEMENT 125

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host1
environment due to race condition considerations between completion of the operation versus2
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT3
directly in the PMIx server library must take care to resolve the race condition and should avoid4
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not5
created.6

Description7

Passing a NULL pointer as the procs parameter indicates that the fence is to span all processes in8
the client’s namespace. Each provided pmix_proc_t struct can pass PMIX_RANK_WILDCARD9
to indicate that all processes in the given namespace are participating.10

The info array is used to pass user requests regarding the fence operation.11

Note that for scalability reasons, the default behavior for PMIx_Fence is to not collect the data.12

Advice to PMIx library implementers

PMIx_Fence and its non-blocking form are both collective operations. Accordingly, the PMIx13
server library is required to aggregate participation by local clients, passing the request to the host14
environment once all local participants have executed the API.15

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to16
identify the nodes containing participating processes, execute the collective across all participating17
nodes, and notify the local PMIx server library upon completion of the global collective.18

5.2.3 PMIx_Fence_nb19

Summary20

Execute a nonblocking PMIx_Fence across the processes identified in the specified array of21
processes, collecting information posted via PMIx_Put as directed.22

126 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Fence_nb(const pmix_proc_t procs[], size_t nprocs,3

const pmix_info_t info[], size_t ninfo,4
pmix_op_cbfunc_t cbfunc, void *cbdata)5

C

IN procs6
Array of pmix_proc_t structures (array of handles)7

IN nprocs8
Number of element in the procs array (integer)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of element in the info array (integer)13

IN cbfunc14
Callback function (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the library must not invoke the callback20
function prior to returning from the API.21

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and22
returned success - the cbfunc will not be called. This can occur if the collective involved only23
processes on the local node.24

• a PMIx error constant indicating either an error in the input or that the request was immediately25
processed and failed - the cbfunc will not be called26

Required Attributes

The following attributes are required to be supported by all PMIx libraries:27

PMIX_COLLECT_DATA "pmix.collect" (bool)28
Collect data and return it at the end of the operation.29

CHAPTER 5. KEY/VALUE MANAGEMENT 127

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (0 indicating infinite) in3
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4
the target process from ever exposing its data.5

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)6
Comma-delimited list of algorithms to use for the collective operation. PMIx does not7
impose any requirements on a host environment’s collective algorithms. Thus, the8
acceptable values for this attribute will be environment-dependent - users are encouraged to9
check their host environment for supported values.10

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)11
If true, indicates that the requested choice of algorithm is mandatory.12

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host13
environment due to race condition considerations between completion of the operation versus14
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT15
directly in the PMIx server library must take care to resolve the race condition and should avoid16
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not17
created.18

Description19

Nonblocking PMIx_Fence routine. Note that the function will return an error if a NULL callback20
function is given.21

Note that for scalability reasons, the default behavior for PMIx_Fence_nb is to not collect the22
data.23

See the PMIx_Fence description for further details.24

128 PMIx Standard – Version 3.0 – December 2018

5.3 Publish and Lookup Data1

The APIs defined in this section publish data from one client that can be later exchanged and looked2
up by another client.3

Advice to PMIx library implementers

PMIx libraries that support any of the functions in this section are required to support all of them.4

Advice to PMIx server hosts

Host environments that support any of the functions in this section are required to support all of5
them.6

5.3.1 PMIx_Publish7

Summary8

Publish data for later access via PMIx_Lookup .9

CHAPTER 5. KEY/VALUE MANAGEMENT 129

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Publish(const pmix_info_t info[], size_t ninfo)3

C

IN info4
Array of info structures (array of handles)5

IN ninfo6
Number of element in the info array (integer)7

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.8

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any9
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is10
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that11
published the info.12

Optional Attributes

The following attributes are optional for host environments that support this operation:13

PMIX_TIMEOUT "pmix.timeout" (int)14
Time in seconds before the specified operation should time out (0 indicating infinite) in15
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent16
the target process from ever exposing its data.17

PMIX_RANGE "pmix.range" (pmix_data_range_t)18
Value for calls to publish/lookup/unpublish or for monitoring event notifications.19

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)20
Value for calls to PMIx_Publish .21

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host22
environment due to race condition considerations between completion of the operation versus23
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT24
directly in the PMIx server library must take care to resolve the race condition and should avoid25
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not26
created.27

130 PMIx Standard – Version 3.0 – December 2018

Description1

Publish the data in the info array for subsequent lookup. By default, the data will be published into2
the PMIX_SESSION range and with PMIX_PERSIST_APP persistence. Changes to those3
values, and any additional directives, can be included in the pmix_info_t array. Attempts to4
access the data by processes outside of the provided data range will be rejected. The persistence5
parameter instructs the server as to how long the data is to be retained.6

The blocking form will block until the server confirms that the data has been sent to the PMIx7
server and that it has obtained confirmation from its host SMS daemon that the data is ready to be8
looked up. Data is copied into the backing key-value data store, and therefore the info array can be9
released upon return from the blocking function call.10

Advice to users

Duplicate keys within the specified data range may lead to unexpected behavior depending on host11
RM implementation of the backing key-value store.12

Advice to PMIx library implementers

Implementations should, to the best of their ability, detect duplicate keys and protect the user from13
unexpected behavior - preferably returning an error. This version of the standard does not define a14
specific error code to be returned, so the implementation must make it clear to the user what to15
expect in this scenario. One suggestion is to define an RM specific error code beyond the16
PMIX_EXTERNAL_ERR_BASE boundary. Future versions of the standard will clarify that a17
specific PMIx error be returned when conflicting values are published for a given key, and will18
provide attributes to allow modified behaviors such as overwrite.19

5.3.2 PMIx_Publish_nb20

Summary21

Nonblocking PMIx_Publish routine.22

CHAPTER 5. KEY/VALUE MANAGEMENT 131

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Publish_nb(const pmix_info_t info[], size_t ninfo,3

pmix_op_cbfunc_t cbfunc, void *cbdata)4

C

IN info5
Array of info structures (array of handles)6

IN ninfo7
Number of element in the info array (integer)8

IN cbfunc9
Callback function pmix_op_cbfunc_t (function reference)10

IN cbdata11
Data to be passed to the callback function (memory reference)12

Returns one of the following:13

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result14
will be returned in the provided cbfunc. Note that the library must not invoke the callback15
function prior to returning from the API.16

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and17
returned success - the cbfunc will not be called18

• a PMIx error constant indicating either an error in the input or that the request was immediately19
processed and failed - the cbfunc will not be called20

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any21
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is22
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that23
published the info.24

132 PMIx Standard – Version 3.0 – December 2018

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (0 indicating infinite) in3
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4
the target process from ever exposing its data.5

PMIX_RANGE "pmix.range" (pmix_data_range_t)6
Value for calls to publish/lookup/unpublish or for monitoring event notifications.7

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)8
Value for calls to PMIx_Publish .9

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host10
environment due to race condition considerations between completion of the operation versus11
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT12
directly in the PMIx server library must take care to resolve the race condition and should avoid13
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not14
created.15

Description16

Nonblocking PMIx_Publish routine. The non-blocking form will return immediately, executing17
the callback when the PMIx server receives confirmation from its host SMS daemon.18

Note that the function will return an error if a NULL callback function is given, and that the info19
array must be maintained until the callback is provided.20

5.3.3 PMIx_Lookup21

Summary22

Lookup information published by this or another process with PMIx_Publish or23
PMIx_Publish_nb .24

CHAPTER 5. KEY/VALUE MANAGEMENT 133

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Lookup(pmix_pdata_t data[], size_t ndata,3

const pmix_info_t info[], size_t ninfo)4

C

INOUT data5
Array of publishable data structures (array of handles)6

IN ndata7
Number of elements in the data array (integer)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.13

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any14
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is15
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is16
requesting the info.17

Optional Attributes

The following attributes are optional for host environments that support this operation:18

PMIX_TIMEOUT "pmix.timeout" (int)19
Time in seconds before the specified operation should time out (0 indicating infinite) in20
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent21
the target process from ever exposing its data.22

PMIX_RANGE "pmix.range" (pmix_data_range_t)23
Value for calls to publish/lookup/unpublish or for monitoring event notifications.24

PMIX_WAIT "pmix.wait" (int)25
Caller requests that the PMIx server wait until at least the specified number of values are26
found (0 indicates all and is the default).27

134 PMIx Standard – Version 3.0 – December 2018

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host1
environment due to race condition considerations between completion of the operation versus2
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT3
directly in the PMIx server library must take care to resolve the race condition and should avoid4
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not5
created.6

Description7

Lookup information published by this or another process. By default, the search will be conducted8
across the PMIX_SESSION range. Changes to the range, and any additional directives, can be9
provided in the pmix_info_t array.10

Note that the search is also constrained to only data published by the current user (i.e., the search11
will not return data published by an application being executed by another user). There currently is12
no option to override this behavior - such an option may become available later via an appropriate13
pmix_info_t directive.14

The data parameter consists of an array of pmix_pdata_t struct with the keys specifying the15
requested information. Data will be returned for each key in the associated value struct. Any key16
that cannot be found will return with a data type of PMIX_UNDEF . The function will return17
PMIX_SUCCESS if any values can be found, so the caller must check each data element to ensure18
it was returned.19

The proc field in each pmix_pdata_t struct will contain the namespace/rank of the process that20
published the data.21

Advice to users

Although this is a blocking function, it will not wait by default for the requested data to be22
published. Instead, it will block for the time required by the server to lookup its current data and23
return any found items. Thus, the caller is responsible for ensuring that data is published prior to24
executing a lookup, using PMIX_WAIT to instruct the server to wait for the data to be published, or25
for retrying until the requested data is found.26

5.3.4 PMIx_Lookup_nb27

Summary28

Nonblocking version of PMIx_Lookup .29

CHAPTER 5. KEY/VALUE MANAGEMENT 135

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Lookup_nb(char **keys,3

const pmix_info_t info[], size_t ninfo,4
pmix_lookup_cbfunc_t cbfunc, void *cbdata)5

C

IN keys6
Array to be provided to the callback (array of strings)7

IN info8
Array of info structures (array of handles)9

IN ninfo10
Number of element in the info array (integer)11

IN cbfunc12
Callback function (handle)13

IN cbdata14
Callback data to be provided to the callback function (pointer)15

Returns one of the following:16

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result17
will be returned in the provided cbfunc. Note that the library must not invoke the callback18
function prior to returning from the API.19

• a PMIx error constant indicating an error in the input - the cbfunc will not be called20

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any21
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is22
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is23
requesting the info.24

Optional Attributes

The following attributes are optional for host environments that support this operation:25

PMIX_TIMEOUT "pmix.timeout" (int)26
Time in seconds before the specified operation should time out (0 indicating infinite) in27
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent28
the target process from ever exposing its data.29

PMIX_RANGE "pmix.range" (pmix_data_range_t)30
Value for calls to publish/lookup/unpublish or for monitoring event notifications.31

PMIX_WAIT "pmix.wait" (int)32

136 PMIx Standard – Version 3.0 – December 2018

Caller requests that the PMIx server wait until at least the specified number of values are1
found (0 indicates all and is the default).2

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host3
environment due to race condition considerations between completion of the operation versus4
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT5
directly in the PMIx server library must take care to resolve the race condition and should avoid6
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not7
created.8

Description9

Non-blocking form of the PMIx_Lookup function. Data for the provided NULL-terminated keys10
array will be returned in the provided callback function. As with PMIx_Lookup , the default11
behavior is to not wait for data to be published. The info array can be used to modify the behavior12
as previously described by PMIx_Lookup . Both the info and keys arrays must be maintained until13
the callback is provided.14

5.3.5 PMIx_Unpublish15

Summary16

Unpublish data posted by this process using the given keys.17

CHAPTER 5. KEY/VALUE MANAGEMENT 137

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Unpublish(char **keys,3

const pmix_info_t info[], size_t ninfo)4

C

IN info5
Array of info structures (array of handles)6

IN ninfo7
Number of element in the info array (integer)8

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.9

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any10
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is11
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is12
requesting the operation.13

Optional Attributes

The following attributes are optional for host environments that support this operation:14

PMIX_TIMEOUT "pmix.timeout" (int)15
Time in seconds before the specified operation should time out (0 indicating infinite) in16
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent17
the target process from ever exposing its data.18

PMIX_RANGE "pmix.range" (pmix_data_range_t)19
Value for calls to publish/lookup/unpublish or for monitoring event notifications.20

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host21
environment due to race condition considerations between completion of the operation versus22
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT23
directly in the PMIx server library must take care to resolve the race condition and should avoid24
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not25
created.26

138 PMIx Standard – Version 3.0 – December 2018

Description1

Unpublish data posted by this process using the given keys. The function will block until the data2
has been removed by the server (i.e., it is safe to publish that key again). A value of NULL for the3
keys parameter instructs the server to remove all data published by this process.4

By default, the range is assumed to be PMIX_SESSION . Changes to the range, and any additional5
directives, can be provided in the info array.6

5.3.6 PMIx_Unpublish_nb7

Summary8

Nonblocking version of PMIx_Unpublish .9

Format10

PMIx v1.0 C
pmix_status_t11
PMIx_Unpublish_nb(char **keys,12

const pmix_info_t info[], size_t ninfo,13
pmix_op_cbfunc_t cbfunc, void *cbdata)14

C

IN keys15
(array of strings)16

IN info17
Array of info structures (array of handles)18

IN ninfo19
Number of element in the info array (integer)20

IN cbfunc21
Callback function pmix_op_cbfunc_t (function reference)22

IN cbdata23
Data to be passed to the callback function (memory reference)24

Returns one of the following:25

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result26
will be returned in the provided cbfunc. Note that the library must not invoke the callback27
function prior to returning from the API.28

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and29
returned success - the cbfunc will not be called30

• a PMIx error constant indicating either an error in the input or that the request was immediately31
processed and failed - the cbfunc will not be called32

CHAPTER 5. KEY/VALUE MANAGEMENT 139

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any1
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is2
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process that is3
requesting the operation.4

Optional Attributes

The following attributes are optional for host environments that support this operation:5

PMIX_TIMEOUT "pmix.timeout" (int)6
Time in seconds before the specified operation should time out (0 indicating infinite) in7
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent8
the target process from ever exposing its data.9

PMIX_RANGE "pmix.range" (pmix_data_range_t)10
Value for calls to publish/lookup/unpublish or for monitoring event notifications.11

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host12
environment due to race condition considerations between completion of the operation versus13
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT14
directly in the PMIx server library must take care to resolve the race condition and should avoid15
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not16
created.17

Description18

Non-blocking form of the PMIx_Unpublish function. The callback function will be executed19
once the server confirms removal of the specified data. The info array must be maintained until the20
callback is provided.21

140 PMIx Standard – Version 3.0 – December 2018

CHAPTER 6

Process Management

This chapter defines functionality used by clients to create and destroy/abort processes in the PMIx1
universe.2

6.1 Abort3

PMIx provides a dedicated API by which an application can request that specified processes be4
aborted by the system.5

6.1.1 PMIx_Abort6

Summary7

Abort the specified processes8

Format9

PMIx v1.0 C
pmix_status_t10
PMIx_Abort(int status, const char msg[],11

pmix_proc_t procs[], size_t nprocs)12

C

IN status13
Error code to return to invoking environment (integer)14

IN msg15
String message to be returned to user (string)16

IN procs17
Array of pmix_proc_t structures (array of handles)18

IN nprocs19
Number of elements in the procs array (integer)20

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.21

141

Description1

Request that the host resource manager print the provided message and abort the provided array of2
procs. A Unix or POSIX environment should handle the provided status as a return error code from3
the main program that launched the application. A NULL for the procs array indicates that all4
processes in the caller’s namespace are to be aborted, including itself. Passing a NULL msg5
parameter is allowed.6

Advice to users

The response to this request is somewhat dependent on the specific resource manager and its7
configuration (e.g., some resource managers will not abort the application if the provided status is8
zero unless specifically configured to do so, and some cannot abort subsets of processes in an9
application), and thus lies outside the control of PMIx itself. However, the PMIx client library shall10
inform the RM of the request that the specified procs be aborted, regardless of the value of the11
provided status.12

Note that race conditions caused by multiple processes calling PMIx_Abort are left to the server13
implementation to resolve with regard to which status is returned and what messages (if any) are14
printed.15

6.2 Process Creation16

The PMIx_Spawn commands spawn new processes and/or applications in the PMIx universe.17
This may include requests to extend the existing resource allocation or obtain a new one, depending18
upon provided and supported attributes.19

6.2.1 PMIx_Spawn20

Summary21

Spawn a new job.22

142 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Spawn(const pmix_info_t job_info[], size_t ninfo,3

const pmix_app_t apps[], size_t napps,4
char nspace[])5

C

IN job_info6
Array of info structures (array of handles)7

IN ninfo8
Number of elements in the job_info array (integer)9

IN apps10
Array of pmix_app_t structures (array of handles)11

IN napps12
Number of elements in the apps array (integer)13

OUT nspace14
Namespace of the new job (string)15

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.16

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any17
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is18
required to add the following attributes to those provided before passing the request to the host:19

PMIX_SPAWNED "pmix.spawned" (bool)20
true if this process resulted from a call to PMIx_Spawn .21

PMIX_PARENT_ID "pmix.parent" (pmix_proc_t)22
Process identifier of the parent process of the calling process.23

PMIX_REQUESTOR_IS_CLIENT "pmix.req.client" (bool)24
The requesting process is a PMIx client.25

PMIX_REQUESTOR_IS_TOOL "pmix.req.tool" (bool)26
The requesting process is a PMIx tool.27

Host environments that implement support for PMIx_Spawn are required to pass the28
PMIX_SPAWNED and PMIX_PARENT_ID attributes to all PMIx servers launching new child29
processes so those values can be returned to clients upon connection to the PMIx server. In30
addition, they are required to support the following attributes when present in either the job_info or31
the info array of an element of the apps array:32

PMIX_WDIR "pmix.wdir" (char*)33
Working directory for spawned processes.34

CHAPTER 6. PROCESS MANAGEMENT 143

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)1
Set the application’s current working directory to the session working directory assigned by2
the RM - when accessed using PMIx_Get , use the PMIX_RANK_WILDCARD value for3
the rank to discover the session working directory assigned to the provided namespace4

PMIX_PREFIX "pmix.prefix" (char*)5
Prefix to use for starting spawned processes.6

PMIX_HOST "pmix.host" (char*)7
Comma-delimited list of hosts to use for spawned processes.8

PMIX_HOSTFILE "pmix.hostfile" (char*)9
Hostfile to use for spawned processes.10

Optional Attributes

The following attributes are optional for host environments that support this operation:11

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)12
Hostfile listing hosts to add to existing allocation.13

PMIX_ADD_HOST "pmix.addhost" (char*)14
Comma-delimited list of hosts to add to the allocation.15

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)16
Preload binaries onto nodes.17

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)18
Comma-delimited list of files to pre-position on nodes.19

PMIX_PERSONALITY "pmix.pers" (char*)20
Name of personality to use.21

PMIX_MAPPER "pmix.mapper" (char*)22
Mapping mechanism to use for placing spawned processes - when accessed using23
PMIx_Get , use the PMIX_RANK_WILDCARD value for the rank to discover the mapping24
mechanism used for the provided namespace.25

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)26
Display process mapping upon spawn.27

PMIX_PPR "pmix.ppr" (char*)28
Number of processes to spawn on each identified resource.29

PMIX_MAPBY "pmix.mapby" (char*)30
Process mapping policy - when accessed using PMIx_Get , use the31
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the32
provided namespace33

PMIX_RANKBY "pmix.rankby" (char*)34

144 PMIx Standard – Version 3.0 – December 2018

Process ranking policy - when accessed using PMIx_Get , use the1
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for the2
provided namespace3

PMIX_BINDTO "pmix.bindto" (char*)4
Process binding policy - when accessed using PMIx_Get , use the5
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the6
provided namespace7

PMIX_NON_PMI "pmix.nonpmi" (bool)8
Spawned processes will not call PMIx_Init .9

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)10
Spawned process rank that is to receive stdin.11

PMIX_FWD_STDIN "pmix.fwd.stdin" (bool)12
Forward this process’s stdin to the designated process.13

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)14
Forward stdout from spawned processes to this process.15

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)16
Forward stderr from spawned processes to this process.17

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)18
Spawned application consists of debugger daemons.19

PMIX_TAG_OUTPUT "pmix.tagout" (bool)20
Tag application output with the identity of the source process.21

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)22
Timestamp output from applications.23

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)24
Merge stdout and stderr streams from application processes.25

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)26
Output application output to the specified file.27

PMIX_INDEX_ARGV "pmix.indxargv" (bool)28
Mark the argv with the rank of the process.29

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)30
Number of cpus to assign to each rank - when accessed using PMIx_Get , use the31
PMIX_RANK_WILDCARD value for the rank to discover the cpus/process assigned to the32
provided namespace33

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)34
Do not place processes on the head node.35

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)36

CHAPTER 6. PROCESS MANAGEMENT 145

Do not oversubscribe the cpus.1

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)2
Report bindings of the individual processes.3

PMIX_CPU_LIST "pmix.cpulist" (char*)4
List of cpus to use for this job - when accessed using PMIx_Get , use the5
PMIX_RANK_WILDCARD value for the rank to discover the cpu list used for the provided6
namespace7

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)8
Application supports recoverable operations.9

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)10
Application is continuous, all failed processes should be immediately restarted.11

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)12
Maximum number of times to restart a job - when accessed using PMIx_Get , use the13
PMIX_RANK_WILDCARD value for the rank to discover the max restarts for the provided14
namespace15

Description16

Spawn a new job. The assigned namespace of the spawned applications is returned in the nspace17
parameter. A NULL value in that location indicates that the caller doesn’t wish to have the18
namespace returned. The nspace array must be at least of size one more than PMIX_MAX_NSLEN .19

By default, the spawned processes will be PMIx “connected” to the parent process upon successful20
launch (see PMIx_Connect description for details). Note that this only means that (a) the parent21
process will be given a copy of the new job’s information so it can query job-level info without22
incurring any communication penalties, (b) newly spawned child processes will receive a copy of23
the parent processes job-level info, and (c) both the parent process and members of the child job24
will receive notification of errors from processes in their combined assemblage.25

Advice to users

Behavior of individual resource managers may differ, but it is expected that failure of any26
application process to start will result in termination/cleanup of all processes in the newly spawned27
job and return of an error code to the caller.28

146 PMIx Standard – Version 3.0 – December 2018

6.2.2 PMIx_Spawn_nb1

Summary2

Nonblocking version of the PMIx_Spawn routine.3

Format4

PMIx v1.0 C
pmix_status_t5
PMIx_Spawn_nb(const pmix_info_t job_info[], size_t ninfo,6

const pmix_app_t apps[], size_t napps,7
pmix_spawn_cbfunc_t cbfunc, void *cbdata)8

C

IN job_info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the job_info array (integer)12

IN apps13
Array of pmix_app_t structures (array of handles)14

IN cbfunc15
Callback function pmix_spawn_cbfunc_t (function reference)16

IN cbdata17
Data to be passed to the callback function (memory reference)18

Returns one of the following:19

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result20
will be returned in the provided cbfunc. Note that the library must not invoke the callback21
function prior to returning from the API.22

• a PMIx error constant indicating an error in the request - the cbfunc will not be called23

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any24
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is25
required to add the following attributes to those provided before passing the request to the host:26

PMIX_SPAWNED "pmix.spawned" (bool)27
true if this process resulted from a call to PMIx_Spawn .28

PMIX_PARENT_ID "pmix.parent" (pmix_proc_t)29
Process identifier of the parent process of the calling process.30

PMIX_REQUESTOR_IS_CLIENT "pmix.req.client" (bool)31
The requesting process is a PMIx client.32

CHAPTER 6. PROCESS MANAGEMENT 147

PMIX_REQUESTOR_IS_TOOL "pmix.req.tool" (bool)1
The requesting process is a PMIx tool.2

Host environments that implement support for PMIx_Spawn are required to pass the3
PMIX_SPAWNED and PMIX_PARENT_ID attributes to all PMIx servers launching new child4
processes so those values can be returned to clients upon connection to the PMIx server. In5
addition, they are required to support the following attributes when present in either the job_info or6
the info array of an element of the apps array:7

PMIX_WDIR "pmix.wdir" (char*)8
Working directory for spawned processes.9

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)10
Set the application’s current working directory to the session working directory assigned by11
the RM - when accessed using PMIx_Get , use the PMIX_RANK_WILDCARD value for12
the rank to discover the session working directory assigned to the provided namespace13

PMIX_PREFIX "pmix.prefix" (char*)14
Prefix to use for starting spawned processes.15

PMIX_HOST "pmix.host" (char*)16
Comma-delimited list of hosts to use for spawned processes.17

PMIX_HOSTFILE "pmix.hostfile" (char*)18
Hostfile to use for spawned processes.19

Optional Attributes

The following attributes are optional for host environments that support this operation:20

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)21
Hostfile listing hosts to add to existing allocation.22

PMIX_ADD_HOST "pmix.addhost" (char*)23
Comma-delimited list of hosts to add to the allocation.24

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)25
Preload binaries onto nodes.26

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)27
Comma-delimited list of files to pre-position on nodes.28

PMIX_PERSONALITY "pmix.pers" (char*)29
Name of personality to use.30

PMIX_MAPPER "pmix.mapper" (char*)31
Mapping mechanism to use for placing spawned processes - when accessed using32
PMIx_Get , use the PMIX_RANK_WILDCARD value for the rank to discover the mapping33
mechanism used for the provided namespace.34

148 PMIx Standard – Version 3.0 – December 2018

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)1
Display process mapping upon spawn.2

PMIX_PPR "pmix.ppr" (char*)3
Number of processes to spawn on each identified resource.4

PMIX_MAPBY "pmix.mapby" (char*)5
Process mapping policy - when accessed using PMIx_Get , use the6
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the7
provided namespace8

PMIX_RANKBY "pmix.rankby" (char*)9
Process ranking policy - when accessed using PMIx_Get , use the10
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for the11
provided namespace12

PMIX_BINDTO "pmix.bindto" (char*)13
Process binding policy - when accessed using PMIx_Get , use the14
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the15
provided namespace16

PMIX_NON_PMI "pmix.nonpmi" (bool)17
Spawned processes will not call PMIx_Init .18

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)19
Spawned process rank that is to receive stdin.20

PMIX_FWD_STDIN "pmix.fwd.stdin" (bool)21
Forward this process’s stdin to the designated process.22

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)23
Forward stdout from spawned processes to this process.24

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)25
Forward stderr from spawned processes to this process.26

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)27
Spawned application consists of debugger daemons.28

PMIX_TAG_OUTPUT "pmix.tagout" (bool)29
Tag application output with the identity of the source process.30

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)31
Timestamp output from applications.32

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)33
Merge stdout and stderr streams from application processes.34

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)35
Output application output to the specified file.36

CHAPTER 6. PROCESS MANAGEMENT 149

PMIX_INDEX_ARGV "pmix.indxargv" (bool)1
Mark the argv with the rank of the process.2

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)3
Number of cpus to assign to each rank - when accessed using PMIx_Get , use the4
PMIX_RANK_WILDCARD value for the rank to discover the cpus/process assigned to the5
provided namespace6

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)7
Do not place processes on the head node.8

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)9
Do not oversubscribe the cpus.10

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)11
Report bindings of the individual processes.12

PMIX_CPU_LIST "pmix.cpulist" (char*)13
List of cpus to use for this job - when accessed using PMIx_Get , use the14
PMIX_RANK_WILDCARD value for the rank to discover the cpu list used for the provided15
namespace16

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)17
Application supports recoverable operations.18

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)19
Application is continuous, all failed processes should be immediately restarted.20

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)21
Maximum number of times to restart a job - when accessed using PMIx_Get , use the22
PMIX_RANK_WILDCARD value for the rank to discover the max restarts for the provided23
namespace24

Description25

Nonblocking version of the PMIx_Spawn routine. The provided callback function will be26
executed upon successful start of all specified application processes.27

Advice to users

Behavior of individual resource managers may differ, but it is expected that failure of any28
application process to start will result in termination/cleanup of all processes in the newly spawned29
job and return of an error code to the caller.30

150 PMIx Standard – Version 3.0 – December 2018

6.3 Connecting and Disconnecting Processes1

This section defines functions to connect and disconnect processes in two or more separate PMIx2
namespaces. The PMIx definition of connected solely implies the following:3

• job-level information for each namespace involved in the operation is to be made available to all4
processes in the connected assemblage5

• any data posted by a process in the connected assemblage (via calls to PMIx_Put committed via6
PMIx_Commit) prior to execution of the PMIx_Connect operation is to be made accessible7
to all processes in the assemblage - any data posted after execution of the connect operation must8
be exchanged via a separate PMIx_Fence operation spanning the connected processes9

• the host environment should treat the failure of any process in the assemblage as a reportable10
event, taking action on the assemblage as if it were a single application. For example, if the11
environment defaults (in the absence of any application directives) to terminating an application12
upon failure of any process in that application, then the environment should terminate all13
processes in the connected assemblage upon failure of any member.14

Advice to PMIx server hosts

The host environment may choose to assign a new namespace to the connected assemblage and/or15
assign new ranks for its members for its own internal tracking purposes. However, it is not required16
to communicate such assignments to the participants (e.g., in response to an appropriate call to17
PMIx_Query_info_nb). The host environment is required to generate a18
PMIX_ERR_INVALID_TERMINATION event should any process in the assemblage terminate or19
call PMIx_Finalize without first disconnecting from the assemblage.20

Advice to users

Attempting to connect processes solely within the same namespace is essentially a no-op operation.21
While not explicitly prohibited, users are advised that a PMIx implementation or host environment22
may return an error in such cases.23

Neither the PMIx implementation nor host environment are required to provide any tracking24
support for the assemblage. Thus, the application is responsible for maintaining the membership25
list of the assemblage.26

6.3.1 PMIx_Connect27

Summary28

Connect namespaces.29

CHAPTER 6. PROCESS MANAGEMENT 151

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Connect(const pmix_proc_t procs[], size_t nprocs,3

const pmix_info_t info[], size_t ninfo)4

C

IN procs5
Array of proc structures (array of handles)6

IN nprocs7
Number of elements in the procs array (integer)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.13

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any14
provided attributes must be passed to the host SMS daemon for processing.15

Optional Attributes

The following attributes are optional for host environments that support this operation:16

PMIX_TIMEOUT "pmix.timeout" (int)17
Time in seconds before the specified operation should time out (0 indicating infinite) in18
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent19
the target process from ever exposing its data.20

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)21
Comma-delimited list of algorithms to use for the collective operation. PMIx does not22
impose any requirements on a host environment’s collective algorithms. Thus, the23
acceptable values for this attribute will be environment-dependent - users are encouraged to24
check their host environment for supported values.25

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)26
If true, indicates that the requested choice of algorithm is mandatory.27

152 PMIx Standard – Version 3.0 – December 2018

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host1
environment due to race condition considerations between completion of the operation versus2
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT3
directly in the PMIx server library must take care to resolve the race condition and should avoid4
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not5
created.6

Description7

Record the processes specified by the procs array as connected as per the PMIx definition. The8
function will return once all processes identified in procs have called either PMIx_Connect or9
its non-blocking version, and the host environment has completed any supporting operations10
required to meet the terms of the PMIx definition of connected processes.11

Advice to users

All processes engaged in a given PMIx_Connect operation must provide the identical procs12
array as ordering of entries in the array and the method by which those processes are identified13
(e.g., use of PMIX_RANK_WILDCARD versus listing the individual processes) may impact the14
host environment’s algorithm for uniquely identifying an operation.15

Advice to PMIx library implementers

PMIx_Connect and its non-blocking form are both collective operations. Accordingly, the PMIx16
server library is required to aggregate participation by local clients, passing the request to the host17
environment once all local participants have executed the API.18

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to19
identify the nodes containing participating processes, execute the collective across all participating20
nodes, and notify the local PMIx server library upon completion of the global collective.21

CHAPTER 6. PROCESS MANAGEMENT 153

Processes that combine via PMIx_Connect must call PMIx_Disconnect prior to finalizing1
and/or terminating - any process in the assemblage failing to meet this requirement will cause a2
PMIX_ERR_INVALID_TERMINATION event to be generated.3

A process can only engage in one connect operation involving the identical procs array at a time.4
However, a process can be simultaneously engaged in multiple connect operations, each involving a5
different procs array.6

As in the case of the PMIx_Fence operation, the info array can be used to pass user-level7
directives regarding the algorithm to be used for any collective operation involved in the operation,8
timeout constraints, and other options available from the host RM.9

6.3.2 PMIx_Connect_nb10

Summary11

Nonblocking PMIx_Connect_nb routine.12

Format13

PMIx v1.0 C
pmix_status_t14
PMIx_Connect_nb(const pmix_proc_t procs[], size_t nprocs,15

const pmix_info_t info[], size_t ninfo,16
pmix_op_cbfunc_t cbfunc, void *cbdata)17

C

IN procs18
Array of proc structures (array of handles)19

IN nprocs20
Number of elements in the procs array (integer)21

IN info22
Array of info structures (array of handles)23

IN ninfo24
Number of element in the info array (integer)25

IN cbfunc26
Callback function pmix_op_cbfunc_t (function reference)27

IN cbdata28
Data to be passed to the callback function (memory reference)29

Returns one of the following:30

154 PMIx Standard – Version 3.0 – December 2018

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result1
will be returned in the provided cbfunc. Note that the library must not invoke the callback2
function prior to returning from the API.3

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and4
returned success - the cbfunc will not be called5

• a PMIx error constant indicating either an error in the input or that the request was immediately6
processed and failed - the cbfunc will not be called7

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any8
provided attributes must be passed to the host SMS daemon for processing.9

Optional Attributes

The following attributes are optional for host environments that support this operation:10

PMIX_TIMEOUT "pmix.timeout" (int)11
Time in seconds before the specified operation should time out (0 indicating infinite) in12
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent13
the target process from ever exposing its data.14

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)15
Comma-delimited list of algorithms to use for the collective operation. PMIx does not16
impose any requirements on a host environment’s collective algorithms. Thus, the17
acceptable values for this attribute will be environment-dependent - users are encouraged to18
check their host environment for supported values.19

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)20
If true, indicates that the requested choice of algorithm is mandatory.21

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host22
environment due to race condition considerations between completion of the operation versus23
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT24
directly in the PMIx server library must take care to resolve the race condition and should avoid25
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not26
created.27

CHAPTER 6. PROCESS MANAGEMENT 155

Description1

Nonblocking version of PMIx_Connect . The callback function is called once all processes2
identified in procs have called either PMIx_Connect or its non-blocking version, and the host3
environment has completed any supporting operations required to meet the terms of the PMIx4
definition of connected processes. See the advice provided in the description for PMIx_Connect5
for more information.6

6.3.3 PMIx_Disconnect7

Summary8

Disconnect a previously connected set of processes.9

Format10

PMIx v1.0 C
pmix_status_t11
PMIx_Disconnect(const pmix_proc_t procs[], size_t nprocs,12

const pmix_info_t info[], size_t ninfo);13

C

IN procs14
Array of proc structures (array of handles)15

IN nprocs16
Number of elements in the procs array (integer)17

IN info18
Array of info structures (array of handles)19

IN ninfo20
Number of element in the info array (integer)21

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.22

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any23
provided attributes must be passed to the host SMS daemon for processing.24

156 PMIx Standard – Version 3.0 – December 2018

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (0 indicating infinite) in3
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4
the target process from ever exposing its data.5

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host6
environment due to race condition considerations between completion of the operation versus7
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT8
directly in the PMIx server library must take care to resolve the race condition and should avoid9
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not10
created.11

Description12

Disconnect a previously connected set of processes. A PMIX_ERR_INVALID_OPERATION13
error will be returned if the specified set of procs was not previously connected via a call to14
PMIx_Connect or its non-blocking form. The function will return once all processes identified15
in procs have called either PMIx_Disconnect or its non-blocking version, and the host16
environment has completed any required supporting operations.17

Advice to users

All processes engaged in a given PMIx_Disconnect operation must provide the identical procs18
array as ordering of entries in the array and the method by which those processes are identified19
(e.g., use of PMIX_RANK_WILDCARD versus listing the individual processes) may impact the20
host environment’s algorithm for uniquely identifying an operation.21

Advice to PMIx library implementers

PMIx_Disconnect and its non-blocking form are both collective operations. Accordingly, the22
PMIx server library is required to aggregate participation by local clients, passing the request to the23
host environment once all local participants have executed the API.24

CHAPTER 6. PROCESS MANAGEMENT 157

Advice to PMIx server hosts

The host will receive a single call for each collective operation. The host will receive a single call1
for each collective operation. It is the responsibility of the host to identify the nodes containing2
participating processes, execute the collective across all participating nodes, and notify the local3
PMIx server library upon completion of the global collective.4

A process can only engage in one disconnect operation involving the identical procs array at a time.5
However, a process can be simultaneously engaged in multiple disconnect operations, each6
involving a different procs array.7

As in the case of the PMIx_Fence operation, the info array can be used to pass user-level8
directives regarding the algorithm to be used for any collective operation involved in the operation,9
timeout constraints, and other options available from the host RM.10

6.3.4 PMIx_Disconnect_nb11

Summary12

Nonblocking PMIx_Disconnect routine.13

Format14

PMIx v1.0 C
pmix_status_t15
PMIx_Disconnect_nb(const pmix_proc_t procs[], size_t nprocs,16

const pmix_info_t info[], size_t ninfo,17
pmix_op_cbfunc_t cbfunc, void *cbdata);18

C

IN procs19
Array of proc structures (array of handles)20

IN nprocs21
Number of elements in the procs array (integer)22

IN info23
Array of info structures (array of handles)24

IN ninfo25
Number of element in the info array (integer)26

IN cbfunc27
Callback function pmix_op_cbfunc_t (function reference)28

IN cbdata29
Data to be passed to the callback function (memory reference)30

158 PMIx Standard – Version 3.0 – December 2018

Returns one of the following:1

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result2
will be returned in the provided cbfunc. Note that the library must not invoke the callback3
function prior to returning from the API.4

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and5
returned success - the cbfunc will not be called6

• a PMIx error constant indicating either an error in the input or that the request was immediately7
processed and failed - the cbfunc will not be called8

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any9
provided attributes must be passed to the host SMS daemon for processing.10

Optional Attributes

The following attributes are optional for host environments that support this operation:11

PMIX_TIMEOUT "pmix.timeout" (int)12
Time in seconds before the specified operation should time out (0 indicating infinite) in13
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent14
the target process from ever exposing its data.15

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host16
environment due to race condition considerations between completion of the operation versus17
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT18
directly in the PMIx server library must take care to resolve the race condition and should avoid19
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not20
created.21

Description22

Nonblocking PMIx_Disconnect routine. The callback function is called once all processes23
identified in procs have called either PMIx_Disconnect_nb or its blocking version, and the24
host environment has completed any required supporting operations. See the advice provided in the25
description for PMIx_Disconnect for more information.26

CHAPTER 6. PROCESS MANAGEMENT 159

6.4 IO Forwarding1

This section defines functions by which tools (e.g., debuggers) can request forwarding of2
input/output to/from other processes. The term “tool” widely refers to non-computational programs3
executed by the user or system administrator to monitor or control a principal computational4
program. Tools almost always interact with either the host environment, user applications, or both5
to perform administrative and support functions. For example, a debugger tool might be used to6
remotely control the processes of a parallel application, monitoring their behavior on a step-by-step7
basis.8

Underlying the operation of many tools is a common need to forward stdin from the tool to targeted9
processes, and to return stdout/stderr from those processes for display on the user’s console.10
Historically, each tool developer was responsible for creating their own IO forwarding subsystem.11
However, with the introduction of PMIx as a standard mechanism for interacting between12
applications and the host environment, it has become possible to relieve tool developers of this13
burden.14

Advice to PMIx server hosts

The responsibility of the host environment in forwarding of IO falls into the following areas:15

• Capturing output from specified child processes16

• Forwarding that output to the host of the PMIx server library that requested it17

• Delivering that payload to the PMIx server library via the PMIx_server_IOF_deliver18
API for final dispatch19

It is the responsibility of the PMIx library to buffer, format, and deliver the payload to the20
requesting client.21

Advice to users

The forwarding of IO via PMIx requires that both the host environment and the tool support PMIx,22
but does not impose any similar requirements on the application itself.23

6.4.1 PMIx_IOF_pull24

Summary25

Register to receive output forwarded from a set of remote processes.26

160 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v3.0 C
pmix_status_t2
PMIx_IOF_pull(const pmix_proc_t procs[], size_t nprocs,3

const pmix_info_t directives[], size_t ndirs,4
pmix_iof_channel_t channel, pmix_iof_cbfunc_t cbfunc,5
pmix_hdlr_reg_cbfunc_t regcbfunc, void *regcbdata)6

C

IN procs7
Array of proc structures identifying desired source processes (array of handles)8

IN nprocs9
Number of elements in the procs array (integer)10

IN directives11
Array of pmix_info_t structures (array of handles)12

IN ndirs13
Number of elements in the directives array (integer)14

IN channel15
Bitmask of IO channels included in the request (pmix_iof_channel_t)16

IN cbfunc17
Callback function for delivering relevant output (pmix_iof_cbfunc_t function18
reference)19

IN regcbfunc20
Function to be called when registration is completed (pmix_hdlr_reg_cbfunc_t21
function reference)22

IN regcbdata23
Data to be passed to the regcbfunc callback function (memory reference)24

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant. In the event25
the function returns an error, the regcbfunc will not be called.26

Required Attributes

The following attributes are required for PMIx libraries that support IO forwarding:27

PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)28
The requested size of the server cache in bytes for each specified channel. By default, the29
server is allowed (but not required) to drop all bytes received beyond the max size.30

PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)31
In an overflow situation, drop the oldest bytes to make room in the cache.32

PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)33
In an overflow situation, drop any new bytes received until room becomes available in the34
cache (default).35

CHAPTER 6. PROCESS MANAGEMENT 161

Optional Attributes

The following attributes are optional for PMIx libraries that support IO forwarding:1

PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)2
Controls grouping of IO on the specified channel(s) to avoid being called every time a bit of3
IO arrives. The library will execute the callback whenever the specified number of bytes4
becomes available. Any remaining buffered data will be “flushed” upon call to deregister the5
respective channel.6

PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)7
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering8
size, this prevents IO from being held indefinitely while waiting for another payload to9
arrive.10

PMIX_IOF_TAG_OUTPUT "pmix.iof.tag" (bool)11
Tag output with the channel it comes from.12

PMIX_IOF_TIMESTAMP_OUTPUT "pmix.iof.ts" (bool)13
Timestamp output14

PMIX_IOF_XML_OUTPUT "pmix.iof.xml" (bool)15
Format output in XML16

Description17

Register to receive output forwarded from a set of remote processes.18

Advice to users

Providing a NULL function pointer for the cbfunc parameter will cause output for the indicated19
channels to be written to their corresponding stdout/stderr file descriptors. Use of20
PMIX_RANK_WILDCARD to specify all processes in a given namespace is supported but should21
be used carefully due to bandwidth considerations.22

6.4.2 PMIx_IOF_deregister23

Summary24

Deregister from output forwarded from a set of remote processes.25

162 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v3.0 C
pmix_status_t2
PMIx_IOF_deregister(size_t iofhdlr,3

const pmix_info_t directives[], size_t ndirs,4
pmix_op_cbfunc_t cbfunc, void *cbdata)5

C

IN iofhdlr6
Registration number returned from the pmix_hdlr_reg_cbfunc_t callback from the7
call to PMIx_IOF_pull (size_t)8

IN directives9
Array of pmix_info_t structures (array of handles)10

IN ndirs11
Number of elements in the directives array (integer)12

IN cbfunc13
Callback function to be called when deregistration has been completed. (function reference)14

IN cbdata15
Data to be passed to the cbfunc callback function (memory reference)16

Returns one of the following:17

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result18
will be returned in the provided cbfunc. Note that the library must not invoke the callback19
function prior to returning from the API.20

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and21
returned success - the cbfunc will not be called22

• a PMIx error constant indicating either an error in the input or that the request was immediately23
processed and failed - the cbfunc will not be called24

Description25

Deregister from output forwarded from a set of remote processes.26

Advice to PMIx library implementers

Any currently buffered IO should be flushed upon receipt of a deregistration request. All received27
IO after receipt of the request shall be discarded.28

CHAPTER 6. PROCESS MANAGEMENT 163

6.4.3 PMIx_IOF_push1

Summary2

Push data collected locally (typically from stdin or a file) to stdin of the target recipients.3

Format4

PMIx v3.0 C
pmix_status_t5
PMIx_IOF_push(const pmix_proc_t targets[], size_t ntargets,6

pmix_byte_object_t *bo,7
const pmix_info_t directives[], size_t ndirs,8
pmix_op_cbfunc_t cbfunc, void *cbdata)9

C

IN targets10
Array of proc structures identifying desired target processes (array of handles)11

IN ntargets12
Number of elements in the targets array (integer)13

IN bo14
Pointer to pmix_byte_object_t containing the payload to be delivered (handle)15

IN directives16
Array of pmix_info_t structures (array of handles)17

IN ndirs18
Number of elements in the directives array (integer)19

IN directives20
Array of pmix_info_t structures (array of handles)21

IN cbfunc22
Callback function to be called when operation has been completed. (23
pmix_op_cbfunc_t function reference)24

IN cbdata25
Data to be passed to the cbfunc callback function (memory reference)26

Returns one of the following:27

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result28
will be returned in the provided cbfunc. Note that the library must not invoke the callback29
function prior to returning from the API.30

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and31
returned success - the cbfunc will not be called32

• a PMIx error constant indicating either an error in the input or that the request was immediately33
processed and failed - the cbfunc will not be called34

164 PMIx Standard – Version 3.0 – December 2018

Required Attributes

The following attributes are required for PMIx libraries that support IO forwarding:1

PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)2
The requested size of the server cache in bytes for each specified channel. By default, the3
server is allowed (but not required) to drop all bytes received beyond the max size.4

PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)5
In an overflow situation, drop the oldest bytes to make room in the cache.6

PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)7
In an overflow situation, drop any new bytes received until room becomes available in the8
cache (default).9

Optional Attributes

The following attributes are optional for PMIx libraries that support IO forwarding:10

PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)11
Controls grouping of IO on the specified channel(s) to avoid being called every time a bit of12
IO arrives. The library will execute the callback whenever the specified number of bytes13
becomes available. Any remaining buffered data will be “flushed” upon call to deregister the14
respective channel.15

PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)16
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering17
size, this prevents IO from being held indefinitely while waiting for another payload to18
arrive.19

Description20

Push data collected locally (typically from stdin or a file) to stdin of the target recipients.21

Advice to users

Execution of the cbfunc callback function serves as notice that the PMIx library no longer requires22
the caller to maintain the bo data object - it does not indicate delivery of the payload to the targets.23
Use of PMIX_RANK_WILDCARD to specify all processes in a given namespace is supported but24
should be used carefully due to bandwidth considerations.25

CHAPTER 6. PROCESS MANAGEMENT 165

CHAPTER 7

Job Management and Reporting

The job management APIs provide an application with the ability to orchestrate its operation in1
partnership with the SMS. Members of this category include the2
PMIx_Allocation_request_nb , PMIx_Job_control_nb , and3
PMIx_Process_monitor_nb APIs.4

7.1 Query5

As the level of interaction between applications and the host SMS grows, so too does the need for6
the application to query the SMS regarding its capabilities and state information. PMIx provides a7
generalized query interface for this purpose, along with a set of standardized attribute keys to8
support a range of requests. This includes requests to determine the status of scheduling queues and9
active allocations, the scope of API and attribute support offered by the SMS, namespaces of active10
jobs, location and information about a job’s processes, and information regarding available11
resources.12

An example use-case for the PMIx_Query_info_nb API is to ensure clean job completion.13
Time-shared systems frequently impose maximum run times when assigning jobs to resource14
allocations. To shut down gracefully, e.g., to write a checkpoint before termination, it is necessary15
for an application to periodically query the resource manager for the time remaining in its16
allocation. This is especially true on systems for which allocation times may be shortened or17
lengthened from the original time limit. Many resource managers provide APIs to dynamically18
obtain this information, but each API is specific to the resource manager.19

PMIx supports this use-case by defining an attribute key (PMIX_TIME_REMAINING) that can be20
used with the PMIx_Query_info_nb interface to obtain the number of seconds remaining in21
the current job allocation. Note that one could alternatively use the22
PMIx_Register_event_handler API to register for an event indicating incipient job23
termination, and then use the PMIx_Job_control_nb API to request that the host SMS24
generate an event a specified amount of time prior to reaching the maximum run time. PMIx25
provides such alternate methods as a means of maximizing the probability of a host system26
supporting at least one method by which the application can obtain the desired service.27

The following APIs support query of various session and environment values.28

166

7.1.1 PMIx_Resolve_peers1

Summary2

Obtain the array of processes within the specified namespace that are executing on a given node.3

Format4

PMIx v1.0 C
pmix_status_t5
PMIx_Resolve_peers(const char *nodename,6

const pmix_nspace_t nspace,7
pmix_proc_t **procs, size_t *nprocs)8

C

IN nodename9
Name of the node to query (string)10

IN nspace11
namespace (string)12

OUT procs13
Array of process structures (array of handles)14

OUT nprocs15
Number of elements in the procs array (integer)16

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.17

Description18

Given a nodename, return the array of processes within the specified nspace that are executing on19
that node. If the nspace is NULL, then all processes on the node will be returned. If the specified20
node does not currently host any processes, then the returned array will be NULL, and nprocs will21
be 0. The caller is responsible for releasing the procs array when done with it. The22
PMIX_PROC_FREE macro is provided for this purpose.23

7.1.2 PMIx_Resolve_nodes24

Summary25

Return a list of nodes hosting processes within the given namespace.26

CHAPTER 7. JOB MANAGEMENT AND REPORTING 167

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_Resolve_nodes(const char *nspace, char **nodelist)3

C

IN nspace4
Namespace (string)5

OUT nodelist6
Comma-delimited list of nodenames (string)7

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.8

Description9

Given a nspace, return the list of nodes hosting processes within that namespace. The returned10
string will contain a comma-delimited list of nodenames. The caller is responsible for releasing the11
string when done with it.12

7.1.3 PMIx_Query_info_nb13

Summary14

Query information about the system in general.15

Format16

PMIx v2.0 C
pmix_status_t17
PMIx_Query_info_nb(pmix_query_t queries[], size_t nqueries,18

pmix_info_cbfunc_t cbfunc, void *cbdata)19

C

IN queries20
Array of query structures (array of handles)21

IN nqueries22
Number of elements in the queries array (integer)23

IN cbfunc24
Callback function pmix_info_cbfunc_t (function reference)25

IN cbdata26
Data to be passed to the callback function (memory reference)27

Returns one of the following:28

168 PMIx Standard – Version 3.0 – December 2018

• PMIX_SUCCESS indicating that the request has been accepted for processing and the provided1
callback function will be executed upon completion of the operation. Note that the library must2
not invoke the callback function prior to returning from the API.3

• a non-zero PMIx error constant indicating a reason for the request to have been rejected. In this4
case, the provided callback function will not be executed5

If executed, the status returned in the provided callback function will be one of the following6
constants:7

• PMIX_SUCCESS All data has been returned8

• PMIX_ERR_NOT_FOUND None of the requested data was available9

• PMIX_ERR_PARTIAL_SUCCESS Some of the data has been returned10

• PMIX_ERR_NOT_SUPPORTED The host RM does not support this function11

• a non-zero PMIx error constant indicating a reason for the request’s failure12

Required Attributes

PMIx libraries that support this API are required to support the following attributes:13

PMIX_QUERY_REFRESH_CACHE "pmix.qry.rfsh" (bool)14
Retrieve updated information from server.15

PMIX_SESSION_INFO "pmix.ssn.info" (bool)16
Return information about the specified session. If information about a session other than the17
one containing the requesting process is desired, then the attribute array must contain a18
PMIX_SESSION_ID attribute identifying the desired target.19

PMIX_JOB_INFO "pmix.job.info" (bool)20
Return information about the specified job or namespace. If information about a job or21
namespace other than the one containing the requesting process is desired, then the attribute22
array must contain a PMIX_JOBID or PMIX_NSPACE attribute identifying the desired23
target. Similarly, if information is requested about a job or namespace in a session other than24
the one containing the requesting process, then an attribute identifying the target session25
must be provided.26

PMIX_APP_INFO "pmix.app.info" (bool)27
Return information about the specified application. If information about an application other28
than the one containing the requesting process is desired, then the attribute array must29
contain a PMIX_APPNUM attribute identifying the desired target. Similarly, if information is30
requested about an application in a job or session other than the one containing the requesting31
process, then attributes identifying the target job and/or session must be provided.32

PMIX_NODE_INFO "pmix.node.info" (bool)33

CHAPTER 7. JOB MANAGEMENT AND REPORTING 169

Return information about the specified node. If information about a node other than the one1
containing the requesting process is desired, then the attribute array must contain either the2
PMIX_NODEID or PMIX_HOSTNAME attribute identifying the desired target.3

PMIX_PROCID "pmix.procid" (pmix_proc_t)4
Process identifier Specifies the process ID whose information is being requested - e.g., a5
query asking for the PMIX_LOCAL_RANK of a specified process. Only required when the6
request is for information on a specific process.7

PMIX_NSPACE "pmix.nspace" (char*)8
Namespace of the job. Specifies the namespace of the process whose information is being9
requested - e.g., a query asking for the PMIX_LOCAL_RANK of a specified process. Must10
be accompanied by the PMIX_RANK attribute. Only required when the request is for11
information on a specific process.12

PMIX_RANK "pmix.rank" (pmix_rank_t)13
Process rank within the job. Specifies the rank of the process whose information is being14
requested - e.g., a query asking for the PMIX_LOCAL_RANK of a specified process. Must15
be accompanied by the PMIX_NSPACE attribute. Only required when the request is for16
information on a specific process.17

Note that inclusion of the PMIX_PROCID directive and either the PMIX_NSPACE or the18
PMIX_RANK attribute will return a PMIX_ERR_BAD_PARAM result, and that the inclusion of a19
process identifier must apply to all keys in that pmix_query_t . Queries for information on20
multiple specific processes therefore requires submitting multiple pmix_query_t structures,21
each referencing one process.22

PMIx libraries are not required to directly support any other attributes for this function. However,23
any provided attributes must be passed to the host SMS daemon for processing, and the PMIx24
library is required to add the PMIX_USERID and the PMIX_GRPID attributes of the client25
process making the request.26

Required Attributes

Host environments that support this operation are required to support the following attributes as27
qualifiers to the request:28

PMIX_PROCID "pmix.procid" (pmix_proc_t)29
Process identifier Specifies the process ID whose information is being requested - e.g., a30
query asking for the PMIX_LOCAL_RANK of a specified process. Only required when the31
request is for information on a specific process.32

PMIX_NSPACE "pmix.nspace" (char*)33
Namespace of the job. Specifies the namespace of the process whose information is being34
requested - e.g., a query asking for the PMIX_LOCAL_RANK of a specified process. Must35
be accompanied by the PMIX_RANK attribute. Only required when the request is for36
information on a specific process.37

170 PMIx Standard – Version 3.0 – December 2018

PMIX_RANK "pmix.rank" (pmix_rank_t)1
Process rank within the job. Specifies the rank of the process whose information is being2
requested - e.g., a query asking for the PMIX_LOCAL_RANK of a specified process. Must3
be accompanied by the PMIX_NSPACE attribute. Only required when the request is for4
information on a specific process.5

Note that inclusion of the PMIX_PROCID directive and either the PMIX_NSPACE or the6
PMIX_RANK attribute will return a PMIX_ERR_BAD_PARAM result, and that the inclusion of a7
process identifier must apply to all keys in that pmix_query_t . Queries for information on8
multiple specific processes therefore requires submitting multiple pmix_query_t structures,9
each referencing one process.10

Optional Attributes

The following attributes are optional for host environments that support this operation:11

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)12
Request a comma-delimited list of active namespaces.13

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)14
Status of a specified, currently executing job.15

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)16
Request a comma-delimited list of scheduler queues.17

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (TBD)18
Status of a specified scheduler queue.19

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)20
Input namespace of the job whose information is being requested returns (21
pmix_data_array_t) an array of pmix_proc_info_t .22

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)23
Input namespace of the job whose information is being requested returns (24
pmix_data_array_t) an array of pmix_proc_info_t for processes in job on same25
node.26

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)27
Return a comma-delimited list of supported spawn attributes.28

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)29
Return a comma-delimited list of supported debug attributes.30

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)31
Return information on memory usage for the processes indicated in the qualifiers.32

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)33
Report only average values for sampled information.34

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)35

CHAPTER 7. JOB MANAGEMENT AND REPORTING 171

Report minimum and maximum values.1

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)2
String identifier of the allocation whose status is being requested.3

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)4
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.5

6

PMIX_SERVER_URI "pmix.srvr.uri" (char*)7
URI of the PMIx server to be contacted. Requests the URI of the specified PMIx server’s8
PMIx connection. Defaults to requesting the information for the local PMIx server.9

PMIX_PROC_URI "pmix.puri" (char*)10
URI containing contact information for a given process. Requests the URI of the specified11
PMIx server’s out-of-band connection. Defaults to requesting the information for the local12
PMIx server.13

Description14

Query information about the system in general. This can include a list of active namespaces,15
network topology, etc. Also can be used to query node-specific info such as the list of peers16
executing on a given node. We assume that the host RM will exercise appropriate access control on17
the information.18

NOTE: There is no blocking form of this API as the structures passed to query info differ from19
those for receiving the results.20

The status argument to the callback function indicates if requested data was found or not. An array21
of pmix_info_t will contain each key that was provided and the corresponding value that was22
found. Requests for keys that are not found will return the key paired with a value of type23
PMIX_UNDEF .24

Advice to users
The desire to query a list of attributes supported by the implementation and/or the host environment25
has been expressed and noted. The PMIx community is exploring the possibility and it will likely26
become available in a future release27

Advice to PMIx library implementers
Information returned from PMIx_Query_info_nb shall be locally cached so that retrieval by28
subsequent calls to PMIx_Get or PMIx_Query_info_nb can succeed with minimal overhead.29
The local cache shall be checked prior to querying the PMIx server and/or the host environment.30
Queries that include the PMIX_QUERY_REFRESH_CACHE attribute shall bypass the local cache31
and retrieve a new value for the query, refreshing the values in the cache upon return.32

172 PMIx Standard – Version 3.0 – December 2018

7.1.3.1 Using PMIx_Get vs PMIx_Query_info_nb1

Both PMIx_Get and PMIx_Query_info_nb can be used to retrieve information about the2
system. In general, the get operation should be used to retrieve:3

• information provided by the host environment at time of job start. This includes information on4
the number of processes in the job, their location, and possibly their communication endpoints5

• information posted by processes via the PMIx_Put function6

This information is largely considered to be static, although this will not necessarily be true for7
environments supporting dynamic programming models or fault tolerance. Note that the8
PMIx_Get function only accesses information about execution environments - i.e., its scope is9
limited to values pertaining to a specific session , job , application , process, or node. It10
cannot be used to obtain information about areas such as the status of queues in the WLM.11

In contrast, the query option should be used to access:12

• system-level information (such as the available WLM queues) that would generally not be13
included in job-level information provided at job start14

• dynamic information such as application and queue status, and resource utilization statistics.15
Note that the PMIX_QUERY_REFRESH_CACHE attribute must be provided on each query to16
ensure current data is returned17

• information created post job start, such as process tables18

• information requiring more complex search criteria than supported by the simpler PMIx_Get19
API20

• queries focused on retrieving multi-attribute blocks of data with a single request, thus bypassing21
the single-key limitation of the PMIx_Get API22

In theory, all information can be accessed via PMIx_Query_info_nb as the local cache is23
typically the same datastore searched by PMIx_Get . However, in practice, the overhead24
associated with the query operation may (depending upon implementation) be higher than the25
simpler get operation due to the need to construct and process the more complex pmix_query_t26
structure. Thus, requests for a single key value are likely to be accomplished faster with27
PMIx_Get versus the query operation.28

7.2 Allocation Requests29

This section defines functionality to request new allocations from the RM, and request30
modifications to existing allocations. These are primarily used in the following scenarios:31

• Evolving applications that dynamically request and return resources as they execute32

CHAPTER 7. JOB MANAGEMENT AND REPORTING 173

• Malleable environments where the scheduler redirects resources away from executing1
applications for higher priority jobs or load balancing2

• Resilient applications that need to request replacement resources in the face of failures3

• Rigid jobs where the user has requested a static allocation of resources for a fixed period of time,4
but realizes that they underestimated their required time while executing5

PMIx attempts to address this range of use-cases with a flexible API.6

7.2.1 PMIx_Allocation_request7

Summary8

Request an allocation operation from the host resource manager.9

Format10

PMIx v3.0 C
pmix_status_t11
PMIx_Allocation_request(pmix_alloc_directive_t directive,12

pmix_info_t info[], size_t ninfo);13

C

IN directive14
Allocation directive (handle)15

IN info16
Array of pmix_info_t structures (array of handles)17

IN ninfo18
Number of elements in the info array (integer)19

Returns one of the following:20

• PMIX_SUCCESS , indicating that the request was processed and returned success21

• a PMIx error constant indicating either an error in the input or that the request was refused22

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any23
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is24
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making25
the request.26

Host environments that implement support for this operation are required to support the following27
attributes:28

PMIX_ALLOC_ID "pmix.alloc.id" (char*)29

174 PMIx Standard – Version 3.0 – December 2018

Provide a string identifier for this allocation request which can later be used to query status1
of the request.2

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)3
The number of nodes.4

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)5
Number of cpus.6

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)7
Time in seconds.8

Optional Attributes

The following attributes are optional for host environments that support this operation:9

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)10
Regular expression of the specific nodes.11

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)12
Regular expression of the number of cpus for each node.13

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)14
Regular expression of the specific cpus indicating the cpus involved.15

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)16
Number of Megabytes.17

PMIX_ALLOC_NETWORK "pmix.alloc.net" (array)18
Array of pmix_info_t describing requested network resources. This must include at19
least: PMIX_ALLOC_NETWORK_ID , PMIX_ALLOC_NETWORK_TYPE , and20
PMIX_ALLOC_NETWORK_ENDPTS , plus whatever other descriptors are desired.21

PMIX_ALLOC_NETWORK_ID "pmix.alloc.netid" (char*)22
The key to be used when accessing this requested network allocation. The allocation will be23
returned/stored as a pmix_data_array_t of pmix_info_t indexed by this key and24
containing at least one entry with the same key and the allocated resource description. The25
type of the included value depends upon the network support. For example, a TCP allocation26
might consist of a comma-delimited string of socket ranges such as27
"32000-32100,33005,38123-38146". Additional entries will consist of any provided28
resource request directives, along with their assigned values. Examples include:29
PMIX_ALLOC_NETWORK_TYPE - the type of resources provided;30
PMIX_ALLOC_NETWORK_PLANE - if applicable, what plane the resources were assigned31
from; PMIX_ALLOC_NETWORK_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -32
the allocated bandwidth; PMIX_ALLOC_NETWORK_SEC_KEY - a security key for the33
requested network allocation. NOTE: the assigned values may differ from those requested,34
especially if PMIX_INFO_REQD was not set in the request.35

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)36

CHAPTER 7. JOB MANAGEMENT AND REPORTING 175

Mbits/sec.1

PMIX_ALLOC_NETWORK_QOS "pmix.alloc.netqos" (char*)2
Quality of service level.3

PMIX_ALLOC_NETWORK_TYPE "pmix.alloc.nettype" (char*)4
Type of desired transport (e.g., “tcp”, “udp”)5

PMIX_ALLOC_NETWORK_PLANE "pmix.alloc.netplane" (char*)6
ID string for the NIC (aka plane) to be used for this allocation (e.g., CIDR for Ethernet)7

PMIX_ALLOC_NETWORK_ENDPTS "pmix.alloc.endpts" (size_t)8
Number of endpoints to allocate per process9

PMIX_ALLOC_NETWORK_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)10
Number of endpoints to allocate per node11

PMIX_ALLOC_NETWORK_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)12
Network security key13

Description14

Request an allocation operation from the host resource manager. Several broad categories are15
envisioned, including the ability to:16

• Request allocation of additional resources, including memory, bandwidth, and compute. This17
should be accomplished in a non-blocking manner so that the application can continue to18
progress while waiting for resources to become available. Note that the new allocation will be19
disjoint from (i.e., not affiliated with) the allocation of the requestor - thus the termination of one20
allocation will not impact the other.21

• Extend the reservation on currently allocated resources, subject to scheduling availability and22
priorities. This includes extending the time limit on current resources, and/or requesting23
additional resources be allocated to the requesting job. Any additional allocated resources will be24
considered as part of the current allocation, and thus will be released at the same time.25

• Return no-longer-required resources to the scheduler. This includes the “loan” of resources back26
to the scheduler with a promise to return them upon subsequent request.27

7.2.2 PMIx_Allocation_request_nb28

Summary29

Request an allocation operation from the host resource manager.30

176 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v2.0 C
pmix_status_t2
PMIx_Allocation_request_nb(pmix_alloc_directive_t directive,3

pmix_info_t info[], size_t ninfo,4
pmix_info_cbfunc_t cbfunc, void *cbdata);5

C

IN directive6
Allocation directive (handle)7

IN info8
Array of pmix_info_t structures (array of handles)9

IN ninfo10
Number of elements in the info array (integer)11

IN cbfunc12
Callback function pmix_info_cbfunc_t (function reference)13

IN cbdata14
Data to be passed to the callback function (memory reference)15

Returns one of the following:16

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result17
will be returned in the provided cbfunc. Note that the library must not invoke the callback18
function prior to returning from the API.19

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and20
returned success - the cbfunc will not be called21

• a PMIx error constant indicating either an error in the input or that the request was immediately22
processed and failed - the cbfunc will not be called23

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any24
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is25
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making26
the request.27

Host environments that implement support for this operation are required to support the following28
attributes:29

PMIX_ALLOC_ID "pmix.alloc.id" (char*)30
Provide a string identifier for this allocation request which can later be used to query status31
of the request.32

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)33
The number of nodes.34

CHAPTER 7. JOB MANAGEMENT AND REPORTING 177

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)1
Number of cpus.2

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)3
Time in seconds.4

Optional Attributes

The following attributes are optional for host environments that support this operation:5

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)6
Regular expression of the specific nodes.7

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)8
Regular expression of the number of cpus for each node.9

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)10
Regular expression of the specific cpus indicating the cpus involved.11

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)12
Number of Megabytes.13

PMIX_ALLOC_NETWORK "pmix.alloc.net" (array)14
Array of pmix_info_t describing requested network resources. This must include at15
least: PMIX_ALLOC_NETWORK_ID , PMIX_ALLOC_NETWORK_TYPE , and16
PMIX_ALLOC_NETWORK_ENDPTS , plus whatever other descriptors are desired.17

PMIX_ALLOC_NETWORK_ID "pmix.alloc.netid" (char*)18
The key to be used when accessing this requested network allocation. The allocation will be19
returned/stored as a pmix_data_array_t of pmix_info_t indexed by this key and20
containing at least one entry with the same key and the allocated resource description. The21
type of the included value depends upon the network support. For example, a TCP allocation22
might consist of a comma-delimited string of socket ranges such as23
"32000-32100,33005,38123-38146". Additional entries will consist of any provided24
resource request directives, along with their assigned values. Examples include:25
PMIX_ALLOC_NETWORK_TYPE - the type of resources provided;26
PMIX_ALLOC_NETWORK_PLANE - if applicable, what plane the resources were assigned27
from; PMIX_ALLOC_NETWORK_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -28
the allocated bandwidth; PMIX_ALLOC_NETWORK_SEC_KEY - a security key for the29
requested network allocation. NOTE: the assigned values may differ from those requested,30
especially if PMIX_INFO_REQD was not set in the request.31

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)32
Mbits/sec.33

PMIX_ALLOC_NETWORK_QOS "pmix.alloc.netqos" (char*)34
Quality of service level.35

PMIX_ALLOC_NETWORK_TYPE "pmix.alloc.nettype" (char*)36

178 PMIx Standard – Version 3.0 – December 2018

Type of desired transport (e.g., “tcp”, “udp”)1

PMIX_ALLOC_NETWORK_PLANE "pmix.alloc.netplane" (char*)2
ID string for the NIC (aka plane) to be used for this allocation (e.g., CIDR for Ethernet)3

PMIX_ALLOC_NETWORK_ENDPTS "pmix.alloc.endpts" (size_t)4
Number of endpoints to allocate per process5

PMIX_ALLOC_NETWORK_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)6
Number of endpoints to allocate per node7

PMIX_ALLOC_NETWORK_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)8
Network security key9

Description10

Non-blocking form of the PMIx_Allocation_request API.11

7.3 Job Control12

This section defines APIs that enable the application and host environment to coordinate the13
response to failures and other events. This can include requesting termination of the entire job or a14
subset of processes within a job, but can also be used in combination with other PMIx capabilities15
(e.g., allocation support and event notification) for more nuanced responses. For example, an16
application notified of an incipient over-temperature condition on a node could use the17
PMIx_Allocation_request_nb interface to request replacement nodes while18
simultaneously using the PMIx_Job_control_nb interface to direct that a checkpoint event be19
delivered to all processes in the application. If replacement resources are not available, the20
application might use the PMIx_Job_control_nb interface to request that the job continue at21
a lower power setting, perhaps sufficient to avoid the over-temperature failure.22

The job control APIs can also be used by an application to register itself as available for preemption23
when operating in an environment such as a cloud or where incentives, financial or otherwise, are24
provided to jobs willing to be preempted. Registration can include attributes indicating how many25
resources are being offered for preemption (e.g., all or only some portion), whether the application26
will require time to prepare for preemption, etc. Jobs that request a warning will receive an event27
notifying them of an impending preemption (possibly including information as to the resources that28
will be taken away, how much time the application will be given prior to being preempted, whether29
the preemption will be a suspension or full termination, etc.) so they have an opportunity to save30
their work. Once the application is ready, it calls the provided event completion callback function to31
indicate that the SMS is free to suspend or terminate it, and can include directives regarding any32
desired restart.33

CHAPTER 7. JOB MANAGEMENT AND REPORTING 179

7.3.1 PMIx_Job_control1

Summary2

Request a job control action.3

Format4

PMIx v3.0 C
pmix_status_t5
PMIx_Job_control(const pmix_proc_t targets[], size_t ntargets,6

const pmix_info_t directives[], size_t ndirs)7

C

IN targets8
Array of proc structures (array of handles)9

IN ntargets10
Number of element in the targets array (integer)11

IN directives12
Array of info structures (array of handles)13

IN ndirs14
Number of element in the directives array (integer)15

IN cbfunc16
Callback function pmix_info_cbfunc_t (function reference)17

IN cbdata18
Data to be passed to the callback function (memory reference)19

Returns one of the following:20

• PMIX_SUCCESS , indicating that the request was processed by the host environment and21
returned success22

• a PMIx error constant indicating either an error in the input or that the request was refused23

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any24
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is25
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making26
the request.27

Host environments that implement support for this operation are required to support the following28
attributes:29

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)30
Provide a string identifier for this request.31

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)32

180 PMIx Standard – Version 3.0 – December 2018

Pause the specified processes.1

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)2
Resume (“un-pause”) the specified processes.3

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)4
Forcibly terminate the specified processes and cleanup.5

PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)6
Send given signal to specified processes.7

PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)8
Politely terminate the specified processes.9

PMIX_REGISTER_CLEANUP "pmix.reg.cleanup" (char*)10
Comma-delimited list of files to be removed upon process termination11

PMIX_REGISTER_CLEANUP_DIR "pmix.reg.cleanupdir" (char*)12
Comma-delimited list of directories to be removed upon process termination13

PMIX_CLEANUP_RECURSIVE "pmix.clnup.recurse" (bool)14
Recursively cleanup all subdirectories under the specified one(s)15

PMIX_CLEANUP_EMPTY "pmix.clnup.empty" (bool)16
Only remove empty subdirectories17

PMIX_CLEANUP_IGNORE "pmix.clnup.ignore" (char*)18
Comma-delimited list of filenames that are not to be removed19

PMIX_CLEANUP_LEAVE_TOPDIR "pmix.clnup.lvtop" (bool)20
When recursively cleaning subdirectories, do not remove the top-level directory (the one21
given in the cleanup request)22

Optional Attributes

The following attributes are optional for host environments that support this operation:23

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)24
Cancel the specified request (NULL implies cancel all requests from this requestor).25

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)26
Restart the specified processes using the given checkpoint ID.27

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)28
Checkpoint the specified processes and assign the given ID to it.29

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)30
Use event notification to trigger a process checkpoint.31

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)32

CHAPTER 7. JOB MANAGEMENT AND REPORTING 181

Use the given signal to trigger a process checkpoint.1

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)2
Time in seconds to wait for a checkpoint to complete.3

PMIX_JOB_CTRL_CHECKPOINT_METHOD4
"pmix.jctrl.ckmethod" (pmix_data_array_t)5

Array of pmix_info_t declaring each method and value supported by this application.6

PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)7
Regular expression identifying nodes that are to be provisioned.8

PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)9
Name of the image that is to be provisioned.10

PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)11
Indicate that the job can be pre-empted.12

Description13

Request a job control action. The targets array identifies the processes to which the requested job14
control action is to be applied. A NULL value can be used to indicate all processes in the caller’s15
namespace. The use of PMIX_RANK_WILDARD can also be used to indicate that all processes in16
the given namespace are to be included.17

The directives are provided as pmix_info_t structures in the directives array. The callback18
function provides a status to indicate whether or not the request was granted, and to provide some19
information as to the reason for any denial in the pmix_info_cbfunc_t array of20
pmix_info_t structures.21

7.3.2 PMIx_Job_control_nb22

Summary23

Request a job control action.24

182 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v2.0 C
pmix_status_t2
PMIx_Job_control_nb(const pmix_proc_t targets[], size_t ntargets,3

const pmix_info_t directives[], size_t ndirs,4
pmix_info_cbfunc_t cbfunc, void *cbdata)5

C

IN targets6
Array of proc structures (array of handles)7

IN ntargets8
Number of element in the targets array (integer)9

IN directives10
Array of info structures (array of handles)11

IN ndirs12
Number of element in the directives array (integer)13

IN cbfunc14
Callback function pmix_info_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the library must not invoke the callback20
function prior to returning from the API.21

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and22
returned success - the cbfunc will not be called23

• a PMIx error constant indicating either an error in the input or that the request was immediately24
processed and failed - the cbfunc will not be called25

Required Attributes

PMIx libraries are not required to directly support any attributes for this function. However, any26
provided attributes must be passed to the host SMS daemon for processing, and the PMIx library is27
required to add the PMIX_USERID and the PMIX_GRPID attributes of the client process making28
the request.29

Host environments that implement support for this operation are required to support the following30
attributes:31

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)32
Provide a string identifier for this request.33

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)34

CHAPTER 7. JOB MANAGEMENT AND REPORTING 183

Pause the specified processes.1

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)2
Resume (“un-pause”) the specified processes.3

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)4
Forcibly terminate the specified processes and cleanup.5

PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)6
Send given signal to specified processes.7

PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)8
Politely terminate the specified processes.9

PMIX_REGISTER_CLEANUP "pmix.reg.cleanup" (char*)10
Comma-delimited list of files to be removed upon process termination11

PMIX_REGISTER_CLEANUP_DIR "pmix.reg.cleanupdir" (char*)12
Comma-delimited list of directories to be removed upon process termination13

PMIX_CLEANUP_RECURSIVE "pmix.clnup.recurse" (bool)14
Recursively cleanup all subdirectories under the specified one(s)15

PMIX_CLEANUP_EMPTY "pmix.clnup.empty" (bool)16
Only remove empty subdirectories17

PMIX_CLEANUP_IGNORE "pmix.clnup.ignore" (char*)18
Comma-delimited list of filenames that are not to be removed19

PMIX_CLEANUP_LEAVE_TOPDIR "pmix.clnup.lvtop" (bool)20
When recursively cleaning subdirectories, do not remove the top-level directory (the one21
given in the cleanup request)22

Optional Attributes

The following attributes are optional for host environments that support this operation:23

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)24
Cancel the specified request (NULL implies cancel all requests from this requestor).25

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)26
Restart the specified processes using the given checkpoint ID.27

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)28
Checkpoint the specified processes and assign the given ID to it.29

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)30
Use event notification to trigger a process checkpoint.31

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)32

184 PMIx Standard – Version 3.0 – December 2018

Use the given signal to trigger a process checkpoint.1

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)2
Time in seconds to wait for a checkpoint to complete.3

PMIX_JOB_CTRL_CHECKPOINT_METHOD4
"pmix.jctrl.ckmethod" (pmix_data_array_t)5

Array of pmix_info_t declaring each method and value supported by this application.6

PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)7
Regular expression identifying nodes that are to be provisioned.8

PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)9
Name of the image that is to be provisioned.10

PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)11
Indicate that the job can be pre-empted.12

Description13

Non-blocking form of the PMIx_Job_control API. The targets array identifies the processes14
to which the requested job control action is to be applied. A NULL value can be used to indicate all15
processes in the caller’s namespace. The use of PMIX_RANK_WILDARD can also be used to16
indicate that all processes in the given namespace are to be included.17

The directives are provided as pmix_info_t structures in the directives array. The callback18
function provides a status to indicate whether or not the request was granted, and to provide some19
information as to the reason for any denial in the pmix_info_cbfunc_t array of20
pmix_info_t structures.21

7.4 Process and Job Monitoring22

In addition to external faults, a common problem encountered in HPC applications is a failure to23
make progress due to some internal conflict in the computation. These situations can result in a24
significant waste of resources as the SMS is unaware of the problem, and thus cannot terminate the25
job. Various watchdog methods have been developed for detecting this situation, including26
requiring a periodic “heartbeat” from the application and monitoring a specified file for changes in27
size and/or modification time.28

At the request of SMS vendors and members, a monitoring support interface has been included in29
the PMIx v2 standard. The defined API allows applications to request monitoring, directing what is30
to be monitored, the frequency of the associated check, whether or not the application is to be31
notified (via the event notification subsystem) of stall detection, and other characteristics of the32
operation. In addition, heartbeat and file monitoring methods have been included in the PRI but are33
active only when requested.34

CHAPTER 7. JOB MANAGEMENT AND REPORTING 185

7.4.1 PMIx_Process_monitor1

Summary2

Request that application processes be monitored.3

Format4

PMIx v3.0 C
pmix_status_t5
PMIx_Process_monitor(const pmix_info_t *monitor, pmix_status_t error,6

const pmix_info_t directives[], size_t ndirs)7

C

IN monitor8
info (handle)9

IN error10
status (integer)11

IN directives12
Array of info structures (array of handles)13

IN ndirs14
Number of elements in the directives array (integer)15

Returns one of the following:16

• PMIX_SUCCESS , indicating that the request was processed and returned success17

• a PMIx error constant indicating either an error in the input or that the request was refused18

Optional Attributes

The following attributes may be implemented by a PMIx library or by the host environment. If19
supported by the PMIx server library, then the library must not pass the supported attributes to the20
host environment. All attributes not directly supported by the server library must be passed to the21
host environment if it supports this operation, and the library is required to add the22
PMIX_USERID and the PMIX_GRPID attributes of the requesting process:23

PMIX_MONITOR_ID "pmix.monitor.id" (char*)24
Provide a string identifier for this request.25

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)26
Identifier to be canceled (NULL means cancel all monitoring for this process).27

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)28
The application desires to control the response to a monitoring event.29

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)30
Register to have the PMIx server monitor the requestor for heartbeats.31

186 PMIx Standard – Version 3.0 – December 2018

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)1
Time in seconds before declaring heartbeat missed.2

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)3
Number of heartbeats that can be missed before generating the event.4

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)5
Register to monitor file for signs of life.6

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)7
Monitor size of given file is growing to determine if the application is running.8

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)9
Monitor time since last access of given file to determine if the application is running.10

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)11
Monitor time since last modified of given file to determine if the application is running.12

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)13
Time in seconds between checking the file.14

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)15
Number of file checks that can be missed before generating the event.16

Description17

Request that application processes be monitored via several possible methods. For example, that18
the server monitor this process for periodic heartbeats as an indication that the process has not19
become “wedged”. When a monitor detects the specified alarm condition, it will generate an event20
notification using the provided error code and passing along any available relevant information. It21
is up to the caller to register a corresponding event handler.22

The monitor argument is an attribute indicating the type of monitor being requested. For example,23
PMIX_MONITOR_FILE to indicate that the requestor is asking that a file be monitored.24

The error argument is the status code to be used when generating an event notification alerting that25
the monitor has been triggered. The range of the notification defaults to26
PMIX_RANGE_NAMESPACE . This can be changed by providing a PMIX_RANGE directive.27

The directives argument characterizes the monitoring request (e.g., monitor file size) and frequency28
of checking to be done29

7.4.2 PMIx_Process_monitor_nb30

Summary31

Request that application processes be monitored.32

CHAPTER 7. JOB MANAGEMENT AND REPORTING 187

Format1

PMIx v2.0 C
pmix_status_t2
PMIx_Process_monitor_nb(const pmix_info_t *monitor, pmix_status_t error,3

const pmix_info_t directives[], size_t ndirs,4
pmix_info_cbfunc_t cbfunc, void *cbdata)5

C

IN monitor6
info (handle)7

IN error8
status (integer)9

IN directives10
Array of info structures (array of handles)11

IN ndirs12
Number of elements in the directives array (integer)13

IN cbfunc14
Callback function pmix_info_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the library must not invoke the callback20
function prior to returning from the API.21

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and22
returned success - the cbfunc will not be called23

• a PMIx error constant indicating either an error in the input or that the request was immediately24
processed and failed - the cbfunc will not be called25

Optional Attributes

The following attributes may be implemented by a PMIx library or by the host environment. If26
supported by the PMIx server library, then the library must not pass the supported attributes to the27
host environment. All attributes not directly supported by the server library must be passed to the28
host environment if it supports this operation, and the library is required to add the29
PMIX_USERID and the PMIX_GRPID attributes of the requesting process:30

PMIX_MONITOR_ID "pmix.monitor.id" (char*)31
Provide a string identifier for this request.32

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)33
Identifier to be canceled (NULL means cancel all monitoring for this process).34

188 PMIx Standard – Version 3.0 – December 2018

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)1
The application desires to control the response to a monitoring event.2

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)3
Register to have the PMIx server monitor the requestor for heartbeats.4

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)5
Time in seconds before declaring heartbeat missed.6

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)7
Number of heartbeats that can be missed before generating the event.8

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)9
Register to monitor file for signs of life.10

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)11
Monitor size of given file is growing to determine if the application is running.12

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)13
Monitor time since last access of given file to determine if the application is running.14

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)15
Monitor time since last modified of given file to determine if the application is running.16

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)17
Time in seconds between checking the file.18

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)19
Number of file checks that can be missed before generating the event.20

Description21

Non-blocking form of the PMIx_Process_monitor API. The cbfunc function provides a22
status to indicate whether or not the request was granted, and to provide some information as to the23
reason for any denial in the pmix_info_cbfunc_t array of pmix_info_t structures.24

7.4.3 PMIx_Heartbeat25

Summary26

Send a heartbeat to the PMIx server library27

CHAPTER 7. JOB MANAGEMENT AND REPORTING 189

Format1

PMIx v2.0 C
PMIx_Heartbeat(void)2

C

Description3

A simplified macro wrapping PMIx_Process_monitor_nb that sends a heartbeat to the4
PMIx server library.5

7.5 Logging6

The logging interface supports posting information by applications and SMS elements to persistent7
storage. This function is not intended for output of computational results, but rather for reporting8
status and saving state information such as inserting computation progress reports into the9
application’s SMS job log or error reports to the local syslog.10

7.5.1 PMIx_Log11

Summary12

Log data to a data service.13

Format14

PMIx v3.0 C
pmix_status_t15
PMIx_Log(const pmix_info_t data[], size_t ndata,16

const pmix_info_t directives[], size_t ndirs)17

C

IN data18
Array of info structures (array of handles)19

IN ndata20
Number of elements in the data array (size_t)21

IN directives22
Array of info structures (array of handles)23

IN ndirs24
Number of elements in the directives array (size_t)25

Return codes are one of the following:26

190 PMIx Standard – Version 3.0 – December 2018

PMIX_SUCCESS The logging request was successful.1
PMIX_ERR_BAD_PARAM The logging request contains at least one incorrect entry.2
PMIX_ERR_NOT_SUPPORTED The PMIx implementation or host environment does not3

support this function.4

Required Attributes

If the PMIx library does not itself perform this operation, then it is required to pass any attributes5
provided by the client to the host environment for processing. In addition, it must include the6
following attributes in the passed info array:7

PMIX_USERID "pmix.euid" (uint32_t)8
Effective user id.9

PMIX_GRPID "pmix.egid" (uint32_t)10
Effective group id.11

Host environments or PMIx libraries that implement support for this operation are required to12
support the following attributes:13

PMIX_LOG_STDERR "pmix.log.stderr" (char*)14
Log string to stderr.15

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)16
Log string to stdout.17

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)18
Log data to syslog. Defaults to ERROR priority. Will log to global syslog if available,19
otherwise to local syslog20

PMIX_LOG_LOCAL_SYSLOG "pmix.log.lsys" (char*)21
Log data to local syslog. Defaults to ERROR priority.22

PMIX_LOG_GLOBAL_SYSLOG "pmix.log.gsys" (char*)23
Forward data to system “gateway” and log msg to that syslog Defaults to ERROR priority.24

PMIX_LOG_SYSLOG_PRI "pmix.log.syspri" (int)25
Syslog priority level26

PMIX_LOG_ONCE "pmix.log.once" (bool)27
Only log this once with whichever channel can first support it, taking the channels in priority28
order29

CHAPTER 7. JOB MANAGEMENT AND REPORTING 191

Optional Attributes

The following attributes are optional for host environments or PMIx libraries that support this1
operation:2

PMIX_LOG_SOURCE "pmix.log.source" (pmix_proc_t*)3
ID of source of the log request4

PMIX_LOG_TIMESTAMP "pmix.log.tstmp" (time_t)5
Timestamp for log report6

PMIX_LOG_GENERATE_TIMESTAMP "pmix.log.gtstmp" (bool)7
Generate timestamp for log8

PMIX_LOG_TAG_OUTPUT "pmix.log.tag" (bool)9
Label the output stream with the channel name (e.g., “stdout”)10

PMIX_LOG_TIMESTAMP_OUTPUT "pmix.log.tsout" (bool)11
Print timestamp in output string12

PMIX_LOG_XML_OUTPUT "pmix.log.xml" (bool)13
Print the output stream in XML format14

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)15
Log via email based on pmix_info_t containing directives.16

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)17
Comma-delimited list of email addresses that are to receive the message.18

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)19
Subject line for email.20

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)21
Message to be included in email.22

PMIX_LOG_JOB_RECORD "pmix.log.jrec" (bool)23
Log the provided information to the host environment’s job record24

PMIX_LOG_GLOBAL_DATASTORE "pmix.log.gstore" (bool)25
Store the log data in a global data store (e.g., database)26

192 PMIx Standard – Version 3.0 – December 2018

Description1

Log data subject to the services offered by the host environment. The data to be logged is provided2
in the data array. The (optional) directives can be used to direct the choice of logging channel.3

Advice to users

It is strongly recommended that the PMIx_Log API not be used by applications for streaming data4
as it is not a “performant” transport and can perturb the application since it involves the local PMIx5
server and host SMS daemon. Note that a return of PMIX_SUCCESS only denotes that the data6
was successfully handed to the appropriate system call (for local channels) or the host environment7
and does not indicate receipt at the final destination.8

7.5.2 PMIx_Log_nb9

Summary10

Log data to a data service.11

Format12

PMIx v2.0 C
pmix_status_t13
PMIx_Log_nb(const pmix_info_t data[], size_t ndata,14

const pmix_info_t directives[], size_t ndirs,15
pmix_op_cbfunc_t cbfunc, void *cbdata)16

C

IN data17
Array of info structures (array of handles)18

IN ndata19
Number of elements in the data array (size_t)20

IN directives21
Array of info structures (array of handles)22

IN ndirs23
Number of elements in the directives array (size_t)24

IN cbfunc25
Callback function pmix_op_cbfunc_t (function reference)26

IN cbdata27
Data to be passed to the callback function (memory reference)28

Return codes are one of the following:29

CHAPTER 7. JOB MANAGEMENT AND REPORTING 193

PMIX_SUCCESS The logging request is valid and is being processed. The resulting status from1
the operation will be provided in the callback function. Note that the library must not invoke2
the callback function prior to returning from the API.3

PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and4
returned success - the cbfunc will not be called5

PMIX_ERR_BAD_PARAM The logging request contains at least one incorrect entry that prevents6
it from being processed. The callback function will not be called.7

PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function. The8
callback function will not be called.9

Required Attributes

If the PMIx library does not itself perform this operation, then it is required to pass any attributes10
provided by the client to the host environment for processing. In addition, it must include the11
following attributes in the passed info array:12

PMIX_USERID "pmix.euid" (uint32_t)13
Effective user id.14

PMIX_GRPID "pmix.egid" (uint32_t)15
Effective group id.16

Host environments or PMIx libraries that implement support for this operation are required to17
support the following attributes:18

PMIX_LOG_STDERR "pmix.log.stderr" (char*)19
Log string to stderr.20

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)21
Log string to stdout.22

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)23
Log data to syslog. Defaults to ERROR priority. Will log to global syslog if available,24
otherwise to local syslog25

PMIX_LOG_LOCAL_SYSLOG "pmix.log.lsys" (char*)26
Log data to local syslog. Defaults to ERROR priority.27

PMIX_LOG_GLOBAL_SYSLOG "pmix.log.gsys" (char*)28
Forward data to system “gateway” and log msg to that syslog Defaults to ERROR priority.29

PMIX_LOG_SYSLOG_PRI "pmix.log.syspri" (int)30
Syslog priority level31

PMIX_LOG_ONCE "pmix.log.once" (bool)32
Only log this once with whichever channel can first support it, taking the channels in priority33
order34

194 PMIx Standard – Version 3.0 – December 2018

Optional Attributes

The following attributes are optional for host environments or PMIx libraries that support this1
operation:2

PMIX_LOG_SOURCE "pmix.log.source" (pmix_proc_t*)3
ID of source of the log request4

PMIX_LOG_TIMESTAMP "pmix.log.tstmp" (time_t)5
Timestamp for log report6

PMIX_LOG_GENERATE_TIMESTAMP "pmix.log.gtstmp" (bool)7
Generate timestamp for log8

PMIX_LOG_TAG_OUTPUT "pmix.log.tag" (bool)9
Label the output stream with the channel name (e.g., “stdout”)10

PMIX_LOG_TIMESTAMP_OUTPUT "pmix.log.tsout" (bool)11
Print timestamp in output string12

PMIX_LOG_XML_OUTPUT "pmix.log.xml" (bool)13
Print the output stream in XML format14

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)15
Log via email based on pmix_info_t containing directives.16

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)17
Comma-delimited list of email addresses that are to receive the message.18

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)19
Subject line for email.20

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)21
Message to be included in email.22

PMIX_LOG_JOB_RECORD "pmix.log.jrec" (bool)23
Log the provided information to the host environment’s job record24

PMIX_LOG_GLOBAL_DATASTORE "pmix.log.gstore" (bool)25
Store the log data in a global data store (e.g., database)26

CHAPTER 7. JOB MANAGEMENT AND REPORTING 195

Description1

Log data subject to the services offered by the host environment. The data to be logged is provided2
in the data array. The (optional) directives can be used to direct the choice of logging channel. The3
callback function will be executed when the log operation has been completed. The data and4
directives arrays must be maintained until the callback is provided.5

Advice to users

It is strongly recommended that the PMIx_Log_nb API not be used by applications for streaming6
data as it is not a “performant” transport and can perturb the application since it involves the local7
PMIx server and host SMS daemon. Note that a return of PMIX_SUCCESS only denotes that the8
data was successfully handed to the appropriate system call (for local channels) or the host9
environment and does not indicate receipt at the final destination.10

196 PMIx Standard – Version 3.0 – December 2018

CHAPTER 8

Event Notification

This chapter defines the PMIx event notification system. These interfaces are designed to support1
the reporting of events to/from clients and servers, and between library layers within a single2
process.3

8.1 Notification and Management4

PMIx event notification provides an asynchronous out-of-band mechanism for communicating5
events between application processes and/or elements of the SMS. Its uses span a wide range that6
includes fault notification, coordination between multiple programming libraries within a single7
process, and workflow orchestration for non-synchronous programming models. Events can be8
divided into two distinct classes:9

• Job-specific events directly relate to a job executing within the session, such as a debugger10
attachment, process failure within a related job, or events generated by an application process.11
Events in this category are to be immediately delivered to the PMIx server library for relay to the12
related local processes.13

• Environment events indirectly relate to a job but do not specifically target the job itself. This14
category includes SMS-generated events such as Error Check and Correction (ECC) errors,15
temperature excursions, and other non-job conditions that might directly affect a session’s16
resources, but would never include an event generated by an application process. Note that17
although these do potentially impact the session’s jobs, they are not directly tied to those jobs.18
Thus, events in this category are to be delivered to the PMIx server library only upon request.19

Both SMS elements and applications can register for events of either type.20

Advice to PMIx library implementers

Race conditions can cause the registration to come after events of possible interest (e.g., a memory21
ECC event that occurs after start of execution but prior to registration, or an application process22
generating an event prior to another process registering to receive it). SMS vendors are requested to23
cache environment events for some time to mitigate this situation, but are not required to do so.24
However, PMIx implementers are required to cache all events received by the PMIx server library25
and to deliver them to registering clients in the same order in which they were received26

197

Advice to users

Applications must be aware that they may not receive environment events that occur prior to1
registration, depending upon the capabilities of the host SMS.2

The generator of an event can specify the target range for delivery of that event. Thus, the generator3
can choose to limit notification to processes on the local node, processes within the same job as the4
generator, processes within the same allocation, other threads within the same process, only the5
SMS (i.e., not to any application processes), all application processes, or to a custom range based6
on specific process identifiers. Only processes within the given range that register for the provided7
event code will be notified. In addition, the generator can use attributes to direct that the event not8
be delivered to any default event handlers, or to any multi-code handler (as defined below).9

Event notifications provide the process identifier of the source of the event plus the event code and10
any additional information provided by the generator. When an event notification is received by a11
process, the registered handlers are scanned for their event code(s), with matching handlers12
assembled into an event chain for servicing. Note that users can also specify a source range when13
registering an event (using the same range designators described above) to further limit when they14
are to be invoked. When assembled, PMIx event chains are ordered based on both the specificity of15
the event handler and user directives at time of handler registration. By default, handlers are16
grouped into three categories based on the number of event codes that can trigger the callback:17

• single-code handlers are serviced first as they are the most specific. These are handlers that are18
registered against one specific event code.19

• multi-code handlers are serviced once all single-code handlers have completed. The handler will20
be included in the chain upon receipt of an event matching any of the provided codes.21

• default handlers are serviced once all multi-code handlers have completed. These handlers are22
always included in the chain unless the generator specifically excludes them.23

Users can specify the callback order of a handler within its category at the time of registration.24
Ordering can be specified either by providing the relevant returned event handler registration ID or25
using event handler names, if the user specified an event handler name when registering the26
corresponding event. Thus, users can specify that a given handler be executed before or after27
another handler should both handlers appear in an event chain (the ordering is ignored if the other28
handler isn’t included). Note that ordering does not imply immediate relationships. For example,29
multiple handlers registered to be serviced after event handler A will all be executed after A, but are30
not guaranteed to be executed in any particular order amongst themselves.31

In addition, one event handler can be declared as the first handler to be executed in the chain. This32
handler will always be called prior to any other handler, regardless of category, provided the33
incoming event matches both the specified range and event code. Only one handler can be so34
designated — attempts to designate additional handlers as first will return an error. Deregistration35
of the declared first handler will re-open the position for subsequent assignment.36

198 PMIx Standard – Version 3.0 – December 2018

Similarly, one event handler can be declared as the last handler to be executed in the chain. This1
handler will always be called after all other handlers have executed, regardless of category,2
provided the incoming event matches both the specified range and event code. Note that this3
handler will not be called if the chain is terminated by an earlier handler. Only one handler can be4
designated as last — attempts to designate additional handlers as last will return an error.5
Deregistration of the declared last handler will re-open the position for subsequent assignment.6

Advice to users

Note that the last handler is called after all registered default handlers that match the specified7
range of the incoming event unless a handler prior to it terminates the chain. Thus, if the application8
intends to define a last handler, it should ensure that no default handler aborts the process before it.9

Upon completing its work and prior to returning, each handler must call the event handler10
completion function provided when it was invoked (including a status code plus any information to11
be passed to later handlers) so that the chain can continue being progressed. PMIx automatically12
aggregates the status and any results of each handler (as provided in the completion callback) with13
status from all prior handlers so that each step in the chain has full knowledge of what preceded it.14
An event handler can terminate all further progress along the chain by passing the15
PMIX_EVENT_ACTION_COMPLETE status to the completion callback function.16

8.1.1 PMIx_Register_event_handler17

Summary18

Register an event handler19

Format20

PMIx v2.0 C
void21
PMIx_Register_event_handler(pmix_status_t codes[], size_t ncodes,22

pmix_info_t info[], size_t ninfo,23
pmix_notification_fn_t evhdlr,24
pmix_evhdlr_reg_cbfunc_t cbfunc,25
void *cbdata);26

CHAPTER 8. EVENT NOTIFICATION 199

C

IN codes1
Array of status codes (array of pmix_status_t)2

IN ncodes3
Number of elements in the codes array (size_t)4

IN info5
Array of info structures (array of handles)6

IN ninfo7
Number of elements in the info array (size_t)8

IN evhdlr9
Event handler to be called pmix_notification_fn_t (function reference)10

IN cbfunc11
Callback function pmix_evhdlr_reg_cbfunc_t (function reference)12

IN cbdata13
Data to be passed to the cbfunc callback function (memory reference)14

Upon completion, the callback will receive a status based on the following table:15

PMIX_SUCCESS The event handler was successfully registered - the event handler identifier is16
returned in the callback.17

PMIX_ERR_BAD_PARAM One or more of the directives provided in the info array was18
unrecognized.19

PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support event notification,20
or the host SMS does not support notification of the specified event code.21

The callback function must not be executed prior to returning from the API.22

Required Attributes

The following attributes are required to be supported by all PMIx libraries:23

PMIX_EVENT_HDLR_NAME "pmix.evname" (char*)24
String name identifying this handler.25

PMIX_EVENT_HDLR_FIRST "pmix.evfirst" (bool)26
Invoke this event handler before any other handlers.27

PMIX_EVENT_HDLR_LAST "pmix.evlast" (bool)28
Invoke this event handler after all other handlers have been called.29

PMIX_EVENT_HDLR_FIRST_IN_CATEGORY "pmix.evfirstcat" (bool)30
Invoke this event handler before any other handlers in this category.31

PMIX_EVENT_HDLR_LAST_IN_CATEGORY "pmix.evlastcat" (bool)32
Invoke this event handler after all other handlers in this category have been called.33

PMIX_EVENT_HDLR_BEFORE "pmix.evbefore" (char*)34
Put this event handler immediately before the one specified in the (char*) value.35

200 PMIx Standard – Version 3.0 – December 2018

PMIX_EVENT_HDLR_AFTER "pmix.evafter" (char*)1
Put this event handler immediately after the one specified in the (char*) value.2

PMIX_EVENT_HDLR_PREPEND "pmix.evprepend" (bool)3
Prepend this handler to the precedence list within its category.4

PMIX_EVENT_HDLR_APPEND "pmix.evappend" (bool)5
Append this handler to the precedence list within its category.6

PMIX_EVENT_CUSTOM_RANGE "pmix.evrange" (pmix_data_array_t*)7
Array of pmix_proc_t defining range of event notification.8

PMIX_RANGE "pmix.range" (pmix_data_range_t)9
Value for calls to publish/lookup/unpublish or for monitoring event notifications.10

PMIX_EVENT_RETURN_OBJECT "pmix.evobject" (void *)11
Object to be returned whenever the registered callback function cbfunc is invoked. The12
object will only be returned to the process that registered it.13

Host environments that implement support for PMIx event notification are required to support the14
following attributes:15

PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)16
The single process that was affected.17

PMIX_EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_t*)18
Array of pmix_proc_t defining affected processes.19

Optional Attributes

Host environments that support PMIx event notification may offer notifications for environmental20
events impacting the job and for SMS events relating to the job. The following attributes are21
optional for host environments that suppport this operation:22

PMIX_EVENT_TERMINATE_SESSION "pmix.evterm.sess" (bool)23
The RM intends to terminate this session.24

PMIX_EVENT_TERMINATE_JOB "pmix.evterm.job" (bool)25
The RM intends to terminate this job.26

PMIX_EVENT_TERMINATE_NODE "pmix.evterm.node" (bool)27
The RM intends to terminate all processes on this node.28

PMIX_EVENT_TERMINATE_PROC "pmix.evterm.proc" (bool)29
The RM intends to terminate just this process.30

PMIX_EVENT_ACTION_TIMEOUT "pmix.evtimeout" (int)31
The time in seconds before the RM will execute error response.32

PMIX_EVENT_SILENT_TERMINATION "pmix.evsilentterm" (bool)33

CHAPTER 8. EVENT NOTIFICATION 201

Do not generate an event when this job normally terminates.1

Description2

Register an event handler to report events. Note that the codes being registered do not need to be3
PMIx error constants — any integer value can be registered. This allows for registration of4
non-PMIx events such as those defined by a particular SMS vendor or by an application itself.5

Advice to users

In order to avoid potential conflicts, users are advised to only define codes that lie outside the range6
of the PMIx standard’s error codes. Thus, SMS vendors and application developers should7
constrain their definitions to positive values or negative values beyond the8
PMIX_EXTERNAL_ERR_BASE boundary.9

Advice to users

As previously stated, upon completing its work, and prior to returning, each handler must call the10
event handler completion function provided when it was invoked (including a status code plus any11
information to be passed to later handlers) so that the chain can continue being progressed. An12
event handler can terminate all further progress along the chain by passing the13
PMIX_EVENT_ACTION_COMPLETE status to the completion callback function. Note that the14
parameters passed to the event handler (e.g., the info and results arrays) will cease to be valid once15
the completion function has been called - thus, any information in the incoming parameters that16
will be referenced following the call to the completion function must be copied.17

8.1.2 PMIx_Deregister_event_handler18

Summary19

Deregister an event handler.20

202 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v2.0 C
void2
PMIx_Deregister_event_handler(size_t evhdlr_ref,3

pmix_op_cbfunc_t cbfunc,4
void *cbdata);5

C

IN evhdlr_ref6
Event handler ID returned by registration (size_t)7

IN cbfunc8
Callback function to be executed upon completion of operation pmix_op_cbfunc_t9
(function reference)10

IN cbdata11
Data to be passed to the cbfunc callback function (memory reference)12

Returns one of the following:13

• PMIX_SUCCESS , indicating that the request is being processed - result will be returned in the14
provided cbfunc. Note that the library must not invoke the callback function prior to returning15
from the API.16

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and17
returned success - the cbfunc will not be called18

• a PMIx error constant indicating either an error in the input or that the request was immediately19
processed and failed - the cbfunc will not be called20

If the provided cbfunc is called to confirm removal of the designated handler, the returned status21
code will be one of the following:22

PMIX_SUCCESS The event handler was successfully deregistered.23
PMIX_ERR_BAD_PARAM The provided evhdlr_ref was unrecognized.24
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support event notification.25

Description26

Deregister an event handler.27

8.1.3 PMIx_Notify_event28

Summary29

Report an event for notification via any registered event handler.30

CHAPTER 8. EVENT NOTIFICATION 203

Format1

PMIx v2.0 C
pmix_status_t2
PMIx_Notify_event(pmix_status_t status,3

const pmix_proc_t *source,4
pmix_data_range_t range,5
pmix_info_t info[], size_t ninfo,6
pmix_op_cbfunc_t cbfunc, void *cbdata);7

C

IN status8
Status code of the event (pmix_status_t)9

IN source10
Pointer to a pmix_proc_t identifying the original reporter of the event (handle)11

IN range12
Range across which this notification shall be delivered (pmix_data_range_t)13

IN info14
Array of pmix_info_t structures containing any further info provided by the originator15
of the event (array of handles)16

IN ninfo17
Number of elements in the info array (size_t)18

IN cbfunc19
Callback function to be executed upon completion of operation pmix_op_cbfunc_t20
(function reference)21

IN cbdata22
Data to be passed to the cbfunc callback function (memory reference)23

Returns one of the following:24

PMIX_SUCCESS The notification request is valid and is being processed. The callback function25
will be called when the process-local operation is complete and will provide the resulting26
status of that operation. Note that this does not reflect the success or failure of delivering the27
event to any recipients. The callback function must not be executed prior to returning from28
the API.29

PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and30
returned success - the cbfunc will not be called31

PMIX_ERR_BAD_PARAM The request contains at least one incorrect entry that prevents it from32
being processed. The callback function will not be called.33

PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support event notification,34
or in the case of a PMIx server calling the API, the range extended beyond the local node and35
the host SMS environment does not support event notification. The callback function will36
not be called.37

204 PMIx Standard – Version 3.0 – December 2018

Required Attributes

The following attributes are required to be supported by all PMIx libraries:1

PMIX_EVENT_NON_DEFAULT "pmix.evnondef" (bool)2
Event is not to be delivered to default event handlers.3

PMIX_EVENT_CUSTOM_RANGE "pmix.evrange" (pmix_data_array_t*)4
Array of pmix_proc_t defining range of event notification.5

Host environments that implement support for PMIx event notification are required to provide the6
following attributes for all events generated by the environment:7

PMIX_EVENT_AFFECTED_PROC "pmix.evproc" (pmix_proc_t)8
The single process that was affected.9

PMIX_EVENT_AFFECTED_PROCS "pmix.evaffected" (pmix_data_array_t*)10
Array of pmix_proc_t defining affected processes.11

Description12

Report an event for notification via any registered event handler. This function can be called by any13
PMIx process, including application processes, PMIx servers, and SMS elements. The PMIx server14
calls this API to report events it detected itself so that the host SMS daemon distribute and handle15
them, and to pass events given to it by its host down to any attached client processes for processing.16
Examples might include notification of the failure of another process, detection of an impending17
node failure due to rising temperatures, or an intent to preempt the application. Events may be18
locally generated or come from anywhere in the system.19

Host SMS daemons call the API to pass events down to its embedded PMIx server both for20
transmittal to local client processes and for the server’s own internal processing.21

Client application processes can call this function to notify the SMS and/or other application22
processes of an event it encountered. Note that processes are not constrained to report status values23
defined in the official PMIx standard — any integer value can be used. Thus, applications are free24
to define their own internal events and use the notification system for their own internal purposes.25

Advice to users

The callback function will be called upon completion of the notify_event function’s actions.26
At that time, any messages required for executing the operation (e.g., to send the notification to the27
local PMIx server) will have been queued, but may not yet have been transmitted. The caller is28
required to maintain the input data until the callback function has been executed — the sole purpose29
of the callback function is to indicate when the input data is no longer required.30

CHAPTER 8. EVENT NOTIFICATION 205

CHAPTER 9

Data Packing and Unpacking

PMIx intentionally does not include support for internode communications in the standard, instead1
relying on its host SMS environment to transfer any needed data and/or requests between nodes.2
These operations frequently involve PMIx-defined public data structures that include binary data.3
Many HPC clusters are homogeneous, and so transferring the structures can be done rather simply.4
However, greater effort is required in heterogeneous environments to ensure binary data is correctly5
transferred. PMIx buffer manipulation functions are provided for this purpose via standardized6
interfaces to ease adoption.7

9.1 Support Macros8

PMIx provides a set of convenience macros for creating, initiating, and releasing data buffers.9

9.1.1 PMIX_DATA_BUFFER_CREATE10

Summary11

Allocate memory for a pmix_data_buffer_t object and initialize it12

Format13

PMIx v2.0 C
PMIX_DATA_BUFFER_CREATE(buffer);14

C

OUT buffer15
Variable to be assigned the pointer to the allocated pmix_data_buffer_t (handle)16

Description17

This macro uses calloc to allocate memory for the buffer and initialize all fields in it18

206

9.1.2 PMIX_DATA_BUFFER_RELEASE1

Summary2

Free a pmix_data_buffer_t object and the data it contains3

Format4

PMIx v2.0 C
PMIX_DATA_BUFFER_RELEASE(buffer);5

C

IN buffer6
Pointer to the pmix_data_buffer_t to be released (handle)7

Description8

Free’s the data contained in the buffer, and then free’s the buffer itself9

9.1.3 PMIX_DATA_BUFFER_CONSTRUCT10

Summary11

Initialize a statically declared pmix_data_buffer_t object12

Format13

PMIx v2.0 C
PMIX_DATA_BUFFER_CONSTRUCT(buffer);14

C

IN buffer15
Pointer to the allocated pmix_data_buffer_t that is to be initialized (handle)16

Description17

Initialize a pre-allocated buffer object18

9.1.4 PMIX_DATA_BUFFER_DESTRUCT19

Summary20

Release the data contained in a pmix_data_buffer_t object21

CHAPTER 9. DATA PACKING AND UNPACKING 207

Format1

PMIx v2.0 C
PMIX_DATA_BUFFER_DESTRUCT(buffer);2

C

IN buffer3
Pointer to the pmix_data_buffer_t whose data is to be released (handle)4

Description5

Free’s the data contained in a pmix_data_buffer_t object6

9.1.5 PMIX_DATA_BUFFER_LOAD7

Summary8

Load a blob into a pmix_data_buffer_t object9

Format10

PMIx v2.0 C
PMIX_DATA_BUFFER_LOAD(buffer, data, size);11

C

IN buffer12
Pointer to a pre-allocated pmix_data_buffer_t (handle)13

IN data14
Pointer to a blob (char*)15

IN size16
Number of bytes in the blob size_t17

Description18

Load the given data into the provided pmix_data_buffer_t object, usually done in19
preparation for unpacking the provided data. Note that the data is not copied into the buffer - thus,20
the blob must not be released until after operations on the buffer have completed.21

9.1.6 PMIX_DATA_BUFFER_UNLOAD22

Summary23

Unload the data from a pmix_data_buffer_t object24

208 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v2.0 C
PMIX_DATA_BUFFER_UNLOAD(buffer, data, size);2

C

IN buffer3
Pointer to the pmix_data_buffer_t whose data is to be extracted (handle)4

OUT data5
Variable to be assigned the pointer to the extracted blob (void*)6

OUT size7
Variable to be assigned the number of bytes in the blob size_t8

Description9

Extract the data in a buffer, assigning the pointer to the data (and the number of bytes in the blob) to10
the provided variables, usually done to transmit the blob to a remote process for unpacking. The11
buffer’s internal pointer will be set to NULL to protect the data upon buffer destruct or release -12
thus, the user is responsible for releasing the blob when done with it.13

9.2 General Routines14

The following routines are provided to support internode transfers in heterogeneous environments.15

9.2.1 PMIx_Data_pack16

Summary17

Pack one or more values of a specified type into a buffer, usually for transmission to another process18

Format19

PMIx v2.0 C
pmix_status_t20
PMIx_Data_pack(const pmix_proc_t *target,21

pmix_data_buffer_t *buffer,22
void *src, int32_t num_vals,23
pmix_data_type_t type);24

CHAPTER 9. DATA PACKING AND UNPACKING 209

C

IN target1
Pointer to a pmix_proc_t containing the nspace/rank of the process that will be2
unpacking the final buffer. A NULL value may be used to indicate that the target is based on3
the same PMIx version as the caller. Note that only the target’s nspace is relevant. (handle)4

IN buffer5
Pointer to a pmix_data_buffer_t where the packed data is to be stored (handle)6

IN src7
Pointer to a location where the data resides. Strings are to be passed as (char **) — i.e., the8
caller must pass the address of the pointer to the string as the (void*). This allows the caller9
to pass multiple strings in a single call. (memory reference)10

IN num_vals11
Number of elements pointed to by the src pointer. A string value is counted as a single value12
regardless of length. The values must be contiguous in memory. Arrays of pointers (e.g.,13
string arrays) should be contiguous, although the data pointed to need not be contiguous14
across array entries.(int32_t)15

IN type16
The type of the data to be packed (pmix_data_type_t)17

Returns one of the following:18

PMIX_SUCCESS The data has been packed as requested19
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.20
PMIX_ERR_BAD_PARAM The provided buffer or src is NULL21
PMIX_ERR_UNKNOWN_DATA_TYPE The specified data type is not known to this22

implementation23
PMIX_ERR_OUT_OF_RESOURCE Not enough memory to support the operation24
PMIX_ERROR General error25

Description26

The pack function packs one or more values of a specified type into the specified buffer. The buffer27
must have already been initialized via the PMIX_DATA_BUFFER_CREATE or28
PMIX_DATA_BUFFER_CONSTRUCT macros — otherwise, PMIx_Data_pack will return an29
error. Providing an unsupported type flag will likewise be reported as an error.30

Note that any data to be packed that is not hard type cast (i.e., not type cast to a specific size) may31
lose precision when unpacked by a non-homogeneous recipient. The PMIx_Data_pack function32
will do its best to deal with heterogeneity issues between the packer and unpacker in such cases.33
Sending a number larger than can be handled by the recipient will return an error code (generated34
upon unpacking) — the error cannot be detected during packing.35

The namespace of the intended recipient of the packed buffer (i.e., the process that will be36
unpacking it) is used solely to resolve any data type differences between PMIx versions. The37
recipient must, therefore, be known to the user prior to calling the pack function so that the PMIx38

210 PMIx Standard – Version 3.0 – December 2018

library is aware of the version the recipient is using. Note that all processes in a given namespace1
are required to use the same PMIx version — thus, the caller must only know at least one process2
from the target’s namespace.3

9.2.2 PMIx_Data_unpack4

Summary5

Unpack values from a pmix_data_buffer_t6

Format7

PMIx v2.0 C
pmix_status_t8
PMIx_Data_unpack(const pmix_proc_t *source,9

pmix_data_buffer_t *buffer, void *dest,10
int32_t *max_num_values,11
pmix_data_type_t type);12

13
C

IN source14
Pointer to a pmix_proc_t structure containing the nspace/rank of the process that packed15
the provided buffer. A NULL value may be used to indicate that the source is based on the16
same PMIx version as the caller. Note that only the source’s nspace is relevant. (handle)17

IN buffer18
A pointer to the buffer from which the value will be extracted. (handle)19

INOUT dest20
A pointer to the memory location into which the data is to be stored. Note that these values21
will be stored contiguously in memory. For strings, this pointer must be to (char**) to22
provide a means of supporting multiple string operations. The unpack function will allocate23
memory for each string in the array - the caller must only provide adequate memory for the24
array of pointers. (void*)25

INOUT max_num_values26
The number of values to be unpacked — upon completion, the parameter will be set to the27
actual number of values unpacked. In most cases, this should match the maximum number28
provided in the parameters — but in no case will it exceed the value of this parameter. Note29
that unpacking fewer values than are actually available will leave the buffer in an unpackable30
state — the function will return an error code to warn of this condition.(int32_t)31

IN type32
The type of the data to be unpacked — must be one of the PMIx defined data types (33
pmix_data_type_t)34

CHAPTER 9. DATA PACKING AND UNPACKING 211

Returns one of the following:1

PMIX_SUCCESS The data has been unpacked as requested2
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.3
PMIX_ERR_BAD_PARAM The provided buffer or dest is NULL4
PMIX_ERR_UNKNOWN_DATA_TYPE The specified data type is not known to this5

implementation6
PMIX_ERR_OUT_OF_RESOURCE Not enough memory to support the operation7
PMIX_ERROR General error8

Description9

The unpack function unpacks the next value (or values) of a specified type from the given buffer.10
The buffer must have already been initialized via an PMIX_DATA_BUFFER_CREATE or11
PMIX_DATA_BUFFER_CONSTRUCT call (and assumedly filled with some data) — otherwise,12
the unpack_value function will return an error. Providing an unsupported type flag will likewise be13
reported as an error, as will specifying a data type that does not match the type of the next item in14
the buffer. An attempt to read beyond the end of the stored data held in the buffer will also return an15
error.16

NOTE: it is possible for the buffer to be corrupted and that PMIx will think there is a proper17
variable type at the beginning of an unpack region — but that the value is bogus (e.g., just a byte18
field in a string array that so happens to have a value that matches the specified data type flag).19
Therefore, the data type error check is not completely safe.20

Unpacking values is a "nondestructive" process — i.e., the values are not removed from the buffer.21
It is therefore possible for the caller to re-unpack a value from the same buffer by resetting the22
unpack_ptr.23

Warning: The caller is responsible for providing adequate memory storage for the requested data.24
The user must provide a parameter indicating the maximum number of values that can be unpacked25
into the allocated memory. If more values exist in the buffer than can fit into the memory storage,26
then the function will unpack what it can fit into that location and return an error code indicating27
that the buffer was only partially unpacked.28

Note that any data that was not hard type cast (i.e., not type cast to a specific size) when packed may29
lose precision when unpacked by a non-homogeneous recipient. PMIx will do its best to deal with30
heterogeneity issues between the packer and unpacker in such cases. Sending a number larger than31
can be handled by the recipient will return an error code generated upon unpacking — these errors32
cannot be detected during packing.33

The namespace of the process that packed the buffer is used solely to resolve any data type34
differences between PMIx versions. The packer must, therefore, be known to the user prior to35
calling the pack function so that the PMIx library is aware of the version the packer is using. Note36
that all processes in a given namespace are required to use the same PMIx version — thus, the37
caller must only know at least one process from the packer’s namespace.38

212 PMIx Standard – Version 3.0 – December 2018

9.2.3 PMIx_Data_copy1

Summary2

Copy a data value from one location to another.3

Format4

PMIx v2.0 C
pmix_status_t5
PMIx_Data_copy(void **dest, void *src,6

pmix_data_type_t type);7

C

IN dest8
The address of a pointer into which the address of the resulting data is to be stored.9
(void**)10

IN src11
A pointer to the memory location from which the data is to be copied (handle)12

IN type13
The type of the data to be copied — must be one of the PMIx defined data types. (14
pmix_data_type_t)15

Returns one of the following:16

PMIX_SUCCESS The data has been copied as requested17
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.18
PMIX_ERR_BAD_PARAM The provided src or dest is NULL19
PMIX_ERR_UNKNOWN_DATA_TYPE The specified data type is not known to this20

implementation21
PMIX_ERR_OUT_OF_RESOURCE Not enough memory to support the operation22
PMIX_ERROR General error23

Description24

Since registered data types can be complex structures, the system needs some way to know how to25
copy the data from one location to another (e.g., for storage in the registry). This function, which26
can call other copy functions to build up complex data types, defines the method for making a copy27
of the specified data type.28

9.2.4 PMIx_Data_print29

Summary30

Pretty-print a data value.31

CHAPTER 9. DATA PACKING AND UNPACKING 213

Format1

PMIx v2.0 C
pmix_status_t2
PMIx_Data_print(char **output, char *prefix,3

void *src, pmix_data_type_t type);4

C

IN output5
The address of a pointer into which the address of the resulting output is to be stored.6
(char**)7

IN prefix8
String to be prepended to the resulting output (char*)9

IN src10
A pointer to the memory location of the data value to be printed (handle)11

IN type12
The type of the data value to be printed — must be one of the PMIx defined data types. (13
pmix_data_type_t)14

Returns one of the following:15

PMIX_SUCCESS The data has been printed as requested16
PMIX_ERR_BAD_PARAM The provided data type is not recognized.17
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.18

Description19

Since registered data types can be complex structures, the system needs some way to know how to20
print them (i.e., convert them to a string representation). Primarily for debug purposes.21

9.2.5 PMIx_Data_copy_payload22

Summary23

Copy a payload from one buffer to another24

Format25

PMIx v2.0 C
pmix_status_t26
PMIx_Data_copy_payload(pmix_data_buffer_t *dest,27

pmix_data_buffer_t *src);28

214 PMIx Standard – Version 3.0 – December 2018

C

IN dest1
Pointer to the destination pmix_data_buffer_t (handle)2

IN src3
Pointer to the source pmix_data_buffer_t (handle)4

Returns one of the following:5

PMIX_SUCCESS The data has been copied as requested6
PMIX_ERR_BAD_PARAM The src and dest pmix_data_buffer_t types do not match7
PMIX_ERR_NOT_SUPPORTED The PMIx implementation does not support this function.8

Description9

This function will append a copy of the payload in one buffer into another buffer. Note that this is10
not a destructive procedure — the source buffer’s payload will remain intact, as will any pre-existing11
payload in the destination’s buffer. Only the unpacked portion of the source payload will be copied.12

CHAPTER 9. DATA PACKING AND UNPACKING 215

CHAPTER 10

Security

PMIx utilizes a multi-layered approach toward security that differs for client versus tool processes.1
Client processes (i.e., processes started by the host environment) must be preregistered with the2
PMIx server library via the PMIx_server_register_client API before they are spawned.3
This API requires that you pass the expected uid/gid of the client process.4

When the client attempts to connect to the PMIx server, the server uses available standard5
Operating System (OS) methods to determine the effective uid/gid of the process requesting the6
connection. PMIx implementations shall not rely on any values reported by the client process itself7
as that would be unsafe. The effective uid/gid reported by the OS is compared to the values8
provided by the host during registration - if they don’t match, the PMIx server is required to drop9
the connection request. This ensures that the PMIx server does not allow connection from a client10
that doesn’t at least meet some minimal security requirement.11

Once the requesting client passes the initial test, the PMIx server can, at the choice of the12
implementor, perform additional security checks. This may involve a variety of methods such as13
exchange of a system-provided key or credential. At the conclusion of that process, the PMIx server14
reports the client connection request to the host via the15
pmix_server_client_connected_fn_t interface. The host may then perform any16
additional checks and operations before responding with either PMIX_SUCCESS to indicate that17
the connection is approved, or a PMIx error constant indicating that the connection request is18
refused. In this latter case, the PMIx server is required to drop the connection.19

Tools started by the host environment are classed as a subgroup of client processes and follow the20
client process procedure. However, tools that are not started by the host environment must be21
handled differently as registration information is not available prior to the connection request. In22
these cases, the PMIx server library is required to use available standard OS methods to get the23
effective uid/gid and report them upwards as part of invoking the24
pmix_server_tool_connection_fn_t interface, deferring initial security screening to25
the host. It is recognized that this may represent a security risk - for this reason, PMIx server26
libraries must not enable tool connections by default. Instead, the host has to explicitly enable them27
via the PMIX_SERVER_TOOL_SUPPORT attribute, thus recognizing the associated risk. Once28
the host has completed its authentication procedure, it again informs the PMIx server of the result.29

Applications and tools often interact with the host environment in ways that require security beyond30
just verifying the user’s identity - e.g., access to that user’s relevant authorizations. This is31
particularly important when tools connect directly to a system-level PMIx server that may be32
operating at a privileged level. A variety of system management software packages provide33
authorization services, but the lack of standardized interfaces makes portability problematic.34

216

This section defines two PMIx client-side APIs for this purpose. These are most likely to be used1
by user-space applications/tools, but are not restricted to that realm.2

10.1 Obtaining Credentials3

The API for obtaining a credential is a non-blocking operation since the host environment may have4
to contact a remote credential service. The definition takes into account the potential that the5
returned credential could be sent via some mechanism to another application that resides in an6
environment using a different security mechanism. Thus, provision is made for the system to return7
additional information (e.g., the identity of the issuing agent) outside of the credential itself and8
visible to the application.9

10.1.1 PMIx_Get_credential10

Summary11

Request a credential from the PMIx server library or the host environment12

Format13

PMIx v3.0 C
pmix_status_t14
PMIx_Get_credential(const pmix_info_t info[], size_t ninfo,15

pmix_credential_cbfunc_t cbfunc, void *cbdata)16

C

IN info17
Array of pmix_info_t structures (array of handles)18

IN ninfo19
Number of elements in the info array (size_t)20

IN cbfunc21
Callback function to return credential (pmix_credential_cbfunc_t function22
reference)23

IN cbdata24
Data to be passed to the callback function (memory reference)25

Returns one of the following:26

• PMIX_SUCCESS , indicating that the request has been communicated to the local PMIx server -27
result will be returned in the provided cbfunc28

• a PMIx error constant indicating either an error in the input or that the request is unsupported -29
the cbfunc will not be called30

CHAPTER 10. SECURITY 217

Required Attributes

PMIx libraries that choose not to support this operation must return1
PMIX_ERR_NOT_SUPPORTED when the function is called.2

There are no required attributes for this API mplementations that support the operation may choose3
to internally execute integration for some security environments (e.g., directly contacting a munge4
server) - there are no identified required attributes for this API.5

For implementations that support the operation, there are no identified required attributes for this6
API. Note that implementations may choose to internally execute integration for some security7
environments (e.g., directly contacting a munge server).8

Finally, for implementations that support the operation but the client’s request cannot be processed9
by the PMIx library itself, then any attributes that are provided by the client must be passed to the10
host environment for processing. In addition, the following attributes are required to be included in11
the info array passed from the PMIx library to the host environment:12

PMIX_USERID "pmix.euid" (uint32_t)13
Effective user id.14

PMIX_GRPID "pmix.egid" (uint32_t)15
Effective group id.16

Optional Attributes

The following attributes are optional for host environments that support this operation:17

PMIX_TIMEOUT "pmix.timeout" (int)18
Time in seconds before the specified operation should time out (0 indicating infinite) in19
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent20
the target process from ever exposing its data.21

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host22
environment due to race condition considerations between completion of the operation versus23
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT24
directly in the PMIx server library must take care to resolve the race condition and should avoid25
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not26
created.27

Description28

Request a credential from the PMIx server library or the host environment29

218 PMIx Standard – Version 3.0 – December 2018

10.2 Validating Credentials1

The API for validating a credential is a non-blocking operation since the host environment may2
have to contact a remote credential service. Provision is made for the system to return additional3
information regarding possible authorization limitations beyond simple authentication.4

10.2.1 PMIx_Validate_credential5

Summary6

Request validation of a credential by the PMIx server library or the host environment7

Format8

PMIx v3.0 C
pmix_status_t9
PMIx_Validate_credential(const pmix_byte_object_t *cred,10

const pmix_info_t info[], size_t ninfo,11
pmix_validation_cbfunc_t cbfunc,12
void *cbdata)13

C

IN cred14
Pointer to pmix_byte_object_t containing the credential (handle)15

IN info16
Array of pmix_info_t structures (array of handles)17

IN ninfo18
Number of elements in the info array (size_t)19

IN cbfunc20
Callback function to return result (pmix_validation_cbfunc_t function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

Returns one of the following:24

• PMIX_SUCCESS , indicating that the request has been communicated to the local PMIx server -25
result will be returned in the provided cbfunc26

• a PMIx error constant indicating either an error in the input or that the request is unsupported -27
the cbfunc will not be called28

CHAPTER 10. SECURITY 219

Required Attributes

PMIx libraries that choose not to support this operation must return1
PMIX_ERR_NOT_SUPPORTED when the function is called.2

There are no required attributes for this API mplementations that support the operation may choose3
to internally execute integration for some security environments (e.g., directly contacting a munge4
server) - there are no identified required attributes for this API.5

For implementations that support the operation, there are no identified required attributes for this6
API. Note that implementations may choose to internally execute integration for some security7
environments (e.g., directly contacting a munge server).8

Finally, for implementations that support the operation but the client’s request cannot be processed9
by the PMIx library itself, then any attributes that are provided by the client must be passed to the10
host environment for processing. In addition, the following attributes are required to be included in11
the info array passed from the PMIx library to the host environment:12

PMIX_USERID "pmix.euid" (uint32_t)13
Effective user id.14

PMIX_GRPID "pmix.egid" (uint32_t)15
Effective group id.16

Optional Attributes

The following attributes are optional for host environments that support this operation:17

PMIX_TIMEOUT "pmix.timeout" (int)18
Time in seconds before the specified operation should time out (0 indicating infinite) in19
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent20
the target process from ever exposing its data.21

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host22
environment due to race condition considerations between completion of the operation versus23
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT24
directly in the PMIx server library must take care to resolve the race condition and should avoid25
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not26
created.27

Description28

Request validation of a credential by the PMIx server library or the host environment.29

220 PMIx Standard – Version 3.0 – December 2018

CHAPTER 11

Server-Specific Interfaces

The RM daemon that hosts the PMIx server library interacts with that library in two distinct1
manners. First, PMIx provides a set of APIs by which the host can request specific services from its2
library. This includes generating regular expressions, registering information to be passed to client3
processes, and requesting information on behalf of a remote process. Note that the host always has4
access to all PMIx client APIs - the functions listed below are in addition to those available to a5
PMIx client.6

Second, the host can provide a set of callback functions by which the PMIx server library can pass7
requests upward for servicing by the host. These include notifications of client connection and8
finalize, as well as requests by clients for information and/or services that the PMIx server library9
does not itself provide.10

11.1 Server Support Functions11

The following APIs allow the RM daemon that hosts the PMIx server library to request specific12
services from the PMIx library.13

11.1.1 PMIx_generate_regex14

Summary15

Generate a regular expression representation of the input string.16

Format17

PMIx v1.0 C
pmix_status_t18
PMIx_generate_regex(const char *input, char **regex)19

C
IN input20

String to process (string)21
OUT regex22

Regular expression representation of input (string)23

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.24

221

Description1

Given a comma-separated list of input values, generate a regular expression that can be passed2
down to the PMIx client for parsing. The caller is responsible for free’ing the resulting string.3

If values have leading zero’s, then that is preserved, as are prefix and suffix strings. For example, an4
input string of5
“odin009.org,odin010.org,odin011.org,odin012.org,odin[102-107].org”6
will return a regular expression of “pmix:odin[009-012,102-107].org”7

Advice to users

The returned regular expression will have a “pmix:” at the beginning of the string. This informs8
the PMIx parser that the string was produced using the PRI’s regular expression generator, and thus9
that same plugin should be used for parsing the string10

11.1.2 PMIx_generate_ppn11

Summary12

Generate a regular expression representation of the input string.13

Format14

PMIx v1.0 C
pmix_status_t PMIx_generate_ppn(const char *input, char **ppn)15

C

IN input16
String to process (string)17

OUT regex18
Regular expression representation of input (string)19

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.20

222 PMIx Standard – Version 3.0 – December 2018

Description1

The input is expected to consist of a semicolon-separated list of ranges representing the ranks of2
processes on each node of the job. Thus, an input of "1-4;2-5;8,10,11,12;6,7,9" would generate a3
regex of "pmix:2x(3);8,10-12;6-7,9"4

Advice to users

The returned regular expression will have a “pmix:” at the beginning of the string. This informs the5
PMIx parser that the string was produced using the PRI’s regular expression generator, and thus6
that same plugin should be used for parsing the string7

11.1.3 PMIx_server_register_nspace8

Summary9

Setup the data about a particular namespace.10

Format11

PMIx v1.0 C
pmix_status_t12
PMIx_server_register_nspace(const pmix_nspace_t nspace,13

int nlocalprocs,14
pmix_info_t info[], size_t ninfo,15
pmix_op_cbfunc_t cbfunc, void *cbdata)16

C

IN nspace17
namespace (string)18

IN nlocalprocs19
number of local processes (integer)20

IN info21
Array of info structures (array of handles)22

IN ninfo23
Number of elements in the info array (integer)24

IN cbfunc25
Callback function pmix_op_cbfunc_t (function reference)26

IN cbdata27
Data to be passed to the callback function (memory reference)28

Returns one of the following:29

CHAPTER 11. SERVER-SPECIFIC INTERFACES 223

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result1
will be returned in the provided cbfunc. Note that the library must not invoke the callback2
function prior to returning from the API.3

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and4
returned success - the cbfunc will not be called5

• a PMIx error constant indicating either an error in the input or that the request was immediately6
processed and failed - the cbfunc will not be called7

Required Attributes

The following attributes are required to be supported by all PMIx libraries:8

PMIX_REGISTER_NODATA "pmix.reg.nodata" (bool)9
Registration is for this namespace only, do not copy job data - this attribute is not accessed10
using the PMIx_Get11

Host environments are required to provide the following attributes:12

• for the session containing the given namespace:13

– PMIX_UNIV_SIZE "pmix.univ.size" (uint32_t)14
Number of allocated slots in a session - each slot may or may not be occupied by an15
executing process. Note that this attribute is the equivalent to the combination of16
PMIX_SESSION_INFO_ARRAY with the PMIX_NUM_SLOTS entry in the array - it17
is included in the Standard for historical reasons.18

• for the given namespace:19

– PMIX_JOBID "pmix.jobid" (char*)20
Job identifier assigned by the scheduler.21

– PMIX_JOB_SIZE "pmix.job.size" (uint32_t)22
Total number of processes in this job across all contained applications23

– PMIX_MAX_PROCS "pmix.max.size" (uint32_t)24
Maximum number of processes for this job.25

– PMIX_NODE_MAP "pmix.nmap" (char*)26
Regular expression of nodes - see 11.1.3.1 for an explanation of its generation.27

– PMIX_PROC_MAP "pmix.pmap" (char*)28
Regular expression describing processes on each node - see 11.1.3.1 for an explanation29
of its generation.30

• for its own node:31

– PMIX_LOCAL_SIZE "pmix.local.size" (uint32_t)32
Number of processes in this job on this node.33

– PMIX_LOCAL_PEERS "pmix.lpeers" (char*)34

224 PMIx Standard – Version 3.0 – December 2018

Comma-delimited list of ranks on this node within the specified namespace - referenced1
using PMIX_RANK_WILDCARD .2

– PMIX_LOCAL_CPUSETS "pmix.lcpus" (char*)3
Colon-delimited cpusets of local peers within the specified namespace - referenced4
using PMIX_RANK_WILDCARD .5

• for each process in the given namespace:6

– PMIX_RANK "pmix.rank" (pmix_rank_t)7
Process rank within the job.8

– PMIX_LOCAL_RANK "pmix.lrank" (uint16_t)9
Local rank on this node within this job.10

– PMIX_NODE_RANK "pmix.nrank" (uint16_t)11
Process rank on this node spanning all jobs.12

– PMIX_NODEID "pmix.nodeid" (uint32_t)13
Node identifier where the specified process is located, expressed as the node’s index14
(beginning at zero) in the array resulting from expansion of the PMIX_NODE_MAP15
regular expression for the job16

If more than one application is included in the namespace, then the host environment is also17
required to provide the following attributes:18

• for each application:19

– PMIX_APPNUM "pmix.appnum" (uint32_t)20
Application number within the job.21

– PMIX_APPLDR "pmix.aldr" (pmix_rank_t)22
Lowest rank in this application within this job - referenced using23
PMIX_RANK_WILDCARD .24

– PMIX_APP_SIZE "pmix.app.size" (uint32_t)25
Number of processes in this application.26

• for each process:27

– PMIX_APP_RANK "pmix.apprank" (pmix_rank_t)28
Process rank within this application.29

– PMIX_APPNUM "pmix.appnum" (uint32_t)30
Application number within the job.31

CHAPTER 11. SERVER-SPECIFIC INTERFACES 225

Optional Attributes

The following attributes may be provided by host environments:1

• for the session containing the given namespace:2

– PMIX_SESSION_ID "pmix.session.id" (uint32_t)3
Session identifier - referenced using PMIX_RANK_WILDCARD .4

• for the given namespace:5

– PMIX_SERVER_NSPACE "pmix.srv.nspace" (char*)6
Name of the namespace to use for this PMIx server.7

– PMIX_SERVER_RANK "pmix.srv.rank" (pmix_rank_t)8
Rank of this PMIx server9

– PMIX_NPROC_OFFSET "pmix.offset" (pmix_rank_t)10
Starting global rank of this job - referenced using PMIX_RANK_WILDCARD .11

– PMIX_ALLOCATED_NODELIST "pmix.alist" (char*)12
Comma-delimited list of all nodes in this allocation regardless of whether or not they13
currently host processes - referenced using PMIX_RANK_WILDCARD .14

– PMIX_JOB_NUM_APPS "pmix.job.napps" (uint32_t)15
Number of applications in this job.16

– PMIX_MAPBY "pmix.mapby" (char*)17
Process mapping policy - when accessed using PMIx_Get , use the18
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for19
the provided namespace20

– PMIX_RANKBY "pmix.rankby" (char*)21
Process ranking policy - when accessed using PMIx_Get , use the22
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used23
for the provided namespace24

– PMIX_BINDTO "pmix.bindto" (char*)25
Process binding policy - when accessed using PMIx_Get , use the26
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for27
the provided namespace28

• for its own node:29

– PMIX_AVAIL_PHYS_MEMORY "pmix.pmem" (uint64_t)30
Total available physical memory on this node.31

– PMIX_HWLOC_XML_V1 "pmix.hwlocxml1" (char*)32
XML representation of local topology using HWLOC’s v1.x format.33

– PMIX_HWLOC_XML_V2 "pmix.hwlocxml2" (char*)34

226 PMIx Standard – Version 3.0 – December 2018

XML representation of local topology using HWLOC’s v2.x format.1

– PMIX_LOCALLDR "pmix.lldr" (pmix_rank_t)2
Lowest rank on this node within this job - referenced using PMIX_RANK_WILDCARD .3

4

– PMIX_NODE_SIZE "pmix.node.size" (uint32_t)5
Number of processes across all jobs on this node.6

– PMIX_LOCAL_PROCS "pmix.lprocs" (pmix_proc_t array)7
Array of pmix_proc_t of all processes on the specified node - referenced using8
PMIX_RANK_WILDCARD .9

• for each process in the given namespace:10

– PMIX_PROCID "pmix.procid" (pmix_proc_t)11
Process identifier12

– PMIX_GLOBAL_RANK "pmix.grank" (pmix_rank_t)13
Process rank spanning across all jobs in this session.14

– PMIX_HOSTNAME "pmix.hname" (char*)15
Name of the host where the specified process is running.16

Attributes not directly provided by the host environment may be derived by the PMIx server library17
from other required information and included in the data made available to the server library’s18
clients.19

Description20

Pass job-related information to the PMIx server library for distribution to local client processes.21

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting any local application22
process within the given namespace.23

The PMIx server must register all namespaces that will participate in collective operations with24
local processes. This means that the server must register a namespace even if it will not host any25
local processes from within that namespace if any local process of another namespace might at26
some point perform an operation involving one or more processes from the new namespace. This is27
necessary so that the collective operation can identify the participants and know when it is locally28
complete.29

The caller must also provide the number of local processes that will be launched within this30
namespace. This is required for the PMIx server library to correctly handle collectives as a31
collective operation call can occur before all the local processes have been started.32

CHAPTER 11. SERVER-SPECIFIC INTERFACES 227

Advice to users

The number of local processes for any given namespace is generally fixed at the time of application1
launch. Calls to PMIx_Spawn result in processes launched in their own namespace, not that of2
their parent. However, it is possible for processes to migrate to another node via a call to3
PMIx_Job_control_nb , thus resulting in a change to the number of local processes on both4
the initial node and the node to which the process moved. It is therefore critical that applications5
not migrate processes without first ensuring that PMIx-based collective operations are not in6
progress, and that no such operations be initiated until process migration has completed.7

11.1.3.1 Assembling the registration information8

The following description is not intended to represent the actual layout of information in a given9
PMIx library. Instead, it is describes how information provided in the info parameter of the10
PMIx_server_register_nspace shall be organized for proper processing by a PMIx server11
library. The ordering of the various information elements is arbitrary - they are presented in a12
top-down hierarchical form solely for clarity in reading.13

Advice to PMIx server hosts

Creating the info array of data requires knowing in advance the number of elements required for the14
array. This can be difficult to compute and somewhat fragile in practice. One method for resolving15
the problem is to create a linked list of objects, each containing a single pmix_info_t structure.16
Allocation and manipulation of the list can then be accomplished using existing standard methods.17
Upon completion, the final info array can be allocated based on the number of elements on the list,18
and then the values in the list object pmix_info_t structures transferred to the corresponding19
array element utilizing the PMIX_INFO_XFER macro.20

A common building block used in several areas is the construction of a regular expression21
identifying the nodes involved in that area - e.g., the nodes in a session or job . PMIx provides22
several tools to facilitate this operation, beginning by constructing an argv-like array of node23
names. This array is then passed to the PMIx_generate_regex function to create a regular24
expression parseable by the PMIx server library, as shown below:25

228 PMIx Standard – Version 3.0 – December 2018

C
char **nodes = NULL;1
char *nodelist;2
char *regex;3
size_t n;4
pmix_status_t rc;5
pmix_info_t info;6

7
/* loop over an array of nodes, adding each8
* name to the array */9
for (n=0; n < num_nodes; n++)10

/* filter the nodes to ignore those not included11
* in the target range (session, job, etc.). In12
* this example, all nodes are accepted */13

PMIX_ARGV_APPEND(&nodes, node[n]->name);14
15
16

/* join into a comma-delimited string */17
nodelist = PMIX_ARGV_JOIN(nodes, ’,’);18

19
/* release the array */20
PMIX_ARGV_FREE(nodes);21

22
/* generate regex */23
rc = PMIx_generate_regex(nodelist, ®ex);24

25
/* release list */26
free(nodelist);27

28
/* pass the regex as the value to the PMIX_NODE_MAP key */29
PMIX_INFO_LOAD(&info, PMIX_NODE_MAP, regex, PMIX_STRING);30
/* release the regex */31
free(regex);32

33
C

Changing the filter criteria allows the construction of node maps for any level of information.34

A similar method is used to construct the map of processes on each node from the namespace being35
registered. This may be done for each information level of interest (e.g., to identify the process map36
for the entire job or for each application in the job) by changing the search criteria. An37
example is shown below for the case of creating the process map for a job :38

CHAPTER 11. SERVER-SPECIFIC INTERFACES 229

C
char **ndppn;1
char rank[30];2
char **ppnarray = NULL;3
char *ppn;4
char *localranks;5
char *regex;6
size_t n, m;7
pmix_status_t rc;8
pmix_info_t info;9

10
/* loop over an array of nodes */11
for (n=0; n < num_nodes; n++)12

/* for each node, construct an array of ranks on that node */13
ndppn = NULL;14
for (m=0; m < node[n]->num_procs; m++)15

/* ignore processes that are not part of the target job */16
if (!PMIX_CHECK_NSPACE(targetjob,node[n]->proc[m].nspace))17

continue;18
19

snprintf(rank, 30, "%d", node[n]->proc[m].rank);20
PMIX_ARGV_APPEND(&ndppn, rank);21

22
/* convert the array into a comma-delimited string of ranks */23
localranks = PMIX_ARGV_JOIN(ndppn, ’,’);24
/* release the local array */25
PMIX_ARGV_FREE(ndppn);26
/* add this node’s contribution to the overall array */27
PMIX_ARGV_APPEND(&ppnarray, localranks);28
/* release the local list */29
free(localranks);30

31
32

/* join into a semicolon-delimited string */33
ppn = PMIX_ARGV_JOIN(ppnarray, ’;’);34

35
/* release the array */36
PMIX_ARGV_FREE(ppnarray);37

38
/* generate ppn regex */39
rc = PMIx_generate_ppn(ppn, ®ex);40

41
/* release list */42

230 PMIx Standard – Version 3.0 – December 2018

free(ppn);1
2

/* pass the regex as the value to the PMIX_PROC_MAP key */3
PMIX_INFO_LOAD(&info, PMIX_PROC_MAP, regex, PMIX_STRING);4
/* release the regex */5
free(regex);6

7
C

Note that the PMIX_NODE_MAP and PMIX_PROC_MAP attributes are linked in that the order of8
entries in the process map must match the ordering of nodes in the node map - i.e., there is no9
provision in the PMIx process map regular expression generator/parser pair supporting an10
out-of-order node or a node that has no corresponding process map entry (e.g., a node with no11
processes on it). Armed with these tools, the registration info array can be constructed as follows:12

• Session-level information includes all session-specific values. In many cases, only two values (13
PMIX_SESSION_ID and PMIX_UNIV_SIZE) are included in the registration array. Since14
both of these values are session-specific, they can be specified independently - i.e., in their own15
pmix_info_t elements of the info array. Alternatively, they can be provided as a16
pmix_data_array_t array of pmix_info_t using the PMIX_SESSION_INFO_ARRAY17
attribute and identifed by including the PMIX_SESSION_ID attribute in the array - this is18
required in cases where non-specific attributes (e.g., PMIX_NUM_NODES or19
PMIX_NODE_MAP) are passed to describe aspects of the session. Note that the node map can20
include nodes not used by the job being registered as no corresponding process map is specified.21

The info array at this point might look like (where the labels identify the corresponding attribute22
- e.g., “Session ID” corresponds to the PMIX_SESSION_ID attribute):23

Figure 11.1.: Session-level information elements

• Job-level information includes all job-specific values such as PMIX_JOB_SIZE ,24
PMIX_JOB_NUM_APPS , and PMIX_JOBID . Since each invocation of25
PMIx_server_register_nspace describes a single job , job-specific values can be26
specified independently - i.e., in their own pmix_info_t elements of the info array.27
Alternatively, they can be provided as a pmix_data_array_t array of pmix_info_t28
identified by the PMIX_JOB_INFO_ARRAY attribute - this is required in cases where29

CHAPTER 11. SERVER-SPECIFIC INTERFACES 231

non-specific attributes (e.g., PMIX_NODE_MAP) are passed to describe aspects of the job. Note1
that since the invocation only involves a single namespace, there is no need to include the2
PMIX_NSPACE attribute in the array.3

Upon conclusion of this step, the info array might look like:4

Figure 11.2.: Job-level information elements

Note that in this example, PMIX_NUM_NODES is not required as that information is contained5
in the PMIX_NODE_MAP attribute. Similarly, PMIX_JOB_SIZE is not technically required as6
that information is contained in the PMIX_PROC_MAP when combined with the corresponding7
node map - however, there is no issue with including the job size as a separate entry.8

• Application-level information includes all application-specific values such as PMIX_APP_SIZE9
and PMIX_APPLDR . If the job contains only a single application , then the10
application-specific values can be specified independently - i.e., in their own pmix_info_t11
elements of the info array - or as a pmix_data_array_t array of pmix_info_t using the12
PMIX_APP_INFO_ARRAY attribute and identifed by including the PMIX_APPNUM attribute13
in the array. Use of the array format is required in cases where non-specific attributes (e.g.,14
PMIX_NODE_MAP) are passed to describe aspects of the application.15

However, in the case of a job consisting of multiple applications, all application-specific values16
for each application must be provided using the PMIX_APP_INFO_ARRAY format, each17
identified by its PMIX_APPNUM value.18

Upon conclusion of this step, the info array might look like that shown in 11.3, assuming there19
are two applications in the job being registered:20

• Process-level information includes an entry for each process in the job being registered, each21
entry marked with the PMIX_PROC_DATA attribute. The rank of the process must be the first22

232 PMIx Standard – Version 3.0 – December 2018

info

Session
ID

Num
nodes

Univ
size

Session
Info

Job
info

Job
ID

Node
map

Proc
map

Job
size

Max
procs

App
info

App
num

App
size

App
ldr

App
info

App
num

App
size

App
ldr

Figure 11.3.: Application-level information elements

entry in the array - this provides efficiency when storing the data. Upon conclusion of this step,1
the info array might look like the diagram in 11.4:2

info

Session
ID

Num
nodes

Univ
size

Session
Info

Job
info

Job
ID

Node
map

Proc
map

Job
size

Max
procs

App
info

App
num

App
size

App
ldr

App
info

App
num

App
size

App
ldr

Proc
data

Rank

Local
rank

Node
rank

Node
ID

Proc
data

Rank

Local
rank

Node
rank

Node
ID

App
num

App
num

App
rank

App
rank

Figure 11.4.: Process-level information elements

• Node-level information only includes values describing the local node - i.e., it does not include3
information about other nodes in the job or session. In many cases, the values included in this4
level are unique to it and can be specified independently - i.e., in their own pmix_info_t5
elements of the info array. Alternatively, they can be provided as a pmix_data_array_t6
array of pmix_info_t using the PMIX_NODE_INFO_ARRAY attribute - this is required in7
cases where non-specific attributes are passed to describe aspects of the node.8

CHAPTER 11. SERVER-SPECIFIC INTERFACES 233

The node-level information requires two elements that must be constructed in a manner similar to1
that used for the node map. The PMIX_LOCAL_PEERS value is computed based on the2
processes on the local node, filtered to select those from the job being registered, as shown below3
using the tools provided by PMIx:4

C
char **ndppn = NULL;5
char rank[30];6
char *localranks;7
size_t m;8
pmix_info_t info;9

10
for (m=0; m < mynode->num_procs; m++)11

/* ignore processes that are not part of the target job */12
if (!PMIX_CHECK_NSPACE(targetjob,mynode->proc[m].nspace))13

continue;14
15

snprintf(rank, 30, "%d", mynode->proc[m].rank);16
PMIX_ARGV_APPEND(&ndppn, rank);17

18
/* convert the array into a comma-delimited string of ranks */19
localranks = PMIX_ARGV_JOIN(ndppn, ’,’);20
/* release the local array */21
PMIX_ARGV_FREE(ndppn);22

23
/* pass the string as the value to the PMIX_LOCAL_PEERS key */24
PMIX_INFO_LOAD(&info, PMIX_LOCAL_PEERS, localranks, PMIX_STRING);25
/* release the list */26
free(localranks);27

28
C

The PMIX_LOCAL_CPUSETS value is constructed in a similar manner. In the provided29
example, it is assumed that the Hardware Locality (HWLOC) cpuset representation (a30
comma-delimited string of processor IDs) of the processors assigned to each process has31
previously been generated and stored on the process description. Thus, the value can be32
constructed as shown below:33

234 PMIx Standard – Version 3.0 – December 2018

C
char **ndcpus = NULL;1
char *localcpus;2
size_t m;3
pmix_info_t info;4

5
for (m=0; m < mynode->num_procs; m++)6

/* ignore processes that are not part of the target job */7
if (!PMIX_CHECK_NSPACE(targetjob,mynode->proc[m].nspace))8

continue;9
10

PMIX_ARGV_APPEND(&ndcpus, mynode->proc[m].cpuset);11
12

/* convert the array into a colon-delimited string */13
localcpus = PMIX_ARGV_JOIN(ndcpus, ’:’);14
/* release the local array */15
PMIX_ARGV_FREE(ndcpus);16

17
/* pass the string as the value to the PMIX_LOCAL_CPUSETS key */18
PMIX_INFO_LOAD(&info, PMIX_LOCAL_CPUSETS, localcpus, PMIX_STRING);19
/* release the list */20
free(localcpus);21

22
C

Note that for efficiency, these two values can be computed at the same time.23

The final info array might therefore look like the diagram in 11.5:24

11.1.4 PMIx_server_deregister_nspace25

Summary26

Deregister a namespace.27

Format28

PMIx v1.0 C
void PMIx_server_deregister_nspace(const pmix_nspace_t nspace,29

pmix_op_cbfunc_t cbfunc, void *cbdata)30

CHAPTER 11. SERVER-SPECIFIC INTERFACES 235

info

Session
ID

Num
nodes

Univ
size

Session
Info

Job
info

Job
ID

Node
map

Proc
map

Job
size

Max
procs

App
info

App
num

App
size

App
ldr

App
info

App
num

App
size

App
ldr

Proc
data

Rank

Local
rank

Node
rank

Node
ID

Proc
data

Rank

Local
rank

Node
rank

Node
ID

App
num

App
num

App
rank

App
rank

Local
size

Local
Peers

Local
cpusets

Figure 11.5.: Final information array

C
IN nspace1

Namespace (string)2
IN cbfunc3

Callback function pmix_op_cbfunc_t (function reference)4
IN cbdata5

Data to be passed to the callback function (memory reference)6

Description7

Deregister the specified nspace and purge all objects relating to it, including any client information8
from that namespace. This is intended to support persistent PMIx servers by providing an9
opportunity for the host RM to tell the PMIx server library to release all memory for a completed10
job. Note that the library must not invoke the callback function prior to returning from the API.11

11.1.5 PMIx_server_register_client12

Summary13

Register a client process with the PMIx server library.14

236 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
pmix_status_t2
PMIx_server_register_client(const pmix_proc_t *proc,3

uid_t uid, gid_t gid,4
void *server_object,5
pmix_op_cbfunc_t cbfunc, void *cbdata)6

C

IN proc7
pmix_proc_t structure (handle)8

IN uid9
user id (integer)10

IN gid11
group id (integer)12

IN server_object13
(memory reference)14

IN cbfunc15
Callback function pmix_op_cbfunc_t (function reference)16

IN cbdata17
Data to be passed to the callback function (memory reference)18

Returns one of the following:19

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result20
will be returned in the provided cbfunc. Note that the library must not invoke the callback21
function prior to returning from the API.22

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and23
returned success - the cbfunc will not be called24

• a PMIx error constant indicating either an error in the input or that the request was immediately25
processed and failed - the cbfunc will not be called26

Description27

Register a client process with the PMIx server library.28

The host server can also, if it desires, provide an object it wishes to be returned when a server29
function is called that relates to a specific process. For example, the host server may have an object30
that tracks the specific client. Passing the object to the library allows the library to provide that31
object to the host server during subsequent calls related to that client, such as a32
pmix_server_client_connected_fn_t function. This allows the host server to access33
the object without performing a lookup based on the client’s namespace and rank.34

CHAPTER 11. SERVER-SPECIFIC INTERFACES 237

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting the client process. The1
expected user ID and group ID of the child process allows the server library to properly authenticate2
clients as they connect by requiring the two values to match. Accordingly, the detected user and3
group ID’s of the connecting process are not included in the4
pmix_server_client_connected_fn_t server module function.5

Advice to PMIx library implementers

For security purposes, the PMIx server library should check the user and group ID’s of a6
connecting process against those provided for the declared client process identifier via the7
PMIx_server_register_client prior to completing the connection.8

11.1.6 PMIx_server_deregister_client9

Summary10

Deregister a client and purge all data relating to it.11

Format12

PMIx v1.0 C
void13
PMIx_server_deregister_client(const pmix_proc_t *proc,14

pmix_op_cbfunc_t cbfunc, void *cbdata)15

C

IN proc16
pmix_proc_t structure (handle)17

IN cbfunc18
Callback function pmix_op_cbfunc_t (function reference)19

IN cbdata20
Data to be passed to the callback function (memory reference)21

Description22

The PMIx_server_deregister_nspace API will delete all client information for that23
namespace. The PMIx server library will automatically perform that operation upon disconnect of24
all local clients. This API is therefore intended primarily for use in exception cases, but can be25
called in non-exception cases if desired. Note that the library must not invoke the callback function26
prior to returning from the API.27

238 PMIx Standard – Version 3.0 – December 2018

11.1.7 PMIx_server_setup_fork1

Summary2

Setup the environment of a child process to be forked by the host.3

Format4

PMIx v1.0 C
pmix_status_t5
PMIx_server_setup_fork(const pmix_proc_t *proc,6

char ***env)7

C

IN proc8
pmix_proc_t structure (handle)9

IN env10
Environment array (array of strings)11

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant.12

Description13

Setup the environment of a child process to be forked by the host so it can correctly interact with14
the PMIx server.15

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting the client process.16

The PMIx client needs some setup information so it can properly connect back to the server. This17
function will set appropriate environmental variables for this purpose, and will also provide any18
environmental variables that were specified in the launch command (e.g., via PMIx_Spawn) plus19
other values (e.g., variables required to properly initialize the client’s fabric library).20

11.1.8 PMIx_server_dmodex_request21

Summary22

Define a function by which the host server can request modex data from the local PMIx server.23

CHAPTER 11. SERVER-SPECIFIC INTERFACES 239

Format1

PMIx v1.0 C
pmix_status_t PMIx_server_dmodex_request(const pmix_proc_t *proc,2

pmix_dmodex_response_fn_t cbfunc,3
void *cbdata)4

C

IN proc5
pmix_proc_t structure (handle)6

IN cbfunc7
Callback function pmix_dmodex_response_fn_t (function reference)8

IN cbdata9
Data to be passed to the callback function (memory reference)10

Returns one of the following:11

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result12
will be returned in the provided cbfunc. Note that the library must not invoke the callback13
function prior to returning from the API.14

• a PMIx error constant indicating an error in the input - the cbfunc will not be called15

Description16

Define a function by which the host server can request modex data from the local PMIx server.17
Traditional wireup procedures revolve around the per-process posting of data (e.g., location and18
endpoint information) via the PMIx_Put and PMIx_Commit functions followed by a19
PMIx_Fence barrier that globally exchanges the posted information. However, the barrier20
operation represents a signficant time impact at large scale.21

PMIx supports an alternative wireup method known as Direct Modex that replaces the22
barrier-based exchange of all process-posted information with on-demand fetch of a peer’s data. In23
place of the barrier operation, data posted by each process is cached on the local PMIx server.24
When a process requests the information posted by a particular peer, it first checks the local cache25
to see if the data is already available. If not, then the request is passed to the local PMIx server,26
which subsequently requests that its RM host request the data from the RM daemon on the node27
where the specified peer process is located. Upon receiving the request, the RM daemon passes the28
request into its PMIx server library using the PMIx_server_dmodex_request function,29
receiving the response in the provided cbfunc once the indicated process has posted its information.30
The RM daemon then returns the data to the requesting daemon, who subsequently passes the data31
to its PMIx server library for transfer to the requesting client.32

240 PMIx Standard – Version 3.0 – December 2018

Advice to users

While direct modex allows for faster launch times by eliminating the barrier operation, per-peer1
retrieval of posted information is less efficient. Optimizations can be implemented - e.g., by2
returning posted information from all processes on a node upon first request - but in general direct3
modex remains best suited for sparsely connected applications.4

11.1.9 PMIx_server_setup_application5

Summary6

Provide a function by which the resource manager can request application-specific setup data prior7
to launch of an application.8

Format9

PMIx v2.0 C
pmix_status_t10
PMIx_server_setup_application(const pmix_nspace_t nspace,11

pmix_info_t info[], size_t ninfo,12
pmix_setup_application_cbfunc_t cbfunc,13
void *cbdata)14

C

IN nspace15
namespace (string)16

IN info17
Array of info structures (array of handles)18

IN ninfo19
Number of elements in the info array (integer)20

IN cbfunc21
Callback function pmix_setup_application_cbfunc_t (function reference)22

IN cbdata23
Data to be passed to the cbfunc callback function (memory reference)24

Returns one of the following:25

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result26
will be returned in the provided cbfunc. Note that the library must not invoke the callback27
function prior to returning from the API.28

• a PMIx error constant indicating either an error in the input - the cbfunc will not be called29

CHAPTER 11. SERVER-SPECIFIC INTERFACES 241

Required Attributes

PMIx libraries that support this operation are required to support the following:1

PMIX_SETUP_APP_ENVARS "pmix.setup.env" (bool)2
Harvest and include relevant environmental variables3

PMIX_SETUP_APP_NONENVARS ""pmix.setup.nenv" (bool)4
Include all relevant data other than environmental variables5

PMIX_SETUP_APP_ALL "pmix.setup.all" (bool)6
Include all relevant data7

PMIX_ALLOC_NETWORK "pmix.alloc.net" (array)8
Array of pmix_info_t describing requested network resources. This must include at9
least: PMIX_ALLOC_NETWORK_ID , PMIX_ALLOC_NETWORK_TYPE , and10
PMIX_ALLOC_NETWORK_ENDPTS , plus whatever other descriptors are desired.11

PMIX_ALLOC_NETWORK_ID "pmix.alloc.netid" (char*)12
The key to be used when accessing this requested network allocation. The allocation will be13
returned/stored as a pmix_data_array_t of pmix_info_t indexed by this key and14
containing at least one entry with the same key and the allocated resource description. The15
type of the included value depends upon the network support. For example, a TCP allocation16
might consist of a comma-delimited string of socket ranges such as17
"32000-32100,33005,38123-38146". Additional entries will consist of any provided18
resource request directives, along with their assigned values. Examples include:19
PMIX_ALLOC_NETWORK_TYPE - the type of resources provided;20
PMIX_ALLOC_NETWORK_PLANE - if applicable, what plane the resources were assigned21
from; PMIX_ALLOC_NETWORK_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -22
the allocated bandwidth; PMIX_ALLOC_NETWORK_SEC_KEY - a security key for the23
requested network allocation. NOTE: the assigned values may differ from those requested,24
especially if PMIX_INFO_REQD was not set in the request.25

PMIX_ALLOC_NETWORK_SEC_KEY "pmix.alloc.nsec" (pmix_byte_object_t)26
Network security key27

PMIX_ALLOC_NETWORK_TYPE "pmix.alloc.nettype" (char*)28
Type of desired transport (e.g., “tcp”, “udp”)29

PMIX_ALLOC_NETWORK_PLANE "pmix.alloc.netplane" (char*)30
ID string for the NIC (aka plane) to be used for this allocation (e.g., CIDR for Ethernet)31

PMIX_ALLOC_NETWORK_ENDPTS "pmix.alloc.endpts" (size_t)32
Number of endpoints to allocate per process33

PMIX_ALLOC_NETWORK_ENDPTS_NODE "pmix.alloc.endpts.nd" (size_t)34
Number of endpoints to allocate per node35

242 PMIx Standard – Version 3.0 – December 2018

Optional Attributes

PMIx libraries that support this operation may support the following:1

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)2
Mbits/sec.3

PMIX_ALLOC_NETWORK_QOS "pmix.alloc.netqos" (char*)4
Quality of service level.5

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)6
Time in seconds.7

Description8

Provide a function by which the RM can request application-specific setup data (e.g., environmental9
variables, fabric configuration and security credentials) from supporting PMIx server library10
subsystems prior to initiating launch of an application.11

Advice to PMIx server hosts

Host environments are required to execute this operation prior to launching an application.12

This is defined as a non-blocking operation in case contributing subsystems need to perform some13
potentially time consuming action (e.g., query a remote service) before responding. The returned14
data must be distributed by the RM and subsequently delivered to the local PMIx server on each15
node where application processes will execute, prior to initiating execution of those processes.16

Advice to PMIx library implementers

Support for harvesting of environmental variables and providing of local configuration information17
by the PMIx implementation is optional.18

11.1.10 PMIx_server_setup_local_support19

Summary20

Provide a function by which the local PMIx server can perform any application-specific operations21
prior to spawning local clients of a given application.22

CHAPTER 11. SERVER-SPECIFIC INTERFACES 243

Format1

PMIx v2.0 C
pmix_status_t2
PMIx_server_setup_local_support(const pmix_nspace_t nspace,3

pmix_info_t info[], size_t ninfo,4
pmix_op_cbfunc_t cbfunc,5
void *cbdata);6

C

IN nspace7
Namespace (string)8

IN info9
Array of info structures (array of handles)10

IN ninfo11
Number of elements in the info array (size_t)12

IN cbfunc13
Callback function pmix_op_cbfunc_t (function reference)14

IN cbdata15
Data to be passed to the callback function (memory reference)16

Returns one of the following:17

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result18
will be returned in the provided cbfunc. Note that the library must not invoke the callback19
function prior to returning from the API.20

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and21
returned success - the cbfunc will not be called22

• a PMIx error constant indicating either an error in the input or that the request was immediately23
processed and failed - the cbfunc will not be called24

Description25

Provide a function by which the local PMIx server can perform any application-specific operations26
prior to spawning local clients of a given application. For example, a network library might need to27
setup the local driver for “instant on” addressing. The data provided in the info array is the data28
provided to there host RM from the a call to PMIx_server_setup_application .29

Advice to PMIx server hosts

Host environments are required to execute this operation prior to starting any local application30
processes from the specified namespace.31

244 PMIx Standard – Version 3.0 – December 2018

11.1.11 PMIx_server_IOF_deliver1

Summary2

Provide a function by which the host environment can pass forwarded IO to the PMIx server library3
for distribution to its clients.4

Format5

PMIx v3.0 C
pmix_status_t6
PMIx_server_IOF_deliver(const pmix_proc_t *source,7

pmix_iof_channel_t channel,8
const pmix_byte_object_t *bo,9
const pmix_info_t info[], size_t ninfo,10
pmix_op_cbfunc_t cbfunc, void *cbdata);11

C

IN source12
Pointer to pmix_proc_t identifying source of the IO (handle)13

IN channel14
IO channel of the data (pmix_iof_channel_t)15

IN bo16
Pointer to pmix_byte_object_t containing the payload to be delivered (handle)17

IN info18
Array of pmix_info_t metadata describing the data (array of handles)19

IN ninfo20
Number of elements in the info array (size_t)21

IN cbfunc22
Callback function pmix_op_cbfunc_t (function reference)23

IN cbdata24
Data to be passed to the callback function (memory reference)25

Returns one of the following:26

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result27
will be returned in the provided cbfunc. Note that the library must not invoke the callback28
function prior to returning from the API.29

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and30
returned success - the cbfunc will not be called31

• a PMIx error constant indicating either an error in the input or that the request was immediately32
processed and failed - the cbfunc will not be called33

CHAPTER 11. SERVER-SPECIFIC INTERFACES 245

Description1

Provide a function by which the host environment can pass forwarded IO to the PMIx server library2
for distribution to its clients. The PMIx server library is responsible for determining which of its3
clients have actually registered for the provided data and delivering it. The cbfunc callback function4
will be called once the PMIx server library no longer requires access to the provided data.5

11.1.12 PMIx_server_collect_inventory6

Summary7

Collect inventory of resources on a node8

Format9

PMIx v3.0 C
pmix_status_t10
PMIx_server_collect_inventory(const pmix_info_t directives[],11

size_t ndirs,12
pmix_info_cbfunc_t cbfunc,13
void *cbdata);14

C

IN directives15
Array of pmix_info_t directing the request (array of handles)16

IN ndirs17
Number of elements in the directives array (size_t)18

IN cbfunc19
Callback function to return collected data (pmix_info_cbfunc_t function reference)20

IN cbdata21
Data to be passed to the callback function (memory reference)22

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant. In the event23
the function returns an error, the cbfunc will not be called.24

Description25

Provide a function by which the host environment can request its PMIx server library collect an26
inventory of local resources. Supported resources depends upon the PMIx implementation, but may27
include the local node topology and network interfaces.28

246 PMIx Standard – Version 3.0 – December 2018

Advice to PMIx server hosts

This is a non-blocking API as it may involve somewhat lengthy operations to obtain the requested1
information. Inventory collection is expected to be a rare event – at system startup and upon2
command from a system administrator. Inventory updates are expected to initiate a smaller3
operation involving only the changed information. For example, replacement of a node would4
generate an event to notify the scheduler with an inventory update without invoking a global5
inventory operation.6

11.1.13 PMIx_server_deliver_inventory7

Summary8

Pass collected inventory to the PMIx server library for storage9

Format10

PMIx v3.0 C
pmix_status_t11
PMIx_server_deliver_inventory(const pmix_info_t info[],12

size_t ninfo,13
const pmix_info_t directives[],14
size_t ndirs,15
pmix_op_cbfunc_t cbfunc,16
void *cbdata);17

C

IN info18
Array of pmix_info_t containing the inventory (array of handles)19

IN ninfo20
Number of elements in the info array (size_t)21

IN directives22
Array of pmix_info_t directing the request (array of handles)23

IN ndirs24
Number of elements in the directives array (size_t)25

IN cbfunc26
Callback function pmix_op_cbfunc_t (function reference)27

IN cbdata28
Data to be passed to the callback function (memory reference)29

Returns one of the following:30

CHAPTER 11. SERVER-SPECIFIC INTERFACES 247

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result1
will be returned in the provided cbfunc. Note that the library must not invoke the callback2
function prior to returning from the API.3

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and4
returned success - the cbfunc will not be called5

• a PMIx error constant indicating either an error in the input or that the request was immediately6
processed and failed - the cbfunc will not be called7

Description8

Provide a function by which the host environment can pass inventory information obtained from a9
node to the PMIx server library for storage. Inventory data is subsequently used by the PMIx server10
library for allocations in response to PMIx_server_setup_application , and may be11
available to the library’s host via the PMIx_Get API (depending upon PMIx implementation).12
The cbfunc callback function will be called once the PMIx server library no longer requires access13
to the provided data.14

11.2 Server Function Pointers15

PMIx utilizes a "function-shipping" approach to support for implementing the server-side of the16
protocol. This method allows RMs to implement the server without being burdened with PMIx17
internal details. When a request is received from the client, the corresponding server function will18
be called with the information.19

Any functions not supported by the RM can be indicated by a NULL for the function pointer. Client20
calls to such functions will return a PMIX_ERR_NOT_SUPPORTED status.21

The host RM will provide the function pointers in a pmix_server_module_t structure passed22
to PMIx_server_init . That module structure and associated function references are defined23
in this section.24

Advice to PMIx server hosts

For performance purposes, the host server is required to return as quickly as possible from all25
functions. Execution of the function is thus to be done asynchronously so as to allow the PMIx26
server support library to handle multiple client requests as quickly and scalably as possible.27

All data passed to the host server functions is “owned” by the PMIX server support library and28
MUST NOT be free’d. Data returned by the host server via callback function is owned by the host29
server, which is free to release it upon return from the callback30

248 PMIx Standard – Version 3.0 – December 2018

11.2.1 pmix_server_module_t Module1

Summary2

List of function pointers that a PMIx server passes to PMIx_server_init during startup.3

Format4

C
typedef struct pmix_server_module_3_0_0_t5

/* v1x interfaces */6
pmix_server_client_connected_fn_t client_connected;7
pmix_server_client_finalized_fn_t client_finalized;8
pmix_server_abort_fn_t abort;9
pmix_server_fencenb_fn_t fence_nb;10
pmix_server_dmodex_req_fn_t direct_modex;11
pmix_server_publish_fn_t publish;12
pmix_server_lookup_fn_t lookup;13
pmix_server_unpublish_fn_t unpublish;14
pmix_server_spawn_fn_t spawn;15
pmix_server_connect_fn_t connect;16
pmix_server_disconnect_fn_t disconnect;17
pmix_server_register_events_fn_t register_events;18
pmix_server_deregister_events_fn_t deregister_events;19
pmix_server_listener_fn_t listener;20
/* v2x interfaces */21
pmix_server_notify_event_fn_t notify_event;22
pmix_server_query_fn_t query;23
pmix_server_tool_connection_fn_t tool_connected;24
pmix_server_log_fn_t log;25
pmix_server_alloc_fn_t allocate;26
pmix_server_job_control_fn_t job_control;27
pmix_server_monitor_fn_t monitor;28
/* v3x interfaces */29
pmix_server_get_cred_fn_t get_credential;30
pmix_server_validate_cred_fn_t validate_credential;31
pmix_server_iof_fn_t iof_pull;32
pmix_server_stdin_fn_t push_stdin;33

pmix_server_module_t;34

C

CHAPTER 11. SERVER-SPECIFIC INTERFACES 249

11.2.2 pmix_server_client_connected_fn_t1

Summary2

Notify the host server that a client connected to this server.3

Format4

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_client_connected_fn_t)(5

const pmix_proc_t *proc,6
void* server_object,7
pmix_op_cbfunc_t cbfunc,8
void *cbdata)9

C

IN proc10
pmix_proc_t structure (handle)11

IN server_object12
object reference (memory reference)13

IN cbfunc14
Callback function pmix_op_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the host must not invoke the callback function20
prior to returning from the API.21

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and22
returned success - the cbfunc will not be called23

• a PMIx error constant indicating either an error in the input or that the request was immediately24
processed and failed - the cbfunc will not be called25

Description26

Notify the host environment that a client has called PMIx_Init . Note that the client will be in a27
blocked state until the host server executes the callback function, thus allowing the PMIx server28
support library to release the client. The server_object parameter will be the value of the29
server_object parameter passed to PMIx_server_register_client by the host server30
when registering the connecting client. If provided, an implementation of31
pmix_server_client_connected_fn_t is only required to call the callback function32

250 PMIx Standard – Version 3.0 – December 2018

designated. A host server can choose to not be notified when clients connect by setting1
pmix_server_client_connected_fn_t to NULL.2

It is possible that only a subset of the clients in a namespace call PMIx_Init . The server’s3
pmix_server_client_connected_fn_t implementation should not depend on being4
called once per rank in a namespace or delay calling the callback function until all ranks have5
connected. However, if a rank makes any PMIx calls, it must first call PMIx_Init and therefore6
the server’s pmix_server_client_connected_fn_t will be called before any other7
server functions specific to the rank.8

Advice to PMIx server hosts

This operation is an opportunity for a host environment to update the status of the ranks it manages.9
It is also a convenient and well defined time to perform initialization necessary to support further10
calls into the server related to that rank.11

11.2.3 pmix_server_client_finalized_fn_t12

Summary13

Notify the host environment that a client called PMIx_Finalize .14

Format15

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_client_finalized_fn_t)(16

const pmix_proc_t *proc,17
void* server_object,18
pmix_op_cbfunc_t cbfunc,19
void *cbdata)20

C

IN proc21
pmix_proc_t structure (handle)22

IN server_object23
object reference (memory reference)24

IN cbfunc25
Callback function pmix_op_cbfunc_t (function reference)26

IN cbdata27
Data to be passed to the callback function (memory reference)28

Returns one of the following:29

CHAPTER 11. SERVER-SPECIFIC INTERFACES 251

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result1
will be returned in the provided cbfunc. Note that the host must not invoke the callback function2
prior to returning from the API.3

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and4
returned success - the cbfunc will not be called5

• a PMIx error constant indicating either an error in the input or that the request was immediately6
processed and failed - the cbfunc will not be called7

Description8

Notify the host environment that a client called PMIx_Finalize . Note that the client will be in9
a blocked state until the host server executes the callback function, thus allowing the PMIx server10
support library to release the client. The server_object parameter will be the value of the11
server_object parameter passed to PMIx_server_register_client by the host server12
when registering the connecting client. If provided, an implementation of13
pmix_server_client_finalized_fn_t is only required to call the callback function14
designated. A host server can choose to not be notified when clients finalize by setting15
pmix_server_client_finalized_fn_t to NULL.16

Note that the host server is only being informed that the client has called PMIx_Finalize . The17
client might not have exited. If a client exits without calling PMIx_Finalize , the server support18
library will not call the pmix_server_client_finalized_fn_t implementation.19

Advice to PMIx server hosts

This operation is an opportunity for a host server to update the status of the tasks it manages. It is20
also a convenient and well defined time to release resources used to support that client.21

11.2.4 pmix_server_abort_fn_t22

Summary23

Notify the host environment that a local client called PMIx_Abort .24

252 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_abort_fn_t)(2

const pmix_proc_t *proc,3
void *server_object,4
int status,5
const char msg[],6
pmix_proc_t procs[],7
size_t nprocs,8
pmix_op_cbfunc_t cbfunc,9
void *cbdata)10

C

IN proc11
pmix_proc_t structure identifying the process requesting the abort (handle)12

IN server_object13
object reference (memory reference)14

IN status15
exit status (integer)16

IN msg17
exit status message (string)18

IN procs19
Array of pmix_proc_t structures identifying the processes to be terminated (array of20
handles)21

IN nprocs22
Number of elements in the procs array (integer)23

IN cbfunc24
Callback function pmix_op_cbfunc_t (function reference)25

IN cbdata26
Data to be passed to the callback function (memory reference)27

Returns one of the following:28

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result29
will be returned in the provided cbfunc. Note that the host must not invoke the callback function30
prior to returning from the API.31

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and32
returned success - the cbfunc will not be called33

• a PMIx error constant indicating either an error in the input or that the request was immediately34
processed and failed - the cbfunc will not be called35

CHAPTER 11. SERVER-SPECIFIC INTERFACES 253

Description1

A local client called PMIx_Abort . Note that the client will be in a blocked state until the host2
server executes the callback function, thus allowing the PMIx server library to release the client.3
The array of procs indicates which processes are to be terminated. A NULL indicates that all4
processes in the client’s namespace are to be terminated.5

11.2.5 pmix_server_fencenb_fn_t6

Summary7

At least one client called either PMIx_Fence or PMIx_Fence_nb .8

Format9

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_fencenb_fn_t)(10

const pmix_proc_t procs[],11
size_t nprocs,12
const pmix_info_t info[],13
size_t ninfo,14
char *data, size_t ndata,15
pmix_modex_cbfunc_t cbfunc,16
void *cbdata)17

C

IN procs18
Array of pmix_proc_t structures identifying operation participants(array of handles)19

IN nprocs20
Number of elements in the procs array (integer)21

IN info22
Array of info structures (array of handles)23

IN ninfo24
Number of elements in the info array (integer)25

IN data26
(string)27

IN ndata28
(integer)29

IN cbfunc30
Callback function pmix_modex_cbfunc_t (function reference)31

IN cbdata32
Data to be passed to the callback function (memory reference)33

Returns one of the following:34

254 PMIx Standard – Version 3.0 – December 2018

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result1
will be returned in the provided cbfunc. Note that the host must not invoke the callback function2
prior to returning from the API.3

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and4
returned success - the cbfunc will not be called5

• a PMIx error constant indicating either an error in the input or that the request was immediately6
processed and failed - the cbfunc will not be called7

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.8

The following attributes are required to be supported by all host environments:9

PMIX_COLLECT_DATA "pmix.collect" (bool)10
Collect data and return it at the end of the operation.11

Optional Attributes

The following attributes are optional for host environments:12

PMIX_TIMEOUT "pmix.timeout" (int)13
Time in seconds before the specified operation should time out (0 indicating infinite) in14
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent15
the target process from ever exposing its data.16

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)17
Comma-delimited list of algorithms to use for the collective operation. PMIx does not18
impose any requirements on a host environment’s collective algorithms. Thus, the19
acceptable values for this attribute will be environment-dependent - users are encouraged to20
check their host environment for supported values.21

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)22
If true, indicates that the requested choice of algorithm is mandatory.23

Advice to PMIx server hosts

Host environment are required to return PMIX_ERR_NOT_SUPPORTED if passed an attributed24
marked as PMIX_INFO_REQD that they do not support, even if support for that attribute is25
optional.26

CHAPTER 11. SERVER-SPECIFIC INTERFACES 255

Description1

All local clients in the provided array of procs called either PMIx_Fence or PMIx_Fence_nb .2
In either case, the host server will be called via a non-blocking function to execute the specified3
operation once all participating local processes have contributed. All processes in the specified4
procs array are required to participate in the PMIx_Fence / PMIx_Fence_nb operation. The5
callback is to be executed once every daemon hosting at least one participant has called the host6
server’s pmix_server_fencenb_fn_t function.7

Advice to PMIx library implementers

The PMIx server library is required to aggregate participation by local clients, passing the request8
to the host environment once all local participants have executed the API.9

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to10
identify the nodes containing participating processes, execute the collective across all participating11
nodes, and notify the local PMIx server library upon completion of the global collective.12

The provided data is to be collectively shared with all PMIx servers involved in the fence operation,13
and returned in the modex cbfunc. A NULL data value indicates that the local processes had no data14
to contribute.15

The array of info structs is used to pass user-requested options to the server. This can include16
directives as to the algorithm to be used to execute the fence operation. The directives are optional17
unless the PMIX_INFO_REQD flag has been set - in such cases, the host RM is required to return18
an error if the directive cannot be met.19

11.2.6 pmix_server_dmodex_req_fn_t20

Summary21

Used by the PMIx server to request its local host contact the PMIx server on the remote node that22
hosts the specified proc to obtain and return a direct modex blob for that proc.23

256 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_dmodex_req_fn_t)(2

const pmix_proc_t *proc,3
const pmix_info_t info[],4
size_t ninfo,5
pmix_modex_cbfunc_t cbfunc,6
void *cbdata)7

C

IN proc8
pmix_proc_t structure identifying the process whose data is being requested (handle)9

IN info10
Array of info structures (array of handles)11

IN ninfo12
Number of elements in the info array (integer)13

IN cbfunc14
Callback function pmix_modex_cbfunc_t (function reference)15

IN cbdata16
Data to be passed to the callback function (memory reference)17

Returns one of the following:18

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result19
will be returned in the provided cbfunc. Note that the host must not invoke the callback function20
prior to returning from the API.21

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and22
returned success - the cbfunc will not be called23

• a PMIx error constant indicating either an error in the input or that the request was immediately24
processed and failed - the cbfunc will not be called25

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.26

Optional Attributes

The following attributes are optional for host environments that support this operation:27

PMIX_TIMEOUT "pmix.timeout" (int)28
Time in seconds before the specified operation should time out (0 indicating infinite) in29
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent30
the target process from ever exposing its data.31

CHAPTER 11. SERVER-SPECIFIC INTERFACES 257

Description1

Used by the PMIx server to request its local host contact the PMIx server on the remote node that2
hosts the specified proc to obtain and return any information that process posted via calls to3
PMIx_Put and PMIx_Commit .4

The array of info structs is used to pass user-requested options to the server. This can include a5
timeout to preclude an indefinite wait for data that may never become available. The directives are6
optional unless the mandatory flag has been set - in such cases, the host RM is required to return an7
error if the directive cannot be met.8

11.2.7 pmix_server_publish_fn_t9

Summary10

Publish data per the PMIx API specification.11

Format12

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_publish_fn_t)(13

const pmix_proc_t *proc,14
const pmix_info_t info[],15
size_t ninfo,16
pmix_op_cbfunc_t cbfunc,17
void *cbdata)18

C

IN proc19
pmix_proc_t structure of the process publishing the data (handle)20

IN info21
Array of info structures (array of handles)22

IN ninfo23
Number of elements in the info array (integer)24

IN cbfunc25
Callback function pmix_op_cbfunc_t (function reference)26

IN cbdata27
Data to be passed to the callback function (memory reference)28

Returns one of the following:29

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result30
will be returned in the provided cbfunc. Note that the host must not invoke the callback function31
prior to returning from the API.32

258 PMIx Standard – Version 3.0 – December 2018

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and1
returned success - the cbfunc will not be called2

• a PMIx error constant indicating either an error in the input or that the request was immediately3
processed and failed - the cbfunc will not be called4

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.5
In addition, the following attributes are required to be included in the passed info array:6

PMIX_USERID "pmix.euid" (uint32_t)7
Effective user id.8

PMIX_GRPID "pmix.egid" (uint32_t)9
Effective group id.10

Host environments that implement this entry point are required to support the following attributes:11

PMIX_RANGE "pmix.range" (pmix_data_range_t)12
Value for calls to publish/lookup/unpublish or for monitoring event notifications.13

PMIX_PERSISTENCE "pmix.persist" (pmix_persistence_t)14
Value for calls to PMIx_Publish .15

Optional Attributes

The following attributes are optional for host environments that support this operation:16

PMIX_TIMEOUT "pmix.timeout" (int)17
Time in seconds before the specified operation should time out (0 indicating infinite) in18
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent19
the target process from ever exposing its data.20

CHAPTER 11. SERVER-SPECIFIC INTERFACES 259

Description1

Publish data per the PMIx_Publish specification. The callback is to be executed upon2
completion of the operation. The default data range is left to the host environment, but expected to3
be PMIX_SESSION , and the default persistence PMIX_PERSIST_SESSION or their4
equivalent. These values can be specified by including the respective attributed in the info array.5

The persistence indicates how long the server should retain the data.6

Advice to PMIx server hosts

The host environment is not required to guarantee support for any specific range - i.e., the7
environment does not need to return an error if the data store doesn’t support a specified range so8
long as it is covered by some internally defined range. However, the server must return an error (a)9
if the key is duplicative within the storage range, and (b) if the server does not allow overwriting of10
published info by the original publisher - it is left to the discretion of the host environment to allow11
info-key-based flags to modify this behavior.12

The PMIX_USERID and PMIX_GRPID of the publishing process will be provided to support13
authorization-based access to published information and must be returned on any subsequent14
lookup request.15

11.2.8 pmix_server_lookup_fn_t16

Summary17

Lookup published data.18

Format19

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_lookup_fn_t)(20

const pmix_proc_t *proc,21
char **keys,22
const pmix_info_t info[],23
size_t ninfo,24
pmix_lookup_cbfunc_t cbfunc,25
void *cbdata)26

260 PMIx Standard – Version 3.0 – December 2018

C

IN proc1
pmix_proc_t structure of the process seeking the data (handle)2

IN keys3
(array of strings)4

IN info5
Array of info structures (array of handles)6

IN ninfo7
Number of elements in the info array (integer)8

IN cbfunc9
Callback function pmix_lookup_cbfunc_t (function reference)10

IN cbdata11
Data to be passed to the callback function (memory reference)12

Returns one of the following:13

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result14
will be returned in the provided cbfunc. Note that the host must not invoke the callback function15
prior to returning from the API.16

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and17
returned success - the cbfunc will not be called18

• a PMIx error constant indicating either an error in the input or that the request was immediately19
processed and failed - the cbfunc will not be called20

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.21
In addition, the following attributes are required to be included in the passed info array:22

PMIX_USERID "pmix.euid" (uint32_t)23
Effective user id.24

PMIX_GRPID "pmix.egid" (uint32_t)25
Effective group id.26

Host environments that implement this entry point are required to support the following attributes:27

PMIX_RANGE "pmix.range" (pmix_data_range_t)28
Value for calls to publish/lookup/unpublish or for monitoring event notifications.29

PMIX_WAIT "pmix.wait" (int)30
Caller requests that the PMIx server wait until at least the specified number of values are31
found (0 indicates all and is the default).32

CHAPTER 11. SERVER-SPECIFIC INTERFACES 261

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (0 indicating infinite) in3
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4
the target process from ever exposing its data.5

Description6

Lookup published data. The host server will be passed a NULL-terminated array of string keys7
identifying the data being requested.8

The array of info structs is used to pass user-requested options to the server. The default data range9
is left to the host environment, but expected to be PMIX_SESSION . This can include a wait flag to10
indicate that the server should wait for all data to become available before executing the callback11
function, or should immediately callback with whatever data is available. In addition, a timeout can12
be specified on the wait to preclude an indefinite wait for data that may never be published.13

Advice to PMIx server hosts

The PMIX_USERID and PMIX_GRPID of the requesting process will be provided to support14
authorization-based access to published information. The host environment is not required to15
guarantee support for any specific range - i.e., the environment does not need to return an error if16
the data store doesn’t support a specified range so long as it is covered by some internally defined17
range.18

11.2.9 pmix_server_unpublish_fn_t19

Summary20

Delete data from the data store.21

262 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_unpublish_fn_t)(2

const pmix_proc_t *proc,3
char **keys,4
const pmix_info_t info[],5
size_t ninfo,6
pmix_op_cbfunc_t cbfunc,7
void *cbdata)8

C

IN proc9
pmix_proc_t structure identifying the process making the request (handle)10

IN keys11
(array of strings)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• a PMIx error constant indicating either an error in the input or that the request was immediately27
processed and failed - the cbfunc will not be called28

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.29
In addition, the following attributes are required to be included in the passed info array:30

PMIX_USERID "pmix.euid" (uint32_t)31
Effective user id.32

PMIX_GRPID "pmix.egid" (uint32_t)33
Effective group id.34

CHAPTER 11. SERVER-SPECIFIC INTERFACES 263

Host environments that implement this entry point are required to support the following attributes:1

PMIX_RANGE "pmix.range" (pmix_data_range_t)2
Value for calls to publish/lookup/unpublish or for monitoring event notifications.3

Optional Attributes

The following attributes are optional for host environments that support this operation:4

PMIX_TIMEOUT "pmix.timeout" (int)5
Time in seconds before the specified operation should time out (0 indicating infinite) in6
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent7
the target process from ever exposing its data.8

Description9

Delete data from the data store. The host server will be passed a NULL-terminated array of string10
keys, plus potential directives such as the data range within which the keys should be deleted. The11
default data range is left to the host environment, but expected to be PMIX_SESSION . The12
callback is to be executed upon completion of the delete procedure.13

Advice to PMIx server hosts

The PMIX_USERID and PMIX_GRPID of the requesting process will be provided to support14
authorization-based access to published information. The host environment is not required to15
guarantee support for any specific range - i.e., the environment does not need to return an error if16
the data store doesn’t support a specified range so long as it is covered by some internally defined17
range.18

11.2.10 pmix_server_spawn_fn_t19

Summary20

Spawn a set of applications/processes as per the PMIx_Spawn API.21

264 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_spawn_fn_t)(2

const pmix_proc_t *proc,3
const pmix_info_t job_info[],4
size_t ninfo,5
const pmix_app_t apps[],6
size_t napps,7
pmix_spawn_cbfunc_t cbfunc,8
void *cbdata)9

C

IN proc10
pmix_proc_t structure of the process making the request (handle)11

IN job_info12
Array of info structures (array of handles)13

IN ninfo14
Number of elements in the jobinfo array (integer)15

IN apps16
Array of pmix_app_t structures (array of handles)17

IN napps18
Number of elements in the apps array (integer)19

IN cbfunc20
Callback function pmix_spawn_cbfunc_t (function reference)21

IN cbdata22
Data to be passed to the callback function (memory reference)23

Returns one of the following:24

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result25
will be returned in the provided cbfunc. Note that the host must not invoke the callback function26
prior to returning from the API.27

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and28
returned success - the cbfunc will not be called29

• a PMIx error constant indicating either an error in the input or that the request was immediately30
processed and failed - the cbfunc will not be called31

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.32
In addition, the following attributes are required to be included in the passed info array:33

PMIX_USERID "pmix.euid" (uint32_t)34
Effective user id.35

CHAPTER 11. SERVER-SPECIFIC INTERFACES 265

PMIX_GRPID "pmix.egid" (uint32_t)1
Effective group id.2

Host environments that provide this module entry point are required to pass the PMIX_SPAWNED3
and PMIX_PARENT_ID attributes to all PMIx servers launching new child processes so those4
values can be returned to clients upon connection to the PMIx server. In addition, they are required5
to support the following attributes when present in either the job_info or the info array of an6
element of the apps array:7

PMIX_WDIR "pmix.wdir" (char*)8
Working directory for spawned processes.9

PMIX_SET_SESSION_CWD "pmix.ssncwd" (bool)10
Set the application’s current working directory to the session working directory assigned by11
the RM - when accessed using PMIx_Get , use the PMIX_RANK_WILDCARD value for12
the rank to discover the session working directory assigned to the provided namespace13

PMIX_PREFIX "pmix.prefix" (char*)14
Prefix to use for starting spawned processes.15

PMIX_HOST "pmix.host" (char*)16
Comma-delimited list of hosts to use for spawned processes.17

PMIX_HOSTFILE "pmix.hostfile" (char*)18
Hostfile to use for spawned processes.19

Optional Attributes

The following attributes are optional for host environments that support this operation:20

PMIX_ADD_HOSTFILE "pmix.addhostfile" (char*)21
Hostfile listing hosts to add to existing allocation.22

PMIX_ADD_HOST "pmix.addhost" (char*)23
Comma-delimited list of hosts to add to the allocation.24

PMIX_PRELOAD_BIN "pmix.preloadbin" (bool)25
Preload binaries onto nodes.26

PMIX_PRELOAD_FILES "pmix.preloadfiles" (char*)27
Comma-delimited list of files to pre-position on nodes.28

PMIX_PERSONALITY "pmix.pers" (char*)29
Name of personality to use.30

PMIX_MAPPER "pmix.mapper" (char*)31
Mapping mechanism to use for placing spawned processes - when accessed using32
PMIx_Get , use the PMIX_RANK_WILDCARD value for the rank to discover the mapping33
mechanism used for the provided namespace.34

266 PMIx Standard – Version 3.0 – December 2018

PMIX_DISPLAY_MAP "pmix.dispmap" (bool)1
Display process mapping upon spawn.2

PMIX_PPR "pmix.ppr" (char*)3
Number of processes to spawn on each identified resource.4

PMIX_MAPBY "pmix.mapby" (char*)5
Process mapping policy - when accessed using PMIx_Get , use the6
PMIX_RANK_WILDCARD value for the rank to discover the mapping policy used for the7
provided namespace8

PMIX_RANKBY "pmix.rankby" (char*)9
Process ranking policy - when accessed using PMIx_Get , use the10
PMIX_RANK_WILDCARD value for the rank to discover the ranking algorithm used for the11
provided namespace12

PMIX_BINDTO "pmix.bindto" (char*)13
Process binding policy - when accessed using PMIx_Get , use the14
PMIX_RANK_WILDCARD value for the rank to discover the binding policy used for the15
provided namespace16

PMIX_NON_PMI "pmix.nonpmi" (bool)17
Spawned processes will not call PMIx_Init .18

PMIX_STDIN_TGT "pmix.stdin" (uint32_t)19
Spawned process rank that is to receive stdin.20

PMIX_FWD_STDIN "pmix.fwd.stdin" (bool)21
Forward this process’s stdin to the designated process.22

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)23
Forward stdout from spawned processes to this process.24

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)25
Forward stderr from spawned processes to this process.26

PMIX_DEBUGGER_DAEMONS "pmix.debugger" (bool)27
Spawned application consists of debugger daemons.28

PMIX_TAG_OUTPUT "pmix.tagout" (bool)29
Tag application output with the identity of the source process.30

PMIX_TIMESTAMP_OUTPUT "pmix.tsout" (bool)31
Timestamp output from applications.32

PMIX_MERGE_STDERR_STDOUT "pmix.mergeerrout" (bool)33
Merge stdout and stderr streams from application processes.34

PMIX_OUTPUT_TO_FILE "pmix.outfile" (char*)35
Output application output to the specified file.36

CHAPTER 11. SERVER-SPECIFIC INTERFACES 267

PMIX_INDEX_ARGV "pmix.indxargv" (bool)1
Mark the argv with the rank of the process.2

PMIX_CPUS_PER_PROC "pmix.cpuperproc" (uint32_t)3
Number of cpus to assign to each rank - when accessed using PMIx_Get , use the4
PMIX_RANK_WILDCARD value for the rank to discover the cpus/process assigned to the5
provided namespace6

PMIX_NO_PROCS_ON_HEAD "pmix.nolocal" (bool)7
Do not place processes on the head node.8

PMIX_NO_OVERSUBSCRIBE "pmix.noover" (bool)9
Do not oversubscribe the cpus.10

PMIX_REPORT_BINDINGS "pmix.repbind" (bool)11
Report bindings of the individual processes.12

PMIX_CPU_LIST "pmix.cpulist" (char*)13
List of cpus to use for this job - when accessed using PMIx_Get , use the14
PMIX_RANK_WILDCARD value for the rank to discover the cpu list used for the provided15
namespace16

PMIX_JOB_RECOVERABLE "pmix.recover" (bool)17
Application supports recoverable operations.18

PMIX_JOB_CONTINUOUS "pmix.continuous" (bool)19
Application is continuous, all failed processes should be immediately restarted.20

PMIX_MAX_RESTARTS "pmix.maxrestarts" (uint32_t)21
Maximum number of times to restart a job - when accessed using PMIx_Get , use the22
PMIX_RANK_WILDCARD value for the rank to discover the max restarts for the provided23
namespace24

PMIX_TIMEOUT "pmix.timeout" (int)25
Time in seconds before the specified operation should time out (0 indicating infinite) in26
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent27
the target process from ever exposing its data.28

268 PMIx Standard – Version 3.0 – December 2018

Description1

Spawn a set of applications/processes as per the PMIx_Spawn API. Note that applications are not2
required to be MPI or any other programming model. Thus, the host server cannot make any3
assumptions as to their required support. The callback function is to be executed once all processes4
have been started. An error in starting any application or process in this request shall cause all5
applications and processes in the request to be terminated, and an error returned to the originating6
caller.7

Note that a timeout can be specified in the job_info array to indicate that failure to start the8
requested job within the given time should result in termination to avoid hangs.9

11.2.11 pmix_server_connect_fn_t10

Summary11

Record the specified processes as connected.12

Format13

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_connect_fn_t)(14

const pmix_proc_t procs[],15
size_t nprocs,16
const pmix_info_t info[],17
size_t ninfo,18
pmix_op_cbfunc_t cbfunc,19
void *cbdata)20

C

IN procs21
Array of pmix_proc_t structures identifying participants (array of handles)22

IN nprocs23
Number of elements in the procs array (integer)24

IN info25
Array of info structures (array of handles)26

IN ninfo27
Number of elements in the info array (integer)28

IN cbfunc29
Callback function pmix_op_cbfunc_t (function reference)30

IN cbdata31
Data to be passed to the callback function (memory reference)32

Returns one of the following:33

CHAPTER 11. SERVER-SPECIFIC INTERFACES 269

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result1
will be returned in the provided cbfunc. Note that the host must not invoke the callback function2
prior to returning from the API.3

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and4
returned success - the cbfunc will not be called5

• a PMIx error constant indicating either an error in the input or that the request was immediately6
processed and failed - the cbfunc will not be called7

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.8

Optional Attributes

The following attributes are optional for host environments that support this operation:9

PMIX_TIMEOUT "pmix.timeout" (int)10
Time in seconds before the specified operation should time out (0 indicating infinite) in11
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent12
the target process from ever exposing its data.13

PMIX_COLLECTIVE_ALGO "pmix.calgo" (char*)14
Comma-delimited list of algorithms to use for the collective operation. PMIx does not15
impose any requirements on a host environment’s collective algorithms. Thus, the16
acceptable values for this attribute will be environment-dependent - users are encouraged to17
check their host environment for supported values.18

PMIX_COLLECTIVE_ALGO_REQD "pmix.calreqd" (bool)19
If true, indicates that the requested choice of algorithm is mandatory.20

270 PMIx Standard – Version 3.0 – December 2018

Description1

Record the processes specified by the procs array as connected as per the PMIx definition. The2
callback is to be executed once every daemon hosting at least one participant has called the host3
server’s pmix_server_connect_fn_t function, and the host environment has completed any4
supporting operations required to meet the terms of the PMIx definition of connected processes.5

Advice to PMIx library implementers

The PMIx server library is required to aggregate participation by local clients, passing the request6
to the host environment once all local participants have executed the API.7

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to8
identify the nodes containing participating processes, execute the collective across all participating9
nodes, and notify the local PMIx server library upon completion of the global collective.10

11.2.12 pmix_server_disconnect_fn_t11

Summary12

Disconnect a previously connected set of processes.13

CHAPTER 11. SERVER-SPECIFIC INTERFACES 271

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_disconnect_fn_t)(2

const pmix_proc_t procs[],3
size_t nprocs,4
const pmix_info_t info[],5
size_t ninfo,6
pmix_op_cbfunc_t cbfunc,7
void *cbdata)8

C

IN procs9
Array of pmix_proc_t structures identifying participants (array of handles)10

IN nprocs11
Number of elements in the procs array (integer)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• a PMIx error constant indicating either an error in the input or that the request was immediately27
processed and failed - the cbfunc will not be called28

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.29

272 PMIx Standard – Version 3.0 – December 2018

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_TIMEOUT "pmix.timeout" (int)2
Time in seconds before the specified operation should time out (0 indicating infinite) in3
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent4
the target process from ever exposing its data.5

Description6

Disconnect a previously connected set of processes. The callback is to be executed once every7
daemon hosting at least one participant has called the host server’s has called the8
pmix_server_disconnect_fn_t function, and the host environment has completed any9
required supporting operations.10

Advice to PMIx library implementers

The PMIx server library is required to aggregate participation by local clients, passing the request11
to the host environment once all local participants have executed the API.12

Advice to PMIx server hosts

The host will receive a single call for each collective operation. It is the responsibility of the host to13
identify the nodes containing participating processes, execute the collective across all participating14
nodes, and notify the local PMIx server library upon completion of the global collective.15

A PMIX_ERR_INVALID_OPERATION error must be returned if the specified set of procs was16
not previously connected via a call to the pmix_server_connect_fn_t function.17

11.2.13 pmix_server_register_events_fn_t18

Summary19

Register to receive notifications for the specified events.20

CHAPTER 11. SERVER-SPECIFIC INTERFACES 273

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_register_events_fn_t)(2

pmix_status_t *codes,3
size_t ncodes,4
const pmix_info_t info[],5
size_t ninfo,6
pmix_op_cbfunc_t cbfunc,7
void *cbdata)8

C

IN codes9
Array of pmix_status_t values (array of handles)10

IN ncodes11
Number of elements in the codes array (integer)12

IN info13
Array of info structures (array of handles)14

IN ninfo15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• a PMIx error constant indicating either an error in the input or that the request was immediately27
processed and failed - the cbfunc will not be called28

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.29
In addition, the following attributes are required to be included in the passed info array:30

PMIX_USERID "pmix.euid" (uint32_t)31
Effective user id.32

PMIX_GRPID "pmix.egid" (uint32_t)33
Effective group id.34

274 PMIx Standard – Version 3.0 – December 2018

Description1

Register to receive notifications for the specified status codes. The info array included in this API is2
reserved for possible future directives to further steer notification.3

Advice to PMIx library implementers

The PMIx server library must track all client registrations for subsequent notification. This module4
function shall only be called when:5

• the client has requested notification of an environmental code (i.e., a PMIx code in the range6
between PMIX_ERR_SYS_BASE and PMIX_ERR_SYS_OTHER , inclusive) or a code that lies7
outside the defined PMIx range of constants; and8

• the PMIx server library has not previously requested notification of that code - i.e., the host9
environment is to be contacted only once a given unique code value10

Advice to PMIx server hosts

The host environment is required to pass to its PMIx server library all non-environmental events11
that directly relate to a registered namespace without the PMIx server library explicitly requesting12
them. Environmental events are to be translated to their nearest PMIx equivalent code as defined in13
the range between PMIX_ERR_SYS_BASE and PMIX_ERR_SYS_OTHER (inclusive).14

11.2.14 pmix_server_deregister_events_fn_t15

Summary16

Deregister to receive notifications for the specified events.17

CHAPTER 11. SERVER-SPECIFIC INTERFACES 275

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_deregister_events_fn_t)(2

pmix_status_t *codes,3
size_t ncodes,4
pmix_op_cbfunc_t cbfunc,5
void *cbdata)6

C

IN codes7
Array of pmix_status_t values (array of handles)8

IN ncodes9
Number of elements in the codes array (integer)10

IN cbfunc11
Callback function pmix_op_cbfunc_t (function reference)12

IN cbdata13
Data to be passed to the callback function (memory reference)14

Returns one of the following:15

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result16
will be returned in the provided cbfunc. Note that the host must not invoke the callback function17
prior to returning from the API.18

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and19
returned success - the cbfunc will not be called20

• a PMIx error constant indicating either an error in the input or that the request was immediately21
processed and failed - the cbfunc will not be called22

Description23

Deregister to receive notifications for the specified events to which the PMIx server has previously24
registered.25

Advice to PMIx library implementers

The PMIx server library must track all client registrations. This module function shall only be26
called when:27

• the library is deregistering environmental codes (i.e., a PMIx codes in the range between28
PMIX_ERR_SYS_BASE and PMIX_ERR_SYS_OTHER , inclusive) or codes that lies outside29
the defined PMIx range of constants; and30

• no client (including the server library itself) remains registered for notifications on any included31
code - i.e., a code should be included in this call only when no registered notifications against it32
remain.33

276 PMIx Standard – Version 3.0 – December 2018

11.2.15 pmix_server_notify_event_fn_t1

Summary2

Notify the specified processes of an event.3

Format4

PMIx v2.0 C
typedef pmix_status_t (*pmix_server_notify_event_fn_t)(pmix_status_t code,5

const pmix_proc_t *source,6
pmix_data_range_t range,7
pmix_info_t info[],8
size_t ninfo,9
pmix_op_cbfunc_t cbfunc,10
void *cbdata);11

C

IN code12
The pmix_status_t event code being referenced structure (handle)13

IN source14
pmix_proc_t of process that generated the event (handle)15

IN range16
pmix_data_range_t range over which the event is to be distributed (handle)17

IN info18
Optional array of pmix_info_t structures containing additional information on the event19
(array of handles)20

IN ninfo21
Number of elements in the info array (integer)22

IN cbfunc23
Callback function pmix_op_cbfunc_t (function reference)24

IN cbdata25
Data to be passed to the callback function (memory reference)26

Returns one of the following:27

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result28
will be returned in the provided cbfunc. Note that the host must not invoke the callback function29
prior to returning from the API.30

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and31
returned success - the cbfunc will not be called32

CHAPTER 11. SERVER-SPECIFIC INTERFACES 277

• a PMIx error constant indicating either an error in the input or that the request was immediately1
processed and failed - the cbfunc will not be called2

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.3

Host environments that provide this module entry point are required to support the following4
attributes:5

PMIX_RANGE "pmix.range" (pmix_data_range_t)6
Value for calls to publish/lookup/unpublish or for monitoring event notifications.7

Description8

Notify the specified processes (described through a combination of range and attributes provided in9
the info array) of an event generated either by the PMIx server itself or by one of its local clients.10
The process generating the event is provided in the source parameter, and any further descriptive11
information is included in the info array.12

Advice to PMIx server hosts

The callback function is to be executed once the host environment no longer requires that the PMIx13
server library maintain the provided data structures. It does not necessarily indicate that the event14
has been delivered to any process, nor that the event has been distributed for delivery15

11.2.16 pmix_server_listener_fn_t16

Summary17

Register a socket the host server can monitor for connection requests.18

278 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v1.0 C
typedef pmix_status_t (*pmix_server_listener_fn_t)(2

int listening_sd,3
pmix_connection_cbfunc_t cbfunc,4
void *cbdata)5

C

IN incoming_sd6
(integer)7

IN cbfunc8
Callback function pmix_connection_cbfunc_t (function reference)9

IN cbdata10
(memory reference)11

Returns PMIX_SUCCESS indicating that the request is accepted, or a negative value12
corresponding to a PMIx error constant indicating that the request has been rejected.13

Description14

Register a socket the host environment can monitor for connection requests, harvest them, and then15
call the PMIx server library’s internal callback function for further processing. A listener thread is16
essential to efficiently harvesting connection requests from large numbers of local clients such as17
occur when running on large SMPs. The host server listener is required to call accept on the18
incoming connection request, and then pass the resulting socket to the provided cbfunc. A NULL19
for this function will cause the internal PMIx server to spawn its own listener thread.20

11.2.17 pmix_server_query_fn_t21

Summary22

Query information from the resource manager.23

Format24

PMIx v2.0 C
typedef pmix_status_t (*pmix_server_query_fn_t)(25

pmix_proc_t *proct,26
pmix_query_t *queries, size_t nqueries,27
pmix_info_cbfunc_t cbfunc,28
void *cbdata)29

CHAPTER 11. SERVER-SPECIFIC INTERFACES 279

C

IN proct1
pmix_proc_t structure of the requesting process (handle)2

IN queries3
Array of pmix_query_t structures (array of handles)4

IN nqueries5
Number of elements in the queries array (integer)6

IN cbfunc7
Callback function pmix_info_cbfunc_t (function reference)8

IN cbdata9
Data to be passed to the callback function (memory reference)10

Returns one of the following:11

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result12
will be returned in the provided cbfunc. Note that the host must not invoke the callback function13
prior to returning from the API.14

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and15
returned success - the cbfunc will not be called16

• a PMIx error constant indicating either an error in the input or that the request was immediately17
processed and failed - the cbfunc will not be called18

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.19
In addition, the following attributes are required to be included in the passed info array:20

PMIX_USERID "pmix.euid" (uint32_t)21
Effective user id.22

PMIX_GRPID "pmix.egid" (uint32_t)23
Effective group id.24

Optional Attributes

The following attributes are optional for host environments that support this operation:25

PMIX_QUERY_NAMESPACES "pmix.qry.ns" (char*)26
Request a comma-delimited list of active namespaces.27

PMIX_QUERY_JOB_STATUS "pmix.qry.jst" (pmix_status_t)28
Status of a specified, currently executing job.29

PMIX_QUERY_QUEUE_LIST "pmix.qry.qlst" (char*)30
Request a comma-delimited list of scheduler queues.31

PMIX_QUERY_QUEUE_STATUS "pmix.qry.qst" (TBD)32

280 PMIx Standard – Version 3.0 – December 2018

Status of a specified scheduler queue.1

PMIX_QUERY_PROC_TABLE "pmix.qry.ptable" (char*)2
Input namespace of the job whose information is being requested returns (3
pmix_data_array_t) an array of pmix_proc_info_t .4

PMIX_QUERY_LOCAL_PROC_TABLE "pmix.qry.lptable" (char*)5
Input namespace of the job whose information is being requested returns (6
pmix_data_array_t) an array of pmix_proc_info_t for processes in job on same7
node.8

PMIX_QUERY_SPAWN_SUPPORT "pmix.qry.spawn" (bool)9
Return a comma-delimited list of supported spawn attributes.10

PMIX_QUERY_DEBUG_SUPPORT "pmix.qry.debug" (bool)11
Return a comma-delimited list of supported debug attributes.12

PMIX_QUERY_MEMORY_USAGE "pmix.qry.mem" (bool)13
Return information on memory usage for the processes indicated in the qualifiers.14

PMIX_QUERY_LOCAL_ONLY "pmix.qry.local" (bool)15
Constrain the query to local information only.16

PMIX_QUERY_REPORT_AVG "pmix.qry.avg" (bool)17
Report only average values for sampled information.18

PMIX_QUERY_REPORT_MINMAX "pmix.qry.minmax" (bool)19
Report minimum and maximum values.20

PMIX_QUERY_ALLOC_STATUS "pmix.query.alloc" (char*)21
String identifier of the allocation whose status is being requested.22

PMIX_TIME_REMAINING "pmix.time.remaining" (char*)23
Query number of seconds (uint32_t) remaining in allocation for the specified namespace.24

25

Description26

Query information from the host environment. The query will include the namespace/rank of the27
process that is requesting the info, an array of pmix_query_t describing the request, and a28
callback function/data for the return.29

Advice to PMIx library implementers

The PMIx server library should not block in this function as the host environment may, depending30
upon the information being requested, require significant time to respond.31

CHAPTER 11. SERVER-SPECIFIC INTERFACES 281

11.2.18 pmix_server_tool_connection_fn_t1

Summary2

Register that a tool has connected to the server.3

Format4

PMIx v2.0 C
typedef void (*pmix_server_tool_connection_fn_t)(5

pmix_info_t info[], size_t ninfo,6
pmix_tool_connection_cbfunc_t cbfunc,7
void *cbdata)8

C

IN info9
Array of pmix_info_t structures (array of handles)10

IN ninfo11
Number of elements in the info array (integer)12

IN cbfunc13
Callback function pmix_tool_connection_cbfunc_t (function reference)14

IN cbdata15
Data to be passed to the callback function (memory reference)16

Required Attributes

PMIx libraries are required to pass the following attributes in the info array:17

PMIX_USERID "pmix.euid" (uint32_t)18
Effective user id.19

PMIX_GRPID "pmix.egid" (uint32_t)20
Effective group id.21

Optional Attributes

The following attributes are optional for host environments that support this operation:22

PMIX_FWD_STDOUT "pmix.fwd.stdout" (bool)23
Forward stdout from spawned processes to this process.24

PMIX_FWD_STDERR "pmix.fwd.stderr" (bool)25
Forward stderr from spawned processes to this process.26

PMIX_FWD_STDIN "pmix.fwd.stdin" (bool)27
Forward this process’s stdin to the designated process.28

282 PMIx Standard – Version 3.0 – December 2018

Description1

Register that a tool has connected to the server, and request that the tool be assigned a2
namespace/rank identifier for further interactions. The pmix_info_t array is used to pass3
qualifiers for the connection request, including the effective uid and gid of the calling tool for4
authentication purposes.5

Advice to PMIx server hosts

The host environment is solely responsible for authenticating and authorizing the connection, and6
for authorizing all subsequent tool requests. The host must not execute the callback function prior7
to returning from the API.8

11.2.19 pmix_server_log_fn_t9

Summary10

Log data on behalf of a client.11

Format12

PMIx v2.0 C
typedef void (*pmix_server_log_fn_t)(13

const pmix_proc_t *client,14
const pmix_info_t data[], size_t ndata,15
const pmix_info_t directives[], size_t ndirs,16
pmix_op_cbfunc_t cbfunc, void *cbdata)17

C

IN client18
pmix_proc_t structure (handle)19

IN data20
Array of info structures (array of handles)21

IN ndata22
Number of elements in the data array (integer)23

IN directives24
Array of info structures (array of handles)25

IN ndirs26
Number of elements in the directives array (integer)27

IN cbfunc28
Callback function pmix_op_cbfunc_t (function reference)29

IN cbdata30
Data to be passed to the callback function (memory reference)31

CHAPTER 11. SERVER-SPECIFIC INTERFACES 283

Required Attributes

PMIx libraries are required to pass any provided attributes to the host environment for processing.1
In addition, the following attributes are required to be included in the passed info array:2

PMIX_USERID "pmix.euid" (uint32_t)3
Effective user id.4

PMIX_GRPID "pmix.egid" (uint32_t)5
Effective group id.6

Host environments that provide this module entry point are required to support the following7
attributes:8

PMIX_LOG_STDERR "pmix.log.stderr" (char*)9
Log string to stderr.10

PMIX_LOG_STDOUT "pmix.log.stdout" (char*)11
Log string to stdout.12

PMIX_LOG_SYSLOG "pmix.log.syslog" (char*)13
Log data to syslog. Defaults to ERROR priority. Will log to global syslog if available,14
otherwise to local syslog15

Optional Attributes

The following attributes are optional for host environments that support this operation:16

PMIX_LOG_MSG "pmix.log.msg" (pmix_byte_object_t)17
Message blob to be sent somewhere.18

PMIX_LOG_EMAIL "pmix.log.email" (pmix_data_array_t)19
Log via email based on pmix_info_t containing directives.20

PMIX_LOG_EMAIL_ADDR "pmix.log.emaddr" (char*)21
Comma-delimited list of email addresses that are to receive the message.22

PMIX_LOG_EMAIL_SUBJECT "pmix.log.emsub" (char*)23
Subject line for email.24

PMIX_LOG_EMAIL_MSG "pmix.log.emmsg" (char*)25
Message to be included in email.26

Description27

Log data on behalf of a client. This function is not intended for output of computational results, but28
rather for reporting status and error messages. The host must not execute the callback function prior29
to returning from the API.30

284 PMIx Standard – Version 3.0 – December 2018

11.2.20 pmix_server_alloc_fn_t1

Summary2

Request allocation operations on behalf of a client.3

Format4

PMIx v2.0 C
typedef pmix_status_t (*pmix_server_alloc_fn_t)(5

const pmix_proc_t *client,6
pmix_alloc_directive_t directive,7
const pmix_info_t data[], size_t ndata,8
pmix_info_cbfunc_t cbfunc, void *cbdata)9

C

IN client10
pmix_proc_t structure of process making request (handle)11

IN directive12
Specific action being requested (pmix_alloc_directive_t)13

IN data14
Array of info structures (array of handles)15

IN ndata16
Number of elements in the data array (integer)17

IN cbfunc18
Callback function pmix_info_cbfunc_t (function reference)19

IN cbdata20
Data to be passed to the callback function (memory reference)21

Returns one of the following:22

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result23
will be returned in the provided cbfunc. Note that the host must not invoke the callback function24
prior to returning from the API.25

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and26
returned success - the cbfunc will not be called27

• a PMIx error constant indicating either an error in the input or that the request was immediately28
processed and failed - the cbfunc will not be called29

CHAPTER 11. SERVER-SPECIFIC INTERFACES 285

Required Attributes

PMIX_USERID "pmix.euid" (uint32_t)1
Effective user id.2

PMIX_GRPID "pmix.egid" (uint32_t)3
Effective group id.4

Host environments that provide this module entry point are required to support the following5
attributes:6

PMIX_ALLOC_ID "pmix.alloc.id" (char*)7
Provide a string identifier for this allocation request which can later be used to query status8
of the request.9

PMIX_ALLOC_NUM_NODES "pmix.alloc.nnodes" (uint64_t)10
The number of nodes.11

PMIX_ALLOC_NUM_CPUS "pmix.alloc.ncpus" (uint64_t)12
Number of cpus.13

PMIX_ALLOC_TIME "pmix.alloc.time" (uint32_t)14
Time in seconds.15

Optional Attributes

The following attributes are optional for host environments that support this operation:16

PMIX_ALLOC_NODE_LIST "pmix.alloc.nlist" (char*)17
Regular expression of the specific nodes.18

PMIX_ALLOC_NUM_CPU_LIST "pmix.alloc.ncpulist" (char*)19
Regular expression of the number of cpus for each node.20

PMIX_ALLOC_CPU_LIST "pmix.alloc.cpulist" (char*)21
Regular expression of the specific cpus indicating the cpus involved.22

PMIX_ALLOC_MEM_SIZE "pmix.alloc.msize" (float)23
Number of Megabytes.24

PMIX_ALLOC_NETWORK "pmix.alloc.net" (array)25
Array of pmix_info_t describing requested network resources. This must include at26
least: PMIX_ALLOC_NETWORK_ID , PMIX_ALLOC_NETWORK_TYPE , and27
PMIX_ALLOC_NETWORK_ENDPTS , plus whatever other descriptors are desired.28

PMIX_ALLOC_NETWORK_ID "pmix.alloc.netid" (char*)29

286 PMIx Standard – Version 3.0 – December 2018

The key to be used when accessing this requested network allocation. The allocation will be1
returned/stored as a pmix_data_array_t of pmix_info_t indexed by this key and2
containing at least one entry with the same key and the allocated resource description. The3
type of the included value depends upon the network support. For example, a TCP allocation4
might consist of a comma-delimited string of socket ranges such as5
"32000-32100,33005,38123-38146". Additional entries will consist of any provided6
resource request directives, along with their assigned values. Examples include:7
PMIX_ALLOC_NETWORK_TYPE - the type of resources provided;8
PMIX_ALLOC_NETWORK_PLANE - if applicable, what plane the resources were assigned9
from; PMIX_ALLOC_NETWORK_QOS - the assigned QoS; PMIX_ALLOC_BANDWIDTH -10
the allocated bandwidth; PMIX_ALLOC_NETWORK_SEC_KEY - a security key for the11
requested network allocation. NOTE: the assigned values may differ from those requested,12
especially if PMIX_INFO_REQD was not set in the request.13

PMIX_ALLOC_BANDWIDTH "pmix.alloc.bw" (float)14
Mbits/sec.15

PMIX_ALLOC_NETWORK_QOS "pmix.alloc.netqos" (char*)16
Quality of service level.17

Description18

Request new allocation or modifications to an existing allocation on behalf of a client. Several19
broad categories are envisioned, including the ability to:20

• Request allocation of additional resources, including memory, bandwidth, and compute for an21
existing allocation. Any additional allocated resources will be considered as part of the current22
allocation, and thus will be released at the same time.23

• Request a new allocation of resources. Note that the new allocation will be disjoint from (i.e., not24
affiliated with) the allocation of the requestor - thus the termination of one allocation will not25
impact the other.26

• Extend the reservation on currently allocated resources, subject to scheduling availability and27
priorities.28

• Return no-longer-required resources to the scheduler. This includes the loan of resources back to29
the scheduler with a promise to return them upon subsequent request.30

The callback function provides a status to indicate whether or not the request was granted, and to31
provide some information as to the reason for any denial in the pmix_info_cbfunc_t array of32
pmix_info_t structures.33

11.2.21 pmix_server_job_control_fn_t34

Summary35

Execute a job control action on behalf of a client.36

CHAPTER 11. SERVER-SPECIFIC INTERFACES 287

Format1

PMIx v2.0 C
typedef pmix_status_t (*pmix_server_job_control_fn_t)(2

const pmix_proc_t *requestor,3
const pmix_proc_t targets[], size_t ntargets,4
const pmix_info_t directives[], size_t ndirs,5
pmix_info_cbfunc_t cbfunc, void *cbdata)6

C

IN requestor7
pmix_proc_t structure of requesting process (handle)8

IN targets9
Array of proc structures (array of handles)10

IN ntargets11
Number of elements in the targets array (integer)12

IN directives13
Array of info structures (array of handles)14

IN ndirs15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the host must not invoke the callback function23
prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• a PMIx error constant indicating either an error in the input or that the request was immediately27
processed and failed - the cbfunc will not be called28

Required Attributes

PMIx libraries are required to pass any attributes provided by the client to the host environment for29
processing. In addition, the following attributes are required to be included in the passed info array:30

PMIX_USERID "pmix.euid" (uint32_t)31
Effective user id.32

PMIX_GRPID "pmix.egid" (uint32_t)33
Effective group id.34

288 PMIx Standard – Version 3.0 – December 2018

Host environments that provide this module entry point are required to support the following1
attributes:2

PMIX_JOB_CTRL_ID "pmix.jctrl.id" (char*)3
Provide a string identifier for this request.4

PMIX_JOB_CTRL_PAUSE "pmix.jctrl.pause" (bool)5
Pause the specified processes.6

PMIX_JOB_CTRL_RESUME "pmix.jctrl.resume" (bool)7
Resume (“un-pause”) the specified processes.8

PMIX_JOB_CTRL_KILL "pmix.jctrl.kill" (bool)9
Forcibly terminate the specified processes and cleanup.10

PMIX_JOB_CTRL_SIGNAL "pmix.jctrl.sig" (int)11
Send given signal to specified processes.12

PMIX_JOB_CTRL_TERMINATE "pmix.jctrl.term" (bool)13
Politely terminate the specified processes.14

Optional Attributes

The following attributes are optional for host environments that support this operation:15

PMIX_JOB_CTRL_CANCEL "pmix.jctrl.cancel" (char*)16
Cancel the specified request (NULL implies cancel all requests from this requestor).17

PMIX_JOB_CTRL_RESTART "pmix.jctrl.restart" (char*)18
Restart the specified processes using the given checkpoint ID.19

PMIX_JOB_CTRL_CHECKPOINT "pmix.jctrl.ckpt" (char*)20
Checkpoint the specified processes and assign the given ID to it.21

PMIX_JOB_CTRL_CHECKPOINT_EVENT "pmix.jctrl.ckptev" (bool)22
Use event notification to trigger a process checkpoint.23

PMIX_JOB_CTRL_CHECKPOINT_SIGNAL "pmix.jctrl.ckptsig" (int)24
Use the given signal to trigger a process checkpoint.25

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT "pmix.jctrl.ckptsig" (int)26
Time in seconds to wait for a checkpoint to complete.27

PMIX_JOB_CTRL_CHECKPOINT_METHOD28
"pmix.jctrl.ckmethod" (pmix_data_array_t)29

Array of pmix_info_t declaring each method and value supported by this application.30

PMIX_JOB_CTRL_PROVISION "pmix.jctrl.pvn" (char*)31
Regular expression identifying nodes that are to be provisioned.32

PMIX_JOB_CTRL_PROVISION_IMAGE "pmix.jctrl.pvnimg" (char*)33

CHAPTER 11. SERVER-SPECIFIC INTERFACES 289

Name of the image that is to be provisioned.1

PMIX_JOB_CTRL_PREEMPTIBLE "pmix.jctrl.preempt" (bool)2
Indicate that the job can be pre-empted.3

Description4

Execute a job control action on behalf of a client. The targets array identifies the processes to5
which the requested job control action is to be applied. A NULL value can be used to indicate all6
processes in the caller’s namespace. The use of PMIX_RANK_WILDARD can also be used to7
indicate that all processes in the given namespace are to be included.8

The directives are provided as pmix_info_t structures in the directives array. The callback9
function provides a status to indicate whether or not the request was granted, and to provide some10
information as to the reason for any denial in the pmix_info_cbfunc_t array of11
pmix_info_t structures.12

11.2.22 pmix_server_monitor_fn_t13

Summary14

Request that a client be monitored for activity.15

Format16

PMIx v2.0 C
typedef pmix_status_t (*pmix_server_monitor_fn_t)(17

const pmix_proc_t *requestor,18
const pmix_info_t *monitor, pmix_status_t error,19
const pmix_info_t directives[], size_t ndirs,20
pmix_info_cbfunc_t cbfunc, void *cbdata);21

C

IN requestor22
pmix_proc_t structure of requesting process (handle)23

IN monitor24
pmix_info_t identifying the type of monitor being requested (handle)25

IN error26
Status code to use in generating event if alarm triggers (integer)27

IN directives28
Array of info structures (array of handles)29

290 PMIx Standard – Version 3.0 – December 2018

IN ndirs1
Number of elements in the info array (integer)2

IN cbfunc3
Callback function pmix_op_cbfunc_t (function reference)4

IN cbdata5
Data to be passed to the callback function (memory reference)6

Returns one of the following:7

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result8
will be returned in the provided cbfunc. Note that the host must not invoke the callback function9
prior to returning from the API.10

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and11
returned success - the cbfunc will not be called12

• a PMIx error constant indicating either an error in the input or that the request was immediately13
processed and failed - the cbfunc will not be called14

This entry point is only called for monitoring requests that are not directly supported by the PMIx15
server library itself.16

Required Attributes

If supported by the PMIx server library, then the library must not pass any supported attributes to17
the host environment. Any attributes provided by the client that are not directly supported by the18
server library must be passed to the host environment if it provides this module entry. In addition,19
the following attributes are required to be included in the passed info array:20

PMIX_USERID "pmix.euid" (uint32_t)21
Effective user id.22

PMIX_GRPID "pmix.egid" (uint32_t)23
Effective group id.24

Host environments are not required to support any specific monitoring attributes.25

Optional Attributes

The following attributes may be implemented by a host environment.26

PMIX_MONITOR_ID "pmix.monitor.id" (char*)27
Provide a string identifier for this request.28

PMIX_MONITOR_CANCEL "pmix.monitor.cancel" (char*)29
Identifier to be canceled (NULL means cancel all monitoring for this process).30

PMIX_MONITOR_APP_CONTROL "pmix.monitor.appctrl" (bool)31
The application desires to control the response to a monitoring event.32

CHAPTER 11. SERVER-SPECIFIC INTERFACES 291

PMIX_MONITOR_HEARTBEAT "pmix.monitor.mbeat" (void)1
Register to have the PMIx server monitor the requestor for heartbeats.2

PMIX_MONITOR_HEARTBEAT_TIME "pmix.monitor.btime" (uint32_t)3
Time in seconds before declaring heartbeat missed.4

PMIX_MONITOR_HEARTBEAT_DROPS "pmix.monitor.bdrop" (uint32_t)5
Number of heartbeats that can be missed before generating the event.6

PMIX_MONITOR_FILE "pmix.monitor.fmon" (char*)7
Register to monitor file for signs of life.8

PMIX_MONITOR_FILE_SIZE "pmix.monitor.fsize" (bool)9
Monitor size of given file is growing to determine if the application is running.10

PMIX_MONITOR_FILE_ACCESS "pmix.monitor.faccess" (char*)11
Monitor time since last access of given file to determine if the application is running.12

PMIX_MONITOR_FILE_MODIFY "pmix.monitor.fmod" (char*)13
Monitor time since last modified of given file to determine if the application is running.14

PMIX_MONITOR_FILE_CHECK_TIME "pmix.monitor.ftime" (uint32_t)15
Time in seconds between checking the file.16

PMIX_MONITOR_FILE_DROPS "pmix.monitor.fdrop" (uint32_t)17
Number of file checks that can be missed before generating the event.18

Description19

Request that a client be monitored for activity.20

Advice to PMIx server hosts

If this module entry is provided and called by the PMIx server library, then the host environment21
must either provide the requested services or return PMIX_ERR_NOT_SUPPORTED to the22
provided cbfunc.23

11.2.23 pmix_server_get_cred_fn_t24

Summary25

Request a credential from the host environment26

292 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v3.0 C
typedef pmix_status_t (*pmix_server_get_cred_fn_t)(2

const pmix_proc_t *proc,3
const pmix_info_t directives[],4
size_t ndirs,5
pmix_credential_cbfunc_t cbfunc,6
void *cbdata);7

C

IN proc8
pmix_proc_t structure of requesting process (handle)9

IN directives10
Array of info structures (array of handles)11

IN ndirs12
Number of elements in the info array (integer)13

IN cbfunc14
Callback function to return the credential (pmix_credential_cbfunc_t function15
reference)16

IN cbdata17
Data to be passed to the callback function (memory reference)18

Returns PMIX_SUCCESS or a negative value corresponding to a PMIx error constant. In the event19
the function returns an error, the cbfunc will not be called.20

Required Attributes

If the PMIx library does not itself provide the requested credential, then it is required to pass any21
attributes provided by the client to the host environment for processing. In addition, it must include22
the following attributes in the passed info array:23

PMIX_USERID "pmix.euid" (uint32_t)24
Effective user id.25

PMIX_GRPID "pmix.egid" (uint32_t)26
Effective group id.27

CHAPTER 11. SERVER-SPECIFIC INTERFACES 293

Optional Attributes

The following attributes are optional for host environments that support this operation:1

PMIX_CRED_TYPE "pmix.sec.ctype" (char*)2
When passed in PMIx_Get_credential , a prioritized, comma-delimited list of desired3
credential types for use in environments where multiple authentication mechanisms may be4
available. When returned in a callback function, a string identifier of the credential type.5

PMIX_TIMEOUT "pmix.timeout" (int)6
Time in seconds before the specified operation should time out (0 indicating infinite) in7
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent8
the target process from ever exposing its data.9

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host10
environment due to race condition considerations between completion of the operation versus11
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT12
directly in the PMIx server library must take care to resolve the race condition and should avoid13
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not14
created.15

Description16

Request a credential from the host environment17

Advice to PMIx server hosts

If this module entry is provided and called by the PMIx server library, then the host environment18
must either provide the requested credential in the callback function or immediately return an error19
to the caller.20

11.2.24 pmix_server_validate_cred_fn_t21

Summary22

Request validation of a credential23

294 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v3.0 C
typedef pmix_status_t (*pmix_server_validate_cred_fn_t)(2

const pmix_proc_t *proc,3
const pmix_byte_object_t *cred,4
const pmix_info_t directives[],5
size_t ndirs,6
pmix_validation_cbfunc_t cbfunc,7
void *cbdata);8

C

IN proc9
pmix_proc_t structure of requesting process (handle)10

IN cred11
Pointer to pmix_byte_object_t containing the credential (handle)12

IN directives13
Array of info structures (array of handles)14

IN ndirs15
Number of elements in the info array (integer)16

IN cbfunc17
Callback function to return the result (pmix_validation_cbfunc_t function18
reference)19

IN cbdata20
Data to be passed to the callback function (memory reference)21

Returns one of the following:22

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result23
will be returned in the provided cbfunc24

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• a PMIx error constant indicating either an error in the input or that the request was immediately27
processed and failed - the cbfunc will not be called28

Required Attributes

If the PMIx library does not itself validate the credential, then it is required to pass any attributes29
provided by the client to the host environment for processing. In addition, it must include the30
following attributes in the passed info array:31

PMIX_USERID "pmix.euid" (uint32_t)32
Effective user id.33

PMIX_GRPID "pmix.egid" (uint32_t)34
Effective group id.35

CHAPTER 11. SERVER-SPECIFIC INTERFACES 295

Host environments are not required to support any specific attributes.1

Optional Attributes

The following attributes are optional for host environments that support this operation:2

PMIX_TIMEOUT "pmix.timeout" (int)3
Time in seconds before the specified operation should time out (0 indicating infinite) in4
error. The timeout parameter can help avoid “hangs” due to programming errors that prevent5
the target process from ever exposing its data.6

Advice to PMIx library implementers

We recommend that implementation of the PMIX_TIMEOUT attribute be left to the host7
environment due to race condition considerations between completion of the operation versus8
internal timeout in the PMIx server library. Implementers that choose to support PMIX_TIMEOUT9
directly in the PMIx server library must take care to resolve the race condition and should avoid10
passing PMIX_TIMEOUT to the host environment so that multiple competing timeouts are not11
created.12

Description13

Request validation of a credential obtained from the host environment via a prior call to the14
pmix_server_get_cred_fn_t module entry.15

11.2.25 pmix_server_iof_fn_t16

Summary17

Request the specified IO channels be forwarded from the given array of processes.18

296 PMIx Standard – Version 3.0 – December 2018

Format1

PMIx v3.0 C
typedef pmix_status_t (*pmix_server_iof_fn_t)(2

const pmix_proc_t procs[], size_t nprocs,3
const pmix_info_t directives[], size_t ndirs,4
pmix_iof_channel_t channels,5
pmix_op_cbfunc_t cbfunc, void *cbdata);6

C

IN procs7
Array pmix_proc_t identifiers whose IO is being requested (handle)8

IN nprocs9
Number of elements in procs (size_t)10

IN directives11
Array of pmix_info_t structures further defining the request (array of handles)12

IN ndirs13
Number of elements in the info array (integer)14

IN channels15
Bitmask identifying the channels to be forwarded (pmix_iof_channel_t)16

IN cbfunc17
Callback function pmix_op_cbfunc_t (function reference)18

IN cbdata19
Data to be passed to the callback function (memory reference)20

Returns one of the following:21

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result22
will be returned in the provided cbfunc. Note that the library must not invoke the callback23
function prior to returning from the API.24

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and25
returned success - the cbfunc will not be called26

• a PMIx error constant indicating either an error in the input or that the request was immediately27
processed and failed - the cbfunc will not be called28

Required Attributes

The following attributes are required to be included in the passed info array:29

PMIX_USERID "pmix.euid" (uint32_t)30
Effective user id.31

PMIX_GRPID "pmix.egid" (uint32_t)32
Effective group id.33

CHAPTER 11. SERVER-SPECIFIC INTERFACES 297

Host environments that provide this module entry point are required to support the following1
attributes:2

PMIX_IOF_CACHE_SIZE "pmix.iof.csize" (uint32_t)3
The requested size of the server cache in bytes for each specified channel. By default, the4
server is allowed (but not required) to drop all bytes received beyond the max size.5

PMIX_IOF_DROP_OLDEST "pmix.iof.old" (bool)6
In an overflow situation, drop the oldest bytes to make room in the cache.7

PMIX_IOF_DROP_NEWEST "pmix.iof.new" (bool)8
In an overflow situation, drop any new bytes received until room becomes available in the9
cache (default).10

Optional Attributes

The following attributes may be supported by a host environment.11

PMIX_IOF_BUFFERING_SIZE "pmix.iof.bsize" (uint32_t)12
Controls grouping of IO on the specified channel(s) to avoid being called every time a bit of13
IO arrives. The library will execute the callback whenever the specified number of bytes14
becomes available. Any remaining buffered data will be “flushed” upon call to deregister the15
respective channel.16

PMIX_IOF_BUFFERING_TIME "pmix.iof.btime" (uint32_t)17
Max time in seconds to buffer IO before delivering it. Used in conjunction with buffering18
size, this prevents IO from being held indefinitely while waiting for another payload to19
arrive.20

Description21

Request the specified IO channels be forwarded from the given array of processes. An error shall be22
returned in the callback function if the requested service from any of the requested processes23
cannot be provided.24

Advice to PMIx library implementers

The forwarding of stdin is a push process - processes cannot request that it be pulled from some25
other source. Requests including the PMIX_FWD_STDIN_CHANNEL channel will return a26
PMIX_ERR_NOT_SUPPORTED error.27

298 PMIx Standard – Version 3.0 – December 2018

11.2.26 pmix_server_stdin_fn_t1

Summary2

Pass standard input data to the host environment for transmission to specified recipients.3

Format4

PMIx v3.0 C
typedef pmix_status_t (*pmix_server_stdin_fn_t)(5

const pmix_proc_t *source,6
const pmix_proc_t targets[],7
size_t ntargets,8
const pmix_info_t directives[],9
size_t ndirs,10
const pmix_byte_object_t *bo,11
pmix_op_cbfunc_t cbfunc, void *cbdata);12

C

IN source13
pmix_proc_t structure of source process (handle)14

IN targets15
Array of pmix_proc_t target identifiers (handle)16

IN ntargets17
Number of elements in the targets array (integer)18

IN directives19
Array of info structures (array of handles)20

IN ndirs21
Number of elements in the info array (integer)22

IN bo23
Pointer to pmix_byte_object_t containing the payload (handle)24

IN cbfunc25
Callback function pmix_op_cbfunc_t (function reference)26

IN cbdata27
Data to be passed to the callback function (memory reference)28

Returns one of the following:29

• PMIX_SUCCESS , indicating that the request is being processed by the host environment - result30
will be returned in the provided cbfunc. Note that the library must not invoke the callback31
function prior to returning from the API.32

• PMIX_OPERATION_SUCCEEDED , indicating that the request was immediately processed and33
returned success - the cbfunc will not be called34

CHAPTER 11. SERVER-SPECIFIC INTERFACES 299

• a PMIx error constant indicating either an error in the input or that the request was immediately1
processed and failed - the cbfunc will not be called2

Required Attributes

The following attributes are required to be included in the passed info array:3

PMIX_USERID "pmix.euid" (uint32_t)4
Effective user id.5

PMIX_GRPID "pmix.egid" (uint32_t)6
Effective group id.7

Description8

Passes stdin to the host environment for transmission to specified recipients. The host environment9
is responsible for forwarding the data to all locations that host the specified targets and delivering10
the payload to the PMIx server library connected to those clients.11

Advice to PMIx server hosts

If this module entry is provided and called by the PMIx server library, then the host environment12
must either provide the requested services or return PMIX_ERR_NOT_SUPPORTED to the13
provided cbfunc.14

300 PMIx Standard – Version 3.0 – December 2018

APPENDIX A

Acknowledgements

This document represents the work of many people who have contributed to the PMIx community.1
Without the hard work and dedication of these people this document would not have been possible.2
The sections below list some of the active participants and organizations in the various PMIx3
standard iterations.4

A.1 Version 3.05

The following list includes some of the active participants in the PMIx v3 standardization process.6

• Ralph H. Castain, Andrew Friedley, Brandon Yates7

• Joshua Hursey8

• Aurelien Bouteiller and George Bosilca9

• Dirk Schubert10

• Kevin Harms11

The following institutions supported this effort through time and travel support for the people listed12
above.13

• Intel Corporation14

• IBM, Inc.15

• University of Tennessee, Knoxville16

• The Exascale Computing Project, an initiative of the US Department of Energy17

• National Science Foundation18

• Argonne National Laboratory19

• Allinea (ARM)20

301

A.2 Version 2.01

The following list includes some of the active participants in the PMIx v2 standardization process.2

• Ralph H. Castain, Annapurna Dasari, Christopher A. Holguin, Andrew Friedley, Michael Klemm3
and Terry Wilmarth4

• Joshua Hursey, David Solt, Alexander Eichenberger, Geoff Paulsen, and Sameh Sharkawi5

• Aurelien Bouteiller and George Bosilca6

• Artem Polyakov, Igor Ivanov and Boris Karasev7

• Gilles Gouaillardet8

• Michael A Raymond and Jim Stoffel9

• Dirk Schubert10

• Moe Jette11

• Takahiro Kawashima and Shinji Sumimoto12

• Howard Pritchard13

• David Beer14

• Brice Goglin15

• Geoffroy Vallee, Swen Boehm, Thomas Naughton and David Bernholdt16

• Adam Moody and Martin Schulz17

• Ryan Grant and Stephen Olivier18

• Michael Karo19

The following institutions supported this effort through time and travel support for the people listed20
above.21

• Intel Corporation22

• IBM, Inc.23

• University of Tennessee, Knoxville24

• The Exascale Computing Project, an initiative of the US Department of Energy25

• National Science Foundation26

• Mellanox, Inc.27

• Research Organization for Information Science and Technology28

• HPE Co.29

302 PMIx Standard – Version 3.0 – December 2018

• Allinea (ARM)1

• SchedMD, Inc.2

• Fujitsu Limited3

• Los Alamos National Laboratory4

• Adaptive Solutions, Inc.5

• INRIA6

• Oak Ridge National Laboratory7

• Lawrence Livermore National Laboratory8

• Sandia National Laboratory9

• Altair10

A.3 Version 1.011

The following list includes some of the active participants in the PMIx v1 standardization process.12

• Ralph H. Castain, Annapurna Dasari and Christopher A. Holguin13

• Joshua Hursey and David Solt14

• Aurelien Bouteiller and George Bosilca15

• Artem Polyakov, Elena Shipunova, Igor Ivanov, and Joshua Ladd16

• Gilles Gouaillardet17

• Gary Brown18

• Moe Jette19

The following institutions supported this effort through time and travel support for the people listed20
above.21

• Intel Corporation22

• IBM, Inc.23

• University of Tennessee, Knoxville24

• Mellanox, Inc.25

• Research Organization for Information Science and Technology26

• Adaptive Solutions, Inc.27

• SchedMD, Inc.28

APPENDIX A. ACKNOWLEDGEMENTS 303

Bibliography

[1] Ralph H. Castain, David Solt, Joshua Hursey, and Aurelien Bouteiller. PMIx: Process
management for exascale environments. In Proceedings of the 24th European MPI Users’
Group Meeting, EuroMPI ’17, pages 14:1–14:10, New York, NY, USA, 2017. ACM.

304

Index

application, 10, 62, 111, 119, 173, 229, 232
Defintion, 13

host environment
Defintion, 14

job, 10, 61, 62, 111, 119, 121, 173, 225, 228,
229, 231, 232

Defintion, 13

namespace
Defintion, 13

PMIx_Abort, 8, 27, 142, 252, 254
Defintion, 141

PMIX_ADD_ENVAR
Defintion, 73

PMIX_ADD_HOST, 144, 148, 266
Defintion, 68

PMIX_ADD_HOSTFILE, 144, 148, 266
Defintion, 68

PMIX_ALLOC_BANDWIDTH, 74, 175,
178, 242, 243, 287

Defintion, 75
PMIX_ALLOC_CPU_LIST, 175, 178, 286

Defintion, 74
PMIX_ALLOC_DIRECTIVE, 55
PMIx_Alloc_directive_string, 9

Defintion, 96
pmix_alloc_directive_t, 40, 55, 96, 285

Defintion, 40
PMIX_ALLOC_EXTEND, 40
PMIX_ALLOC_EXTERNAL, 40
PMIX_ALLOC_ID, 174, 177, 286

Defintion, 74
PMIX_ALLOC_MEM_SIZE, 175, 178, 286

Defintion, 74

PMIX_ALLOC_NETWORK, 175, 178, 242,
286

Defintion, 74
PMIX_ALLOC_NETWORK_ENDPTS, 74,

175, 176, 178, 179, 242, 286
Defintion, 75

PMIX_ALLOC_NETWORK_ENDPTS_NODE,
176, 179, 242

Defintion, 75
PMIX_ALLOC_NETWORK_ID, 74, 175,

178, 242, 286
Defintion, 74

PMIX_ALLOC_NETWORK_PLANE, 74,
175, 176, 178, 179, 242, 287

Defintion, 75
PMIX_ALLOC_NETWORK_QOS, 74, 175,

176, 178, 242, 243, 287
Defintion, 75

PMIX_ALLOC_NETWORK_SEC_KEY,
75, 175, 176, 178, 179, 242, 287

Defintion, 75
PMIX_ALLOC_NETWORK_TYPE, 74,

175, 176, 178, 242, 286, 287
Defintion, 75

PMIX_ALLOC_NEW, 40
PMIX_ALLOC_NODE_LIST, 175, 178, 286

Defintion, 74
PMIX_ALLOC_NUM_CPU_LIST, 175,

178, 286
Defintion, 74

PMIX_ALLOC_NUM_CPUS, 175, 178, 286
Defintion, 74

PMIX_ALLOC_NUM_NODES, 175, 177,
286

Defintion, 74
PMIX_ALLOC_REAQUIRE, 40

305

PMIX_ALLOC_RELEASE, 40
PMIX_ALLOC_TIME, 175, 178, 243, 286

Defintion, 75
PMIX_ALLOCATED_NODELIST, 226

Defintion, 61
PMIx_Allocation_request, 10, 179

Defintion, 174
PMIx_Allocation_request_nb, 9, 74, 166,

179
Defintion, 176

PMIX_ANL_MAP
Defintion, 66

PMIX_APP, 54
PMIX_APP_CONSTRUCT

Defintion, 46
PMIX_APP_CREATE

Defintion, 47
PMIX_APP_DESTRUCT

Defintion, 47
PMIX_APP_FREE

Defintion, 47
PMIX_APP_INFO, 114, 117, 122, 169

Defintion, 62
PMIX_APP_INFO_ARRAY, 232

Defintion, 62
PMIX_APP_MAP_REGEX

Defintion, 66
PMIX_APP_MAP_TYPE

Defintion, 66
PMIX_APP_RANK, 225

Defintion, 60
PMIX_APP_SIZE, 121, 225, 232

Defintion, 63
pmix_app_t, 46, 47, 143, 147, 265

Defintion, 46
PMIX_APPEND_ENVAR

Defintion, 74
PMIX_APPLDR, 225, 232

Defintion, 61
PMIX_APPNUM, 62, 114, 117, 121, 169,

225, 232
Defintion, 60

PMIX_ARCH

Defintion, 60
PMIX_ATTR_UNDEF

Defintion, 55
PMIX_AVAIL_PHYS_MEMORY, 226

Defintion, 63
PMIX_BINDTO, 145, 149, 226, 267

Defintion, 69
PMIX_BOOL, 54
PMIX_BUFFER, 54
PMIX_BYTE, 54
PMIX_BYTE_OBJECT, 54
PMIX_BYTE_OBJECT_CREATE

Defintion, 50
PMIX_BYTE_OBJECT_DESTRUCT

Defintion, 50
PMIX_BYTE_OBJECT_FREE

Defintion, 51
PMIX_BYTE_OBJECT_LOAD

Defintion, 51
pmix_byte_object_t, 49–51, 54, 91, 164,

219, 245, 295, 299
Defintion, 49

pmix_check_key
Defintion, 23

pmix_check_nspace
Defintion, 24

pmix_check_procid
Defintion, 26

PMIX_CLEANUP_EMPTY, 181, 184
Defintion, 76

PMIX_CLEANUP_IGNORE, 181, 184
Defintion, 76

PMIX_CLEANUP_LEAVE_TOPDIR, 181,
184

Defintion, 76
PMIX_CLEANUP_RECURSIVE, 181, 184

Defintion, 76
PMIX_CLIENT_AVG_MEMORY

Defintion, 63
PMIX_CLUSTER_ID

Defintion, 60
PMIX_COLLECT_DATA, 125, 127, 255

Defintion, 65

306 PMIx Standard – Version 3.0 – December 2018

PMIX_COLLECTIVE_ALGO, 10, 125,
128, 152, 155, 255, 270

Defintion, 65
PMIX_COLLECTIVE_ALGO_REQD, 125,

128, 152, 155, 255, 270
Defintion, 65

PMIX_COMMAND, 55
PMIx_Commit, 8, 89, 112, 124, 151, 240,

258
Defintion, 124

PMIX_COMPRESSED_STRING, 55
PMIx_Connect, 8, 10, 21, 146, 151, 153,

154, 156, 157
Defintion, 151

PMIX_CONNECT_MAX_RETRIES, 103
Defintion, 57

PMIx_Connect_nb, 8, 154
Defintion, 154

PMIX_CONNECT_REQUESTED, 21
PMIX_CONNECT_RETRY_DELAY, 103

Defintion, 57
PMIX_CONNECT_SYSTEM_FIRST, 103,

105, 106
Defintion, 57

PMIX_CONNECT_TO_SYSTEM, 103, 105,
106

Defintion, 57
pmix_connection_cbfunc_t, 279

Defintion, 89
PMIX_COSPAWN_APP

Defintion, 69
PMIX_CPU_LIST, 146, 150, 268

Defintion, 70
PMIX_CPUS_PER_PROC, 145, 150, 268

Defintion, 70
PMIX_CPUSET

Defintion, 59
PMIX_CRED_TYPE, 294

Defintion, 77
PMIX_CREDENTIAL

Defintion, 60
pmix_credential_cbfunc_t, 217, 293

Defintion, 90

PMIX_CRYPTO_KEY
Defintion, 77

PMIX_DAEMON_MEMORY
Defintion, 63

PMIX_DATA_ARRAY, 55
pmix_data_array_t, 31, 53, 55, 71, 74, 171,

175, 178, 231–233, 242, 281, 287
Defintion, 53

PMIX_DATA_BUFFER_CONSTRUCT,
210, 212

Defintion, 207
PMIX_DATA_BUFFER_CREATE, 210,

212
Defintion, 53, 206

PMIX_DATA_BUFFER_DESTRUCT
Defintion, 53, 207

PMIX_DATA_BUFFER_LOAD
Defintion, 208

PMIX_DATA_BUFFER_RELEASE
Defintion, 53, 207

pmix_data_buffer_t, 51–53, 206–211, 215
Defintion, 51

PMIX_DATA_BUFFER_UNLOAD
Defintion, 208

PMIx_Data_copy, 9
Defintion, 213

PMIx_Data_copy_payload, 9
Defintion, 214

PMIx_Data_pack, 9, 210
Defintion, 209

PMIx_Data_print, 9
Defintion, 213

PMIX_DATA_RANGE, 55
PMIx_Data_range_string, 9

Defintion, 95
pmix_data_range_t, 30, 55, 95, 204, 277

Defintion, 30
PMIX_DATA_SCOPE, 113, 117

Defintion, 65
PMIX_DATA_TYPE, 55
PMIx_Data_type_string, 9

Defintion, 95
pmix_data_type_t, 33, 34, 36, 45, 54, 55, 95,

INDEX 307

210, 211, 213, 214
Defintion, 54

PMIx_Data_unpack, 9
Defintion, 211

PMIX_DEBUG_APP_DIRECTIVES
Defintion, 73

PMIX_DEBUG_JOB
Defintion, 73

PMIX_DEBUG_JOB_DIRECTIVES
Defintion, 73

PMIX_DEBUG_STOP_IN_INIT
Defintion, 73

PMIX_DEBUG_STOP_ON_EXEC
Defintion, 72

PMIX_DEBUG_WAIT_FOR_NOTIFY
Defintion, 73

PMIX_DEBUG_WAITING_FOR_NOTIFY
Defintion, 73

PMIX_DEBUGGER_DAEMONS, 145, 149,
267

Defintion, 69
PMIx_Deregister_event_handler, 9

Defintion, 202
PMIx_Disconnect, 8, 10, 21, 154, 157–159

Defintion, 156
PMIx_Disconnect_nb, 8, 159

Defintion, 158
PMIX_DISPLAY_MAP, 144, 149, 267

Defintion, 68
pmix_dmodex_response_fn_t, 240

Defintion, 88
PMIX_DOUBLE, 54
PMIX_DSTPATH

Defintion, 57
PMIX_EMBED_BARRIER, 101

Defintion, 65
PMIX_ENVAR, 55
PMIX_ENVAR_CONSTRUCT

Defintion, 41
PMIX_ENVAR_CREATE

Defintion, 42
PMIX_ENVAR_DESTRUCT

Defintion, 41

PMIX_ENVAR_FREE
Defintion, 42

PMIX_ENVAR_LOAD
Defintion, 42

pmix_envar_t, 41, 42, 55
Defintion, 41

PMIX_ERR_BAD_PARAM, 20
PMIX_ERR_COMM_FAILURE, 20
PMIX_ERR_DATA_VALUE_NOT_FOUND,

20
PMIX_ERR_DEBUGGER_RELEASE, 19
PMIX_ERR_EVENT_REGISTRATION, 21
PMIX_ERR_HANDSHAKE_FAILED, 19
PMIX_ERR_IN_ERRNO, 20
PMIX_ERR_INIT, 20
PMIX_ERR_INVALID_ARG, 20
PMIX_ERR_INVALID_ARGS, 20
PMIX_ERR_INVALID_CRED, 19
PMIX_ERR_INVALID_KEY, 20
PMIX_ERR_INVALID_KEY_LENGTH, 20
PMIX_ERR_INVALID_KEYVALP, 20
PMIX_ERR_INVALID_LENGTH, 20
PMIX_ERR_INVALID_NAMESPACE, 20
PMIX_ERR_INVALID_NUM_ARGS, 20
PMIX_ERR_INVALID_NUM_PARSED, 20
PMIX_ERR_INVALID_OPERATION, 21
PMIX_ERR_INVALID_SIZE, 20
PMIX_ERR_INVALID_TERMINATION,

21
PMIX_ERR_INVALID_VAL, 20
PMIX_ERR_INVALID_VAL_LENGTH, 20
PMIX_ERR_JOB_TERMINATED, 21
PMIX_ERR_LOST_CONNECTION_TO_CLIENT,

20
PMIX_ERR_LOST_CONNECTION_TO_SERVER,

20
PMIX_ERR_LOST_PEER_CONNECTION,

20
PMIX_ERR_NO_PERMISSIONS, 20
PMIX_ERR_NODE_DOWN, 21
PMIX_ERR_NODE_OFFLINE, 21
PMIX_ERR_NOMEM, 20
PMIX_ERR_NOT_FOUND, 20

308 PMIx Standard – Version 3.0 – December 2018

PMIX_ERR_NOT_IMPLEMENTED, 20
PMIX_ERR_NOT_SUPPORTED, 20
PMIX_ERR_OUT_OF_RESOURCE, 20
PMIX_ERR_PACK_FAILURE, 20
PMIX_ERR_PACK_MISMATCH, 20
PMIX_ERR_PROC_ABORTED, 19
PMIX_ERR_PROC_ABORTING, 19
PMIX_ERR_PROC_CHECKPOINT, 19
PMIX_ERR_PROC_ENTRY_NOT_FOUND,

19
PMIX_ERR_PROC_MIGRATE, 19
PMIX_ERR_PROC_REQUESTED_ABORT,

19
PMIX_ERR_PROC_RESTART, 19
PMIX_ERR_READY_FOR_HANDSHAKE,

19
PMIX_ERR_RESOURCE_BUSY, 20
PMIX_ERR_SERVER_FAILED_REQUEST,

19
PMIX_ERR_SERVER_NOT_AVAIL, 20
PMIX_ERR_SILENT, 19
PMIX_ERR_TIMEOUT, 20
PMIX_ERR_TYPE_MISMATCH, 19
PMIX_ERR_UNKNOWN_DATA_TYPE,

19
PMIX_ERR_UNPACK_FAILURE, 20
PMIX_ERR_UNPACK_INADEQUATE_SPACE,

19
PMIX_ERR_UNPACK_READ_PAST_END_OF_BUFFER,

20
PMIX_ERR_UNREACH, 20
PMIX_ERR_UPDATE_ENDPOINTS, 21
PMIX_ERR_WOULD_BLOCK, 19
PMIX_ERROR, 19
PMIx_Error_string, 9

Defintion, 94
PMIX_EVENT_ACTION_COMPLETE, 21
PMIX_EVENT_ACTION_DEFERRED, 21
PMIX_EVENT_ACTION_TIMEOUT, 201

Defintion, 67
PMIX_EVENT_AFFECTED_PROC, 201,

205
Defintion, 67

PMIX_EVENT_AFFECTED_PROCS, 201,
205

Defintion, 67
PMIX_EVENT_BASE, 100, 104, 109

Defintion, 56
PMIX_EVENT_CUSTOM_RANGE, 201,

205
Defintion, 67

PMIX_EVENT_DO_NOT_CACHE
Defintion, 67

PMIX_EVENT_HDLR_AFTER, 201
Defintion, 67

PMIX_EVENT_HDLR_APPEND, 201
Defintion, 67

PMIX_EVENT_HDLR_BEFORE, 200
Defintion, 67

PMIX_EVENT_HDLR_FIRST, 200
Defintion, 66

PMIX_EVENT_HDLR_FIRST_IN_CATEGORY,
200

Defintion, 67
PMIX_EVENT_HDLR_LAST, 200

Defintion, 66
PMIX_EVENT_HDLR_LAST_IN_CATEGORY,

200
Defintion, 67

PMIX_EVENT_HDLR_NAME, 200
Defintion, 66

PMIX_EVENT_HDLR_PREPEND, 201
Defintion, 67

PMIX_EVENT_NO_ACTION_TAKEN, 21
PMIX_EVENT_NO_TERMINATION

Defintion, 68
PMIX_EVENT_NON_DEFAULT, 205

Defintion, 67
pmix_event_notification_cbfunc_fn_t, 84, 86

Defintion, 84
PMIX_EVENT_PARTIAL_ACTION_TAKEN,

21
PMIX_EVENT_RETURN_OBJECT, 201

Defintion, 67
PMIX_EVENT_SILENT_TERMINATION,

201

INDEX 309

Defintion, 67
PMIX_EVENT_TERMINATE_JOB, 201

Defintion, 67
PMIX_EVENT_TERMINATE_NODE, 201

Defintion, 67
PMIX_EVENT_TERMINATE_PROC, 201

Defintion, 67
PMIX_EVENT_TERMINATE_SESSION,

201
Defintion, 67

PMIX_EVENT_WANT_TERMINATION
Defintion, 68

pmix_evhdlr_reg_cbfunc_t, 83, 200
Defintion, 83

PMIX_EXISTS, 19
PMIX_EXIT_CODE

Defintion, 61
PMIX_EXTERNAL_ERR_BASE, 22
PMIx_Fence, 3, 7, 8, 12, 110, 126, 128, 151,

154, 158, 240, 254, 256
Defintion, 124

PMIx_Fence_nb, 8, 81, 128, 254, 256
Defintion, 126

PMIx_Finalize, 8, 21, 27, 65, 100, 101, 151,
251, 252

Defintion, 101
PMIX_FLOAT, 54
PMIX_FWD_ALL_CHANNELS, 40
PMIX_FWD_NO_CHANNELS, 40
PMIX_FWD_STDDIAG_CHANNEL, 40
PMIX_FWD_STDDOAG

Defintion, 69
PMIX_FWD_STDERR, 145, 149, 267, 282

Defintion, 69
PMIX_FWD_STDERR_CHANNEL, 40
PMIX_FWD_STDIN, 145, 149, 267, 282

Defintion, 69
PMIX_FWD_STDIN_CHANNEL, 40
PMIX_FWD_STDOUT, 145, 149, 267, 282

Defintion, 69
PMIX_FWD_STDOUT_CHANNEL, 40
PMIX_GDS_ACTION_COMPLETE, 21
PMIX_GDS_MODULE, 100, 104, 110

Defintion, 59
PMIx_generate_ppn, 8

Defintion, 222
PMIx_generate_regex, 8, 228

Defintion, 221
PMIx_Get, 3, 8, 10, 31, 55–59, 65–76, 100,

113, 115, 117–121, 123, 144–146,
148–150, 172, 173, 224, 226, 248,
266–268

Defintion, 112
PMIx_Get_credential, 10, 77, 294

Defintion, 217
PMIx_Get_nb, 8, 82

Defintion, 115
PMIx_Get_version, 9, 15

Defintion, 98
PMIX_GLOBAL, 30
PMIX_GLOBAL_RANK, 227

Defintion, 60
PMIX_GRPID, 92, 130, 132, 134, 136, 138,

140, 170, 174, 177, 180, 183, 186,
188, 191, 194, 218, 220, 259–264,
266, 274, 280, 282, 284, 286, 288,
291, 293, 295, 297, 300

Defintion, 57
pmix_hdlr_reg_cbfunc_t, 161, 163

Defintion, 93
PMIx_Heartbeat, 9

Defintion, 189
PMIX_HOST, 144, 148, 266

Defintion, 68
PMIX_HOSTFILE, 144, 148, 266

Defintion, 68
PMIX_HOSTNAME, 62, 63, 114, 117, 123,

170, 227
Defintion, 61

PMIX_HWLOC_HOLE_KIND
Defintion, 64

PMIX_HWLOC_SHARE_TOPO
Defintion, 64

PMIX_HWLOC_SHMEM_ADDR
Defintion, 64

PMIX_HWLOC_SHMEM_FILE

310 PMIx Standard – Version 3.0 – December 2018

Defintion, 64
PMIX_HWLOC_SHMEM_SIZE

Defintion, 64
PMIX_HWLOC_XML_V1, 226

Defintion, 64
PMIX_HWLOC_XML_V2, 226

Defintion, 64
PMIX_IMMEDIATE, 113, 117

Defintion, 65
PMIX_INDEX_ARGV, 145, 150, 268

Defintion, 69
PMIX_INFO, 54
pmix_info_cbfunc_t, 78, 82, 168, 177, 180,

182, 183, 185, 188, 189, 246, 280,
285, 287, 290

Defintion, 82
PMIX_INFO_CONSTRUCT

Defintion, 35
PMIX_INFO_CREATE

Defintion, 36
PMIX_INFO_DESTRUCT

Defintion, 35
PMIX_INFO_DIRECTIVES, 55
PMIx_Info_directives_string, 9

Defintion, 95
pmix_info_directives_t, 38, 55, 95

Defintion, 38
PMIX_INFO_FREE

Defintion, 36
PMIX_INFO_IS_OPTIONAL

Defintion, 40
PMIX_INFO_IS_REQUIRED, 38

Defintion, 39
PMIX_INFO_LOAD

Defintion, 36
PMIX_INFO_OPTIONAL

Defintion, 39
PMIX_INFO_REQD, 38
PMIX_INFO_REQUIRED, 38

Defintion, 39
pmix_info_t, 3, 9, 12, 23, 30, 35–40, 55, 62,

63, 72, 74, 76, 83–86, 92, 93, 99,
101, 102, 108, 110, 131, 135, 161,

163, 164, 172, 174, 175, 177, 178,
182, 185, 189, 192, 195, 204, 217,
219, 228, 231–233, 242, 245–247,
277, 282–284, 286, 287, 289, 290,
297

Defintion, 35
PMIX_INFO_TRUE

Defintion, 37
PMIX_INFO_XFER, 228

Defintion, 37
PMIx_Init, 9, 69, 72, 73, 98, 100, 101, 145,

149, 250, 251, 267
Defintion, 98

PMIx_Initialized, 8
Defintion, 97

PMIX_INT, 54
PMIX_INT16, 54
PMIX_INT32, 54
PMIX_INT64, 54
PMIX_INT8, 54
PMIX_INTERNAL, 30
PMIX_IOF_BUFFERING_SIZE, 162, 165,

298
Defintion, 77

PMIX_IOF_BUFFERING_TIME, 162, 165,
298

Defintion, 78
PMIX_IOF_CACHE_SIZE, 161, 165, 298

Defintion, 77
pmix_iof_cbfunc_t, 161

Defintion, 92
PMIX_IOF_CHANNEL, 55
PMIx_IOF_channel_string, 11

Defintion, 96
pmix_iof_channel_t, 40, 55, 93, 96, 161,

245, 297
Defintion, 40

PMIX_IOF_COMPLETE
Defintion, 78

PMIx_IOF_deregister, 11
Defintion, 162

PMIX_IOF_DROP_NEWEST, 161, 165, 298
Defintion, 77

INDEX 311

PMIX_IOF_DROP_OLDEST, 161, 165, 298
Defintion, 77

PMIx_IOF_pull, 11, 163
Defintion, 160

PMIx_IOF_push, 11
Defintion, 164

PMIX_IOF_TAG_OUTPUT, 162
Defintion, 78

PMIX_IOF_TIMESTAMP_OUTPUT, 162
Defintion, 78

PMIX_IOF_XML_OUTPUT, 162
Defintion, 78

PMIX_JCTRL_CHECKPOINT, 20
PMIX_JCTRL_CHECKPOINT_COMPLETE,

20
PMIX_JCTRL_PREEMPT_ALERT, 20
PMIX_JOB_CONTINUOUS, 146, 150, 268

Defintion, 70
PMIx_Job_control, 10, 185

Defintion, 180
PMIx_Job_control_nb, 9, 75, 166, 179, 228

Defintion, 182
PMIX_JOB_CTRL_CANCEL, 181, 184,

289
Defintion, 75

PMIX_JOB_CTRL_CHECKPOINT, 181,
184, 289

Defintion, 75
PMIX_JOB_CTRL_CHECKPOINT_EVENT,

181, 184, 289
Defintion, 75

PMIX_JOB_CTRL_CHECKPOINT_METHOD,
182, 185, 289

Defintion, 76
PMIX_JOB_CTRL_CHECKPOINT_SIGNAL,

181, 184, 289
Defintion, 75

PMIX_JOB_CTRL_CHECKPOINT_TIMEOUT,
182, 185, 289

Defintion, 76
PMIX_JOB_CTRL_ID, 180, 183, 289

Defintion, 75
PMIX_JOB_CTRL_KILL, 181, 184, 289

Defintion, 75
PMIX_JOB_CTRL_PAUSE, 180, 183, 289

Defintion, 75
PMIX_JOB_CTRL_PREEMPTIBLE, 182,

185, 290
Defintion, 76

PMIX_JOB_CTRL_PROVISION, 182, 185,
289

Defintion, 76
PMIX_JOB_CTRL_PROVISION_IMAGE,

182, 185, 289
Defintion, 76

PMIX_JOB_CTRL_RESTART, 181, 184,
289

Defintion, 75
PMIX_JOB_CTRL_RESUME, 181, 184,

289
Defintion, 75

PMIX_JOB_CTRL_SIGNAL, 181, 184, 289
Defintion, 76

PMIX_JOB_CTRL_TERMINATE, 181,
184, 289

Defintion, 76
PMIX_JOB_INFO, 113, 117, 121, 169

Defintion, 62
PMIX_JOB_INFO_ARRAY, 231

Defintion, 62
PMIX_JOB_NUM_APPS, 121, 226, 231

Defintion, 63
PMIX_JOB_RECOVERABLE, 146, 150,

268
Defintion, 70

PMIX_JOB_SIZE, 10, 115, 118, 121, 224,
231, 232

Defintion, 63
PMIX_JOB_TERM_STATUS

Defintion, 65
PMIX_JOBID, 62, 114, 117, 121, 169, 224,

231
Defintion, 60

pmix_key_t, 22, 111, 113
Defintion, 22

PMIX_KVAL, 54

312 PMIx Standard – Version 3.0 – December 2018

PMIX_LAUNCH_DIRECTIVE, 21
PMIX_LAUNCHER

Defintion, 57
PMIX_LAUNCHER_READY, 21
PMIX_LOCAL, 29
PMIX_LOCAL_CPUSETS, 225, 234

Defintion, 61
PMIX_LOCAL_PEERS, 224, 234

Defintion, 61
PMIX_LOCAL_PROCS, 227

Defintion, 61
PMIX_LOCAL_RANK, 170, 171, 225

Defintion, 61
PMIX_LOCAL_SIZE, 224

Defintion, 63
PMIX_LOCAL_TOPO

Defintion, 64
PMIX_LOCALITY

Defintion, 61
PMIX_LOCALITY_STRING

Defintion, 64
PMIX_LOCALLDR, 227

Defintion, 61
PMIx_Log, 10, 193

Defintion, 190
PMIX_LOG_EMAIL, 192, 195, 284

Defintion, 72
PMIX_LOG_EMAIL_ADDR, 192, 195, 284

Defintion, 72
PMIX_LOG_EMAIL_MSG, 192, 195, 284

Defintion, 72
PMIX_LOG_EMAIL_SENDER_ADDR

Defintion, 72
PMIX_LOG_EMAIL_SERVER

Defintion, 72
PMIX_LOG_EMAIL_SRVR_PORT

Defintion, 72
PMIX_LOG_EMAIL_SUBJECT, 192, 195,

284
Defintion, 72

PMIX_LOG_GENERATE_TIMESTAMP,
192, 195

Defintion, 72

PMIX_LOG_GLOBAL_DATASTORE, 192,
195

Defintion, 72
PMIX_LOG_GLOBAL_SYSLOG, 191, 194

Defintion, 71
PMIX_LOG_JOB_RECORD, 192, 195

Defintion, 72
PMIX_LOG_LOCAL_SYSLOG, 191, 194

Defintion, 71
PMIX_LOG_MSG, 284

Defintion, 72
PMIx_Log_nb, 9, 71, 196

Defintion, 193
PMIX_LOG_ONCE, 191, 194

Defintion, 72
PMIX_LOG_SOURCE, 192, 195

Defintion, 71
PMIX_LOG_STDERR, 191, 194, 284

Defintion, 71
PMIX_LOG_STDOUT, 191, 194, 284

Defintion, 71
PMIX_LOG_SYSLOG, 191, 194, 284

Defintion, 71
PMIX_LOG_SYSLOG_PRI, 191, 194

Defintion, 72
PMIX_LOG_TAG_OUTPUT, 192, 195

Defintion, 72
PMIX_LOG_TIMESTAMP, 192, 195

Defintion, 72
PMIX_LOG_TIMESTAMP_OUTPUT, 192,

195
Defintion, 72

PMIX_LOG_XML_OUTPUT, 192, 195
Defintion, 72

PMIx_Lookup, 8, 43, 129, 135, 137
Defintion, 133

pmix_lookup_cbfunc_t, 81, 261
Defintion, 81

PMIx_Lookup_nb, 81, 82
Defintion, 135

PMIX_MAP_BLOB
Defintion, 66

PMIX_MAPBY, 144, 149, 226, 267

INDEX 313

Defintion, 68
PMIX_MAPPER, 68, 144, 148, 266

Defintion, 68
PMIX_MAX_KEYLEN, 18
PMIX_MAX_NSLEN, 18
PMIX_MAX_PROCS, 224

Defintion, 63
PMIX_MAX_RESTARTS, 146, 150, 268

Defintion, 70
PMIX_MERGE_STDERR_STDOUT, 145,

149, 267
Defintion, 69

PMIX_MODEL_AFFINITY_POLICY
Defintion, 58

PMIX_MODEL_CPU_TYPE
Defintion, 58

PMIX_MODEL_DECLARED, 21
PMIX_MODEL_LIBRARY_NAME

Defintion, 58
PMIX_MODEL_LIBRARY_VERSION

Defintion, 58
PMIX_MODEL_NUM_CPUS

Defintion, 58
PMIX_MODEL_NUM_THREADS

Defintion, 58
PMIX_MODEL_PHASE_NAME

Defintion, 58
PMIX_MODEL_PHASE_TYPE

Defintion, 58
PMIX_MODEL_RESOURCES, 21
PMIX_MODEX, 55
pmix_modex_cbfunc_t, 78, 79, 254, 257

Defintion, 79
PMIX_MONITOR_APP_CONTROL, 186,

189, 291
Defintion, 76

PMIX_MONITOR_CANCEL, 186, 188, 291
Defintion, 76

PMIX_MONITOR_FILE, 187, 189, 292
Defintion, 77

PMIX_MONITOR_FILE_ACCESS, 187,
189, 292

Defintion, 77

PMIX_MONITOR_FILE_ALERT, 21
PMIX_MONITOR_FILE_CHECK_TIME,

187, 189, 292
Defintion, 77

PMIX_MONITOR_FILE_DROPS, 187,
189, 292

Defintion, 77
PMIX_MONITOR_FILE_MODIFY, 187,

189, 292
Defintion, 77

PMIX_MONITOR_FILE_SIZE, 187, 189,
292

Defintion, 77
PMIX_MONITOR_HEARTBEAT, 186,

189, 292
Defintion, 76

PMIX_MONITOR_HEARTBEAT_ALERT,
21

PMIX_MONITOR_HEARTBEAT_DROPS,
187, 189, 292

Defintion, 77
PMIX_MONITOR_HEARTBEAT_TIME,

187, 189, 292
Defintion, 77

PMIX_MONITOR_ID, 186, 188, 291
Defintion, 76

PMIX_NET_TOPO
Defintion, 64

PMIX_NO_OVERSUBSCRIBE, 145, 150,
268

Defintion, 70
PMIX_NO_PROCS_ON_HEAD, 145, 150,

268
Defintion, 70

PMIX_NODE_INFO, 114, 117, 123, 169
Defintion, 62

PMIX_NODE_INFO_ARRAY, 233
Defintion, 63

PMIX_NODE_LIST
Defintion, 61

PMIX_NODE_MAP, 61, 224, 225, 231, 232
Defintion, 66

PMIX_NODE_RANK, 225

314 PMIx Standard – Version 3.0 – December 2018

Defintion, 61
PMIX_NODE_SIZE, 123, 227

Defintion, 63
PMIX_NODEID, 62, 63, 114, 117, 123, 170,

225
Defintion, 61

PMIX_NON_PMI, 145, 149, 267
Defintion, 69

pmix_notification_fn_t, 85, 200
Defintion, 85

PMIX_NOTIFY_ALLOC_COMPLETE, 20
PMIX_NOTIFY_COMPLETION

Defintion, 65
PMIx_Notify_event, 9

Defintion, 203
PMIX_NPROC_OFFSET, 226

Defintion, 60
PMIX_NSDIR, 60

Defintion, 60
PMIX_NSPACE, 62, 114, 117, 121,

169–171, 232
Defintion, 60

pmix_nspace_t, 23, 24, 26, 80
Defintion, 23

PMIX_NUM_NODES, 111, 115, 118, 119,
121, 122, 231, 232

Defintion, 63
PMIX_NUM_SLOTS, 63, 123, 224

Defintion, 63
pmix_op_cbfunc_t, 80, 84, 88, 132, 139,

154, 158, 164, 193, 203, 204, 223,
236–238, 244, 245, 247, 250, 251,
253, 258, 263, 269, 272, 274, 276,
277, 283, 288, 291, 297, 299

Defintion, 80
PMIX_OPENMP_PARALLEL_ENTERED,

21
PMIX_OPENMP_PARALLEL_EXITED,

21
PMIX_OPERATION_IN_PROGRESS, 21
PMIX_OPERATION_SUCCEEDED, 21
PMIX_OPTIONAL, 113, 116

Defintion, 65

PMIX_OUTPUT_TO_FILE, 145, 149, 267
Defintion, 69

PMIX_PARENT_ID, 143, 147, 148, 266
Defintion, 61

PMIX_PDATA, 54
PMIX_PDATA_CONSTRUCT

Defintion, 43
PMIX_PDATA_CREATE

Defintion, 44
PMIX_PDATA_DESTRUCT

Defintion, 43
PMIX_PDATA_FREE

Defintion, 44
PMIX_PDATA_LOAD

Defintion, 44
pmix_pdata_t, 43–45, 81, 82, 135

Defintion, 43
PMIX_PDATA_XFER

Defintion, 45
PMIX_PERSIST, 55
PMIX_PERSIST_APP, 30
PMIX_PERSIST_FIRST_READ, 30
PMIX_PERSIST_INDEF, 30
PMIX_PERSIST_INVALID, 30
PMIX_PERSIST_PROC, 30
PMIX_PERSIST_SESSION, 30
PMIX_PERSISTENCE, 130, 133, 259

Defintion, 65
PMIx_Persistence_string, 9

Defintion, 95
pmix_persistence_t, 30, 55, 95

Defintion, 30
PMIX_PERSONALITY, 144, 148, 266

Defintion, 68
PMIX_PID, 54
PMIX_POINTER, 55
PMIX_PPR, 144, 149, 267

Defintion, 68
PMIX_PREFIX, 144, 148, 266

Defintion, 68
PMIX_PRELOAD_BIN, 144, 148, 266

Defintion, 69
PMIX_PRELOAD_FILES, 144, 148, 266

INDEX 315

Defintion, 69
PMIX_PREPEND_ENVAR

Defintion, 74
PMIX_PROC, 54
PMIX_PROC_BLOB

Defintion, 66
PMIX_PROC_CONSTRUCT, 25

Defintion, 50, 52
PMIX_PROC_CREATE

Defintion, 25
PMIX_PROC_DATA, 232

Defintion, 66
PMIX_PROC_DESTRUCT

Defintion, 25
PMIX_PROC_FREE, 167

Defintion, 25
PMIX_PROC_HAS_CONNECTED, 21
PMIX_PROC_INFO, 55
PMIX_PROC_INFO_CONSTRUCT

Defintion, 28
PMIX_PROC_INFO_CREATE

Defintion, 29
PMIX_PROC_INFO_DESTRUCT

Defintion, 28
PMIX_PROC_INFO_FREE

Defintion, 29
pmix_proc_info_t, 27–29, 55, 71, 171, 281

Defintion, 27
PMIX_PROC_LOAD

Defintion, 26
PMIX_PROC_MAP, 224, 231, 232

Defintion, 66
PMIX_PROC_PID

Defintion, 61
PMIX_PROC_RANK, 55
PMIX_PROC_STATE, 55
PMIX_PROC_STATE_ABORTED, 27
PMIX_PROC_STATE_ABORTED_BY_SIG,

27
PMIX_PROC_STATE_CALLED_ABORT,

27
PMIX_PROC_STATE_CANNOT_RESTART,

27

PMIX_PROC_STATE_COMM_FAILED,
27

PMIX_PROC_STATE_CONNECTED, 27
PMIX_PROC_STATE_ERROR, 27
PMIX_PROC_STATE_FAILED_TO_LAUNCH,

27
PMIX_PROC_STATE_FAILED_TO_START,

27
PMIX_PROC_STATE_KILLED_BY_CMD,

27
PMIX_PROC_STATE_LAUNCH_UNDERWAY,

27
PMIX_PROC_STATE_MIGRATING, 27
PMIX_PROC_STATE_PREPPED, 27
PMIX_PROC_STATE_RESTART, 27
PMIX_PROC_STATE_RUNNING, 27
PMIX_PROC_STATE_STATUS

Defintion, 65
PMIx_Proc_state_string, 9

Defintion, 94
pmix_proc_state_t, 26, 55, 94

Defintion, 26
PMIX_PROC_STATE_TERM_NON_ZERO,

27
PMIX_PROC_STATE_TERM_WO_SYNC,

27
PMIX_PROC_STATE_TERMINATE, 27
PMIX_PROC_STATE_TERMINATED, 27
PMIX_PROC_STATE_UNDEF, 27
PMIX_PROC_STATE_UNTERMINATED,

27
pmix_proc_t, 24–26, 44, 45, 54, 61, 67, 86,

90, 93, 100, 102, 104, 107, 115,
125–127, 141, 201, 204, 205, 210,
211, 227, 237–240, 245, 250, 251,
253, 254, 257, 258, 261, 263, 265,
269, 272, 277, 280, 283, 285, 288,
290, 293, 295, 297, 299

Defintion, 24
PMIX_PROC_TERMINATED, 21
PMIX_PROC_URI, 172

Defintion, 61
PMIX_PROCDIR

316 PMIx Standard – Version 3.0 – December 2018

Defintion, 60
PMIx_Process_monitor, 10, 189

Defintion, 186
PMIx_Process_monitor_nb, 9, 76, 166, 190

Defintion, 187
PMIX_PROCID, 170, 171, 227

Defintion, 60
PMIX_PROGRAMMING_MODEL

Defintion, 58
PMIx_Publish, 8, 30, 65, 130, 131, 133, 259,

260
Defintion, 129

PMIx_Publish_nb, 8, 133
Defintion, 131

PMIx_Put, 8, 29–31, 89, 112, 115, 118, 124,
126, 151, 173, 240, 258

Defintion, 111
PMIX_QUERY, 55
PMIX_QUERY_ALLOC_STATUS, 172,

281
Defintion, 71

PMIX_QUERY_AUTHORIZATIONS
Defintion, 71

PMIX_QUERY_CONSTRUCT
Defintion, 48

PMIX_QUERY_CREATE
Defintion, 49

PMIX_QUERY_DEBUG_SUPPORT, 171,
281

Defintion, 71
PMIX_QUERY_DESTRUCT

Defintion, 48
PMIX_QUERY_FREE

Defintion, 49
PMIx_Query_info_nb, 9, 10, 48, 70, 123,

151, 166, 172, 173
Defintion, 168

PMIX_QUERY_JOB_STATUS, 171, 280
Defintion, 70

PMIX_QUERY_LOCAL_ONLY, 281
Defintion, 71

PMIX_QUERY_LOCAL_PROC_TABLE,
171, 281

Defintion, 71
PMIX_QUERY_MEMORY_USAGE, 171,

281
Defintion, 71

PMIX_QUERY_NAMESPACES, 171, 280
Defintion, 70

PMIX_QUERY_PARTIAL_SUCCESS, 20
PMIX_QUERY_PROC_TABLE, 171, 281

Defintion, 70
PMIX_QUERY_QUEUE_LIST, 171, 280

Defintion, 70
PMIX_QUERY_QUEUE_STATUS, 171,

280
Defintion, 70

PMIX_QUERY_REFRESH_CACHE, 169,
172, 173

Defintion, 70
PMIX_QUERY_REPORT_AVG, 171, 281

Defintion, 71
PMIX_QUERY_REPORT_MINMAX, 171,

281
Defintion, 71

PMIX_QUERY_SPAWN_SUPPORT, 171,
281

Defintion, 71
pmix_query_t, 48, 49, 55, 170, 171, 173,

280, 281
Defintion, 48

PMIX_RANGE, 130, 133, 134, 136, 138,
140, 201, 259, 261, 264, 278

Defintion, 65
PMIX_RANGE_CUSTOM, 30
PMIX_RANGE_GLOBAL, 30
PMIX_RANGE_INVALID, 30
PMIX_RANGE_LOCAL, 30
PMIX_RANGE_NAMESPACE, 30
PMIX_RANGE_PROC_LOCAL, 30
PMIX_RANGE_RM, 30
PMIX_RANGE_SESSION, 30
PMIX_RANGE_UNDEF, 30
PMIX_RANK, 170, 171, 225

Defintion, 60
PMIX_RANK_LOCAL_NODE, 24

INDEX 317

pmix_rank_t, 24, 26, 55
Defintion, 24

PMIX_RANK_UNDEF, 24
PMIX_RANK_WILDCARD, 24
PMIX_RANKBY, 144, 149, 226, 267

Defintion, 69
PMIX_RECONNECT_SERVER

Defintion, 57
PMIX_REGISTER_CLEANUP, 181, 184

Defintion, 76
PMIX_REGISTER_CLEANUP_DIR, 181,

184
Defintion, 76

PMIx_Register_event_handler, 9, 84, 166
Defintion, 199

PMIX_REGISTER_NODATA, 224
Defintion, 66

pmix_release_cbfunc_t, 78
Defintion, 78

PMIX_REMOTE, 29
PMIX_REPORT_BINDINGS, 146, 150, 268

Defintion, 70
PMIX_REQUESTOR_IS_CLIENT, 143,

147
Defintion, 57

PMIX_REQUESTOR_IS_TOOL, 143, 148
Defintion, 57

PMIx_Resolve_nodes, 8
Defintion, 167

PMIx_Resolve_peers, 8
Defintion, 167

PMIX_RM_NAME
Defintion, 73

PMIX_RM_VERSION
Defintion, 73

PMIX_SCOPE, 55
PMIx_Scope_string, 9

Defintion, 95
pmix_scope_t, 29, 55, 95, 112

Defintion, 29
PMIX_SCOPE_UNDEF, 29
PMIX_SEND_HEARTBEAT

Defintion, 76

pmix_server_abort_fn_t
Defintion, 252

pmix_server_alloc_fn_t
Defintion, 285

pmix_server_client_connected_fn_t, 81, 216,
237, 238, 250, 251

Defintion, 250
pmix_server_client_finalized_fn_t, 252

Defintion, 251
PMIx_server_collect_inventory, 11

Defintion, 246
pmix_server_connect_fn_t, 271, 273

Defintion, 269
PMIx_server_deliver_inventory, 11

Defintion, 247
PMIx_server_deregister_client, 8

Defintion, 238
pmix_server_deregister_events_fn_t

Defintion, 275
PMIx_server_deregister_nspace, 8, 238

Defintion, 235
pmix_server_disconnect_fn_t, 273

Defintion, 271
pmix_server_dmodex_req_fn_t, 79

Defintion, 256
PMIx_server_dmodex_request, 9, 88, 89,

240
Defintion, 239

PMIX_SERVER_ENABLE_MONITORING
Defintion, 56

pmix_server_fencenb_fn_t, 79, 256
Defintion, 254

PMIx_server_finalize, 8
Defintion, 110

PMIX_SERVER_GATEWAY
Defintion, 56

pmix_server_get_cred_fn_t, 296
Defintion, 292

PMIX_SERVER_HOSTNAME
Defintion, 57

PMIx_server_init, 8, 98, 248, 249
Defintion, 107

PMIx_server_IOF_deliver, 10, 160

318 PMIx Standard – Version 3.0 – December 2018

Defintion, 245
pmix_server_iof_fn_t

Defintion, 296
pmix_server_job_control_fn_t

Defintion, 287
pmix_server_listener_fn_t

Defintion, 278
pmix_server_log_fn_t

Defintion, 283
pmix_server_lookup_fn_t

Defintion, 260
pmix_server_module_t, 108, 110, 248

Defintion, 249
pmix_server_monitor_fn_t

Defintion, 290
pmix_server_notify_event_fn_t, 87

Defintion, 277
PMIX_SERVER_NSPACE, 106, 108, 226

Defintion, 56
PMIX_SERVER_PIDINFO, 103, 104, 106

Defintion, 56
pmix_server_publish_fn_t

Defintion, 258
pmix_server_query_fn_t

Defintion, 279
PMIX_SERVER_RANK, 108, 226

Defintion, 56
PMIx_server_register_client, 8, 216, 238,

250, 252
Defintion, 236

pmix_server_register_events_fn_t
Defintion, 273

PMIx_server_register_nspace, 8, 10, 15, 62,
81, 228, 231

Defintion, 223
PMIX_SERVER_REMOTE_CONNECTIONS,

109
Defintion, 56

PMIx_server_setup_application, 9, 87, 88,
244, 248

Defintion, 241
PMIx_server_setup_fork, 9

Defintion, 239

PMIx_server_setup_local_support, 9
Defintion, 243

pmix_server_spawn_fn_t, 80
Defintion, 264

pmix_server_stdin_fn_t
Defintion, 299

PMIX_SERVER_SYSTEM_SUPPORT, 108
Defintion, 56

PMIX_SERVER_TMPDIR, 108
Defintion, 56

pmix_server_tool_connection_fn_t, 216
Defintion, 282

PMIX_SERVER_TOOL_SUPPORT, 108,
216

Defintion, 56
pmix_server_unpublish_fn_t

Defintion, 262
PMIX_SERVER_URI, 102, 104, 106, 172

Defintion, 57
pmix_server_validate_cred_fn_t

Defintion, 294
PMIX_SESSION_ID, 62, 113, 117, 120,

169, 226, 231
Defintion, 61

PMIX_SESSION_INFO, 113, 117, 119, 169
Defintion, 62

PMIX_SESSION_INFO_ARRAY, 63, 224,
231

Defintion, 62
PMIX_SET_ENVAR

Defintion, 73
PMIX_SET_SESSION_CWD, 144, 148, 266

Defintion, 69
PMIX_SETUP_APP_ALL, 242

Defintion, 78
PMIX_SETUP_APP_ENVARS, 242

Defintion, 78
PMIX_SETUP_APP_NONENVARS, 242

Defintion, 78
pmix_setup_application_cbfunc_t, 241

Defintion, 87
PMIX_SINGLE_LISTENER, 99

Defintion, 58

INDEX 319

PMIX_SIZE, 54
PMIX_SOCKET_MODE, 99, 103, 109

Defintion, 58
PMIx_Spawn, 8, 46, 60, 68, 72, 73, 142, 143,

147, 148, 150, 228, 239, 264, 269
Defintion, 142

pmix_spawn_cbfunc_t, 80, 147, 265
Defintion, 80

PMIx_Spawn_nb, 8, 46, 80
Defintion, 147

PMIX_SPAWN_TOOL
Defintion, 70

PMIX_SPAWNED, 143, 147, 148, 266
Defintion, 60

PMIX_STATUS, 54
pmix_status_t, 19, 34, 54, 83, 84, 86, 88–92,

94, 200, 204, 274, 276, 277
Defintion, 19

PMIX_STDIN_TGT, 145, 149, 267
Defintion, 69

PMIx_Store_internal, 9
Defintion, 118

PMIX_STRING, 54
PMIX_SUCCESS, 19
PMIX_SYSTEM_TMPDIR, 108

Defintion, 56
PMIX_TAG_OUTPUT, 145, 149, 267

Defintion, 69
PMIX_TCP_DISABLE_IPV4, 100, 104, 109

Defintion, 59
PMIX_TCP_DISABLE_IPV6, 100, 104, 109

Defintion, 59
PMIX_TCP_IF_EXCLUDE, 99, 103, 109

Defintion, 59
PMIX_TCP_IF_INCLUDE, 99, 103, 109

Defintion, 59
PMIX_TCP_IPV4_PORT, 100, 103, 109

Defintion, 59
PMIX_TCP_IPV6_PORT, 100, 103, 109

Defintion, 59
PMIX_TCP_REPORT_URI, 99, 103, 109

Defintion, 59
PMIX_TCP_URI, 103, 104

Defintion, 59
PMIX_TDIR_RMCLEAN

Defintion, 60
PMIX_THREADING_MODEL

Defintion, 58
PMIX_TIME, 54
PMIX_TIME_REMAINING, 166, 172, 281

Defintion, 71
PMIX_TIMEOUT, 3, 12, 114, 115, 117, 118,

125, 126, 128, 130, 133–138, 140,
152, 153, 155, 157, 159, 218, 220,
255, 257, 259, 262, 264, 268, 270,
273, 294, 296

Defintion, 65
PMIX_TIMESTAMP_OUTPUT, 145, 149,

267
Defintion, 69

PMIX_TIMEVAL, 54
PMIX_TMPDIR, 60

Defintion, 60
PMIx_tool_connect_to_server, 11

Defintion, 106
pmix_tool_connection_cbfunc_t, 282

Defintion, 90
PMIX_TOOL_DO_NOT_CONNECT, 102,

104
Defintion, 57

PMIx_tool_finalize, 9
Defintion, 105

PMIx_tool_init, 9, 56, 98, 105
Defintion, 102

PMIX_TOOL_NSPACE, 102
Defintion, 56

PMIX_TOOL_RANK, 102
Defintion, 56

PMIX_TOPOLOGY
Defintion, 64

PMIX_TOPOLOGY_FILE
Defintion, 64

PMIX_TOPOLOGY_SIGNATURE
Defintion, 64

PMIX_TOPOLOGY_XML
Defintion, 64

320 PMIx Standard – Version 3.0 – December 2018

PMIX_UINT, 54
PMIX_UINT16, 54
PMIX_UINT32, 54
PMIX_UINT64, 54
PMIX_UINT8, 54
PMIX_UNDEF, 54
PMIX_UNIV_SIZE, 10, 115, 118, 119, 224,

231
Defintion, 63

PMIx_Unpublish, 8, 139, 140
Defintion, 137

PMIx_Unpublish_nb, 8
Defintion, 139

PMIX_UNSET_ENVAR
Defintion, 73

PMIX_USERID, 92, 130, 132, 134, 136,
138, 140, 170, 174, 177, 180, 183,
186, 188, 191, 194, 218, 220,
259–265, 274, 280, 282, 284, 286,
288, 291, 293, 295, 297, 300

Defintion, 57
PMIX_USOCK_DISABLE, 99, 109

Defintion, 58
PMIx_Validate_credential, 10

Defintion, 219
pmix_validation_cbfunc_t, 219, 295

Defintion, 91
PMIX_VALUE, 54
pmix_value_cbfunc_t, 82

Defintion, 82
PMIX_VALUE_CONSTRUCT

Defintion, 32
PMIX_VALUE_CREATE

Defintion, 32
PMIX_VALUE_DESTRUCT

Defintion, 32
PMIX_VALUE_FREE

Defintion, 33
PMIX_VALUE_GET_NUMBER

Defintion, 34
PMIX_VALUE_LOAD

Defintion, 33
pmix_value_t, 31–34, 54, 82, 111, 112

Defintion, 31
PMIX_VALUE_XFER

Defintion, 34
PMIX_VERSION_INFO

Defintion, 57
PMIX_WAIT, 134–136, 261

Defintion, 65
PMIX_WDIR, 143, 148, 266

Defintion, 68

rank, 121, 232
Defintion, 13

resource manager
Defintion, 14

session, 10, 62, 111, 119, 173, 228
Defintion, 13

slot
Defintion, 13

slots
Defintion, 13

workflow
Defintion, 13

INDEX 321

	1 Introduction
	1.1 Charter
	1.2 PMIx Standard Overview
	1.2.1 Who should use the standard?
	1.2.2 What is defined in the standard?
	1.2.3 What is not defined in the standard?
	1.2.4 General Guidance for PMIx Users and Implementors

	1.3 PMIx Architecture Overview
	1.3.1 The PMIx Reference Implementation (PRI)
	1.3.2 The PMIx Reference RunTime Environment (PRRTE)

	1.4 Organization of this document
	1.5 Version 1.0: June 12, 2015
	1.6 Version 2.0: Sept. 2018
	1.7 Version 2.1: Dec. 2018
	1.8 Version 3.0: Dec. 2018

	2 PMIx Terms and Conventions
	2.1 Notational Conventions
	2.2 Semantics
	2.3 Naming Conventions
	2.4 Procedure Conventions
	2.5 Standard vs Reference Implementation

	3 Data Structures and Types
	3.1 Constants
	3.1.1 PMIx Error Constants

	3.2 Data Types
	3.2.1 Key Structure
	3.2.2 Namespace Structure
	3.2.3 Rank Structure
	3.2.4 Process Structure
	3.2.5 Process structure support macros
	3.2.6 Process State Structure
	3.2.7 Process Information Structure
	3.2.8 Process Information Structure support macros
	3.2.9 Scope of Put Data
	3.2.10 Range of Published Data
	3.2.11 Data Persistence Structure
	3.2.12 Value Structure
	3.2.13 Value structure support macros
	3.2.14 Info and Info Array Structures
	3.2.15 Info structure support macros
	3.2.16 Info Type Directives
	3.2.17 Info Directive support macros
	3.2.18 Job Allocation Directives
	3.2.19 IO Forwarding Channels
	3.2.20 Environmental Variable Structure
	3.2.21 Environmental variable support macros
	3.2.22 Lookup Returned Data Structure
	3.2.23 Lookup data structure support macros
	3.2.24 Application Structure
	3.2.25 App structure support macros
	3.2.26 Query Structure
	3.2.27 Query structure support macros

	3.3 Packing/Unpacking Types & Structures
	3.3.1 Byte Object Type
	3.3.2 Byte object support macros
	3.3.3 Data Buffer Type
	3.3.4 Data buffer support macros
	3.3.5 Data Array Structure
	3.3.6 Generalized Data Types Used for Packing/Unpacking

	3.4 Reserved attributes
	3.4.1 Initialization attributes
	3.4.2 Tool-related attributes
	3.4.3 Identification attributes
	3.4.4 Programming model attributes
	3.4.5 UNIX socket rendezvous socket attributes
	3.4.6 TCP connection attributes
	3.4.7 Global Data Storage (GDS) attributes
	3.4.8 General process-level attributes
	3.4.9 Scratch directory attributes
	3.4.10 Relative Rank Descriptive Attributes
	3.4.11 Information retrieval attributes
	3.4.12 Information storage attributes
	3.4.13 Size information attributes
	3.4.14 Memory information attributes
	3.4.15 Topology information attributes
	3.4.16 Request-related attributes
	3.4.17 Server-to-PMIx library attributes
	3.4.18 Server-to-Client attributes
	3.4.19 Event handler registration and notification attributes
	3.4.20 Fault tolerance attributes
	3.4.21 Spawn attributes
	3.4.22 Query attributes
	3.4.23 Log attributes
	3.4.24 Debugger attributes
	3.4.25 Resource manager attributes
	3.4.26 Environment variable attributes
	3.4.27 Job Allocation attributes
	3.4.28 Job control attributes
	3.4.29 Monitoring attributes
	3.4.30 Security attributes
	3.4.31 IO Forwarding attributes
	3.4.32 Application setup attributes

	3.5 Callback Functions
	3.5.1 Release Callback Function
	3.5.2 Modex Callback Function
	3.5.3 Spawn Callback Function
	3.5.4 Op Callback Function
	3.5.5 Lookup Callback Function
	3.5.6 Value Callback Function
	3.5.7 Info Callback Function
	3.5.8 Event Handler Registration Callback Function
	3.5.9 Notification Handler Completion Callback Function
	3.5.10 Notification Function
	3.5.11 Server Setup Application Callback Function
	3.5.12 Server Direct Modex Response Callback Function
	3.5.13 Tool connection request callback function
	3.5.14 Tool connection callback function
	3.5.15 Credential callback function
	3.5.16 Credential validation callback function
	3.5.17 IOF delivery function
	3.5.18 IOF and Event registration function

	3.6 Constant String Functions

	4 Initialization and Finalization
	4.1 Query
	4.1.1 PMIx_Initialized
	4.1.2 PMIx_Get_version

	4.2 Client Initialization and Finalization
	4.2.1 PMIx_Init
	4.2.2 PMIx_Finalize

	4.3 Tool Initialization and Finalization
	4.3.1 PMIx_tool_init
	4.3.2 PMIx_tool_finalize
	4.3.3 PMIx_tool_connect_to_server

	4.4 Server Initialization and Finalization
	4.4.1 PMIx_server_init
	4.4.2 PMIx_server_finalize

	5 Key/Value Management
	5.1 Setting and Accessing Key/Value Pairs
	5.1.1 PMIx_Put
	5.1.2 PMIx_Get
	5.1.3 PMIx_Get_nb
	5.1.4 PMIx_Store_internal
	5.1.5 Accessing information: examples

	5.2 Exchanging Key/Value Pairs
	5.2.1 PMIx_Commit
	5.2.2 PMIx_Fence
	5.2.3 PMIx_Fence_nb

	5.3 Publish and Lookup Data
	5.3.1 PMIx_Publish
	5.3.2 PMIx_Publish_nb
	5.3.3 PMIx_Lookup
	5.3.4 PMIx_Lookup_nb
	5.3.5 PMIx_Unpublish
	5.3.6 PMIx_Unpublish_nb

	6 Process Management
	6.1 Abort
	6.1.1 PMIx_Abort

	6.2 Process Creation
	6.2.1 PMIx_Spawn
	6.2.2 PMIx_Spawn_nb

	6.3 Connecting and Disconnecting Processes
	6.3.1 PMIx_Connect
	6.3.2 PMIx_Connect_nb
	6.3.3 PMIx_Disconnect
	6.3.4 PMIx_Disconnect_nb

	6.4 IO Forwarding
	6.4.1 PMIx_IOF_pull
	6.4.2 PMIx_IOF_deregister
	6.4.3 PMIx_IOF_push

	7 Job Management and Reporting
	7.1 Query
	7.1.1 PMIx_Resolve_peers
	7.1.2 PMIx_Resolve_nodes
	7.1.3 PMIx_Query_info_nb

	7.2 Allocation Requests
	7.2.1 PMIx_Allocation_request
	7.2.2 PMIx_Allocation_request_nb

	7.3 Job Control
	7.3.1 PMIx_Job_control
	7.3.2 PMIx_Job_control_nb

	7.4 Process and Job Monitoring
	7.4.1 PMIx_Process_monitor
	7.4.2 PMIx_Process_monitor_nb
	7.4.3 PMIx_Heartbeat

	7.5 Logging
	7.5.1 PMIx_Log
	7.5.2 PMIx_Log_nb

	8 Event Notification
	8.1 Notification and Management
	8.1.1 PMIx_Register_event_handler
	8.1.2 PMIx_Deregister_event_handler
	8.1.3 PMIx_Notify_event

	9 Data Packing and Unpacking
	9.1 Support Macros
	9.1.1 PMIX_DATA_BUFFER_CREATE
	9.1.2 PMIX_DATA_BUFFER_RELEASE
	9.1.3 PMIX_DATA_BUFFER_CONSTRUCT
	9.1.4 PMIX_DATA_BUFFER_DESTRUCT
	9.1.5 PMIX_DATA_BUFFER_LOAD
	9.1.6 PMIX_DATA_BUFFER_UNLOAD

	9.2 General Routines
	9.2.1 PMIx_Data_pack
	9.2.2 PMIx_Data_unpack
	9.2.3 PMIx_Data_copy
	9.2.4 PMIx_Data_print
	9.2.5 PMIx_Data_copy_payload

	10 Security
	10.1 Obtaining Credentials
	10.1.1 PMIx_Get_credential

	10.2 Validating Credentials
	10.2.1 PMIx_Validate_credential

	11 Server-Specific Interfaces
	11.1 Server Support Functions
	11.1.1 PMIx_generate_regex
	11.1.2 PMIx_generate_ppn
	11.1.3 PMIx_server_register_nspace
	11.1.4 PMIx_server_deregister_nspace
	11.1.5 PMIx_server_register_client
	11.1.6 PMIx_server_deregister_client
	11.1.7 PMIx_server_setup_fork
	11.1.8 PMIx_server_dmodex_request
	11.1.9 PMIx_server_setup_application
	11.1.10 PMIx_server_setup_local_support
	11.1.11 PMIx_server_IOF_deliver
	11.1.12 PMIx_server_collect_inventory
	11.1.13 PMIx_server_deliver_inventory

	11.2 Server Function Pointers
	11.2.1 pmix_server_module_t Module
	11.2.2 pmix_server_client_connected_fn_t
	11.2.3 pmix_server_client_finalized_fn_t
	11.2.4 pmix_server_abort_fn_t
	11.2.5 pmix_server_fencenb_fn_t
	11.2.6 pmix_server_dmodex_req_fn_t
	11.2.7 pmix_server_publish_fn_t
	11.2.8 pmix_server_lookup_fn_t
	11.2.9 pmix_server_unpublish_fn_t
	11.2.10 pmix_server_spawn_fn_t
	11.2.11 pmix_server_connect_fn_t
	11.2.12 pmix_server_disconnect_fn_t
	11.2.13 pmix_server_register_events_fn_t
	11.2.14 pmix_server_deregister_events_fn_t
	11.2.15 pmix_server_notify_event_fn_t
	11.2.16 pmix_server_listener_fn_t
	11.2.17 pmix_server_query_fn_t
	11.2.18 pmix_server_tool_connection_fn_t
	11.2.19 pmix_server_log_fn_t
	11.2.20 pmix_server_alloc_fn_t
	11.2.21 pmix_server_job_control_fn_t
	11.2.22 pmix_server_monitor_fn_t
	11.2.23 pmix_server_get_cred_fn_t
	11.2.24 pmix_server_validate_cred_fn_t
	11.2.25 pmix_server_iof_fn_t
	11.2.26 pmix_server_stdin_fn_t

	A Acknowledgements
	A.1 Version 3.0
	A.2 Version 2.0
	A.3 Version 1.0

	Bibliography
	Index

