PMIx: Process Management for

Exascale Environments

Ralph H. Castain, David Solt, Joshua Hursey, Aurelien Bouteiller
EuroMPI/USA 2017, Chicago, IL
&5 o
o

——)
PMI<10:8

14985 3

What is PMIx?

2015 2016 2017 —
RM =y RM
SLURM SLURM
ALPS sbgsllvl JSM
others
—
=gl
PMI-1=> PMI-2 L[PMlx 1018 PMix v1.2 PMIx v2.x
MPICH years go by... |ilszs s
. —_
wireup support
dynamic spawn Exascale systems OMPI OMPI
keyval publish/lookup on horizon Spect Spectrum
Launch times long pectrum OSHMEM
New paradigms OSHMEM SOS
Exascale launch Exascale launch N eT\s
in < 30s in < 10s OtherS
Orchestration

=l
PMIx 10
1ers s

Three Distinct Entities

PMIx Standard

= Defined set of APIs, attribute strings
= Nothing about implementation

PMIx Reference Library
= A full-featured implementation of the Standard
* Intended to ease adoption

PMIx Reference Server
= Full-featured “shim” to a non-PMIx RM

=l
PMIx 10
1ers s

The Community

R

RIST

<|l|

Mellanox

TECHNOLOGIES

ICLUr"

pal

FUﬁTSU % OAK RIDGE » Los Alamos

tional Laboratory NATIONAL LABORATORY

https://pmix.github.io/pmix 7]
https://github.com/pmix @Mlxmw

Traditional Launch Sequence

-~
S

s Global Barrier

=11

[PMlxlols

feF8s

Newer Launch Sequence

Wait for files
s I DD
el " Global Barrier

=1}

[PMlxlols

feF8s

PMIx-SMS Interactions

Orchestration

APP PMIx
Client

Requests

)/

Responses

/

PMIx

4 Server

System

Management Stack

Y

—m—

—_—
FS

Fabric
! Mgr

Fabric
\\

NIC

@)
@)
.

Tool Support

%E

Job

~ Script

el
[PMlxlols
pises

PMIx Launch Sequence

' topology
Job script file — nfoas™
caching Notify caching requested
o complete
~— SM location
100 —(WLM
. Script A Obtain fabric Spawn

Create shared
memory storage
for job info &

Files &
retrieval
times

\\ Files served
\ from cache

Request ~

-—— e —— -—*——-——--

configuration
FM-provided

SPMlx Configure local envars :
erver fabric interfaces :
. |
i
i '
)
1
}
Stage 1 Stage 2 Stage 3 | Stage 4

=]
*RM daemon, mpirun-daemon, etc. [PM'X 1018
thoss

PMIxX/SLURM~

Performance papers coming in 2018!

TOTAL
45
L

s ///”"/
’G —
S ST
E s / e PRS**
_| 2 srun/PMI2
= /
= 1 }

0

20 30 40 50 60 70
#nodes

sl
*LANL/Buffy cluster, 1ppn **PMIx Reference Server v2.0, direct-fetch/async EPM'X 1018
7 i3

Similar Requirements

Notifications/response
= Errors, resource changes
= Negotiated response

Request allocation changes
= shrink/expand
Workflow management

= Steered/conditional execution

QoS requests
= Power, file system, fabric

Multiple,
use-
specific

libs?
(difficult for RM
community to
support)

Single,
multi-
purpose
lib?

=l
PMIx 10
1ers s

PMIx “Standards” Process

Modifications/additions
= Proposed as RFC

= |nclude prototype implementation
Pull request to reference library

= Notification sent to mailing list

Reviews conducted
= RFC and implementation
= Continues until consensus emerges

Approval given
= Developer telecon (weekly)

Standards Doc
under
development!

=l
PMIx 10
1ers s

Philosophy

Generalized APlIs
= Few hard parameters
= “Info” arrays to pass information, specify directives

Easily extended
= Add “keys” instead of modifying API

Async operations
Thread safe

SMS always has right to say “not supported”
= Allow each backend to evaluate what and when to

support something @Mlxlow

Messenger not Doer

Generalized APlIs

Few hard ~~"~~~*~
|’ arr /\2? .
s @g
ey: =4
) 3
ope ‘ :

)
Thread sa E £

support something T

Current Support

Typical startup operations
= Put, get, commit, barrier,
spawn, [dis]connect,
publish/lookup
Tool connections

= Debugger, job submission,
query

Generalized query
support

= Job status, layout, system
data, resource availability

Event notification

= App, system generated
= Subscribe, chained

= Pre-emption, failures,
timeout warning, ...

Logging (job record)

= Status reports, error output

Flexible allocations

= Release resources, request
resources

=l
PMIx 10
1ers s

Event Notification Use Case

Fault detection and reporting
w/ULFM MPI

= ULFM MPI is a fault tolerant
flavor of Open MPI

Failures may be detected from]
the , RAS, or directly by =

MP| communications PMIx PMIx
Components produce a PMIx

event when detecting an error

Fault Tolerant components
register for the fault event

Components propagate fault

events which are then —

delivered to registered clients [PMlxl()lS
169853

Server

In Pipeline

Network support

= Security keys, pre-spawn local

driver setup, fabric topology
and status, traffic reports,
fabric manager interaction

Obsolescence protection
= Automatic cross-version
compatibility
= Container support
Job control

= Pause, Kkill, signal, heartbeat,
resilience support

Generalized data store

File system support

= Dependency detection

= Tiered storage caching strategies
Debugger/tool support**

= Automatic rendezvous

» Single interface to all launchers

= Co-launch daemons
= Access fabric info, etc.

Cross-library interoperation

=l
PMIx 10
1ers s

Summary

We now have an interface library RMs will
support for application-directed requests

Need to collaboratively define
what we want to do with it

Project: https://pmix.github.io/pmix
Reference Implementation: https://github.com/pmix/pmix
Reference Server: https://github.com/pmix/pmix-reference-server

=l
PMIx 10
1ers s

https://pmix.github.io/pmix
https://github.com/pmix/pmix
https://github.com/pmix/pmix-reference-server

