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Three Distinct Entities

• PMIx Standard
§ Defined set of APIs, attribute strings
§ Nothing about implementation

• PMIx Reference Library
§ A full-featured implementation of the Standard
§ Intended to ease adoption

• PMIx Reference Server
§ Full-featured “shim” to a non-PMIx RM



The Community

https://pmix.github.io/pmix
https://github.com/pmix
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PMIx-SMS Interactions
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PMIx Launch Sequence

*RM daemon, mpirun-daemon, etc.
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Similar Requirements

• Notifications/response
§ Errors, resource changes
§ Negotiated response

• Request allocation changes
§ shrink/expand

• Workflow management
§ Steered/conditional execution

• QoS requests
§ Power, file system, fabric

Multiple, 
use-

specific 
libs?

(difficult for RM 
community to 

support)

Single, 
multi-

purpose 
lib?



PMIx “Standards” Process

• Modifications/additions
§ Proposed as RFC
§ Include prototype implementation

• Pull request to reference library

§ Notification sent to mailing list
• Reviews conducted

§ RFC and implementation
§ Continues until consensus emerges

• Approval given
§ Developer telecon (weekly)

Standards Doc 
under 

development!



Philosophy

• Generalized APIs
§ Few hard parameters
§ “Info” arrays to pass information, specify directives

• Easily extended
§ Add “keys” instead of modifying API

• Async operations
• Thread safe
• SMS always has right to say “not supported”

§ Allow each backend to evaluate what and when to 
support something
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Current Support

• Typical startup operations
§ Put, get, commit, barrier, 

spawn, [dis]connect, 
publish/lookup

• Tool connections
§ Debugger, job submission, 

query

• Generalized query 
support
§ Job status, layout, system 

data, resource availability

• Event notification
§ App, system generated
§ Subscribe, chained
§ Pre-emption, failures, 

timeout warning, …

• Logging (job record)
§ Status reports, error output

• Flexible allocations
§ Release resources, request 

resources



Event Notification Use Case

• Fault detection and reporting 
w/ULFM MPI
§ ULFM MPI is a fault tolerant 

flavor of Open MPI

• Failures may be detected from 
the SMS, RAS, or directly by 
MPI communications

• Components produce a PMIx 
event when detecting an error

• Fault Tolerant components 
register for the fault event

• Components propagate fault 
events which are then 
delivered to registered clients
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In Pipeline

• Network support
§ Security keys, pre-spawn local 

driver setup, fabric topology 
and status, traffic reports, 
fabric manager interaction

• Obsolescence protection
§ Automatic cross-version 

compatibility
§ Container support

• Job control
§ Pause, kill, signal, heartbeat, 

resilience support
• Generalized data store

• File system support
§ Dependency detection
§ Tiered storage caching strategies

• Debugger/tool support++

§ Automatic rendezvous
§ Single interface to all launchers
§ Co-launch daemons
§ Access fabric info, etc.

• Cross-library interoperation



Summary

We now have an interface library RMs will 
support for application-directed requests

Need to collaboratively define 
what we want to do with it

Project: https://pmix.github.io/pmix
Reference Implementation: https://github.com/pmix/pmix
Reference Server: https://github.com/pmix/pmix-reference-server

https://pmix.github.io/pmix
https://github.com/pmix/pmix
https://github.com/pmix/pmix-reference-server

