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Three Distinct Entities

PMIx Standard

= Defined set of APIs, attribute strings
= Nothing about implementation

PMIx Reference Library
= A full-featured implementation of the Standard
* Intended to ease adoption

PMIx Reference Server
= Full-featured “shim” to a non-PMIx RM
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Traditional Launch Sequence
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Newer Launch Sequence
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PMIx-SMS Interactions
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PMIx Launch Sequence
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Performance papers coming in 2018!
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Similar Requirements

Notifications/response
= Errors, resource changes
= Negotiated response

Request allocation changes
= shrink/expand
Workflow management

= Steered/conditional execution

QoS requests
= Power, file system, fabric

Multiple,
use-
specific

libs?
(difficult for RM
community to
support)

Single,
multi-
purpose
lib?
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PMIx “Standards” Process

Modifications/additions
= Proposed as RFC

= |nclude prototype implementation
Pull request to reference library

= Notification sent to mailing list

Reviews conducted
= RFC and implementation
= Continues until consensus emerges

Approval given
= Developer telecon (weekly)

Standards Doc
under
development!
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Philosophy

Generalized APlIs
= Few hard parameters
= “Info” arrays to pass information, specify directives

Easily extended
= Add “keys” instead of modifying API

Async operations
Thread safe

SMS always has right to say “not supported”
= Allow each backend to evaluate what and when to

support something @Mlxlow
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Current Support

Typical startup operations
= Put, get, commit, barrier,
spawn, [dis]connect,
publish/lookup
Tool connections

= Debugger, job submission,
query

Generalized query
support

= Job status, layout, system
data, resource availability

Event notification

= App, system generated
= Subscribe, chained

= Pre-emption, failures,
timeout warning, ...

Logging (job record)

= Status reports, error output

Flexible allocations

= Release resources, request
resources
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Event Notification Use Case

Fault detection and reporting
w/ULFM MPI

= ULFM MPI is a fault tolerant
flavor of Open MPI

Failures may be detected from ]
the , RAS, or directly by =

MP| communications PMIx PMIx
Components produce a PMIx

event when detecting an error

Fault Tolerant components
register for the fault event

Components propagate fault

events which are then —

delivered to registered clients [PMlxl()lS
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In Pipeline

Network support

= Security keys, pre-spawn local

driver setup, fabric topology
and status, traffic reports,
fabric manager interaction

Obsolescence protection
= Automatic cross-version
compatibility
= Container support
Job control

= Pause, Kkill, signal, heartbeat,
resilience support

Generalized data store

File system support

= Dependency detection

= Tiered storage caching strategies
Debugger/tool support**

= Automatic rendezvous

» Single interface to all launchers

= Co-launch daemons
=  Access fabric info, etc.

Cross-library interoperation
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Summary

We now have an interface library RMs will
support for application-directed requests

Need to collaboratively define
what we want to do with it

Project: https://pmix.github.io/pmix
Reference Implementation: https://github.com/pmix/pmix
Reference Server: https://github.com/pmix/pmix-reference-server
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