
PMIx: Process Management for
Exascale Environments

Ralph H. Castain, David Solt, Joshua Hursey, Aurelien Bouteiller
EuroMPI/USA 2017, Chicago, IL

OMPI
Spectrum
OSHMEM

SOS
PGAS
others

What is PMIx?

PMI-1 PMI-2

wireup support
dynamic spawn

keyval publish/lookup

MPICH
years go by…

SLURM
ALPS

RM

PGAS
others

2015

Exascale systems
on horizon

Launch times long
New paradigms

2016

Exascale launch
in < 10s

Orchestration

PMIx v1.2

SLURM
JSM

RM

OMPI
Spectrum
OSHMEM

2017

Exascale launch
in < 30s

PMIx v2.x

SLURM
JSM

others

RM

Three Distinct Entities

• PMIx Standard
§ Defined set of APIs, attribute strings
§ Nothing about implementation

• PMIx Reference Library
§ A full-featured implementation of the Standard
§ Intended to ease adoption

• PMIx Reference Server
§ Full-featured “shim” to a non-PMIx RM

The Community

https://pmix.github.io/pmix
https://github.com/pmix

Job
Script WLM WLM RM

Launch
Cmd

Spawn
Procs

GO

Global
Xchg

Proc

Fabric

NIC

Proc

NIC

Proc

Barrier

FS

Traditional Launch Sequence

Wait for files
& libs

Topo Topo Topo

Fabric

NIC

Fabric

Pro
c

Pro
c

Pro
c

Job
Script WLM WLM RM

Launch
Cmd

Spawn
Procs

GO

Global
Xchg

Proc

Fabric

NIC

Proxy

Proc

Fabric

NIC

Proxy

Proc

Proxy

Barrier

FS

Newer Launch Sequence

Wait for files
& libs

Topo Topo

Fabric

NIC

Topo

PMIx-SMS Interactions

RM
PMIx
Client

FS

Fabric

RAS

APP

Orchestration
Requests

Responses

NIC

Fabric
Mgr

PMIx
Server

MPI

OpenMP

Job
Script

System
Management Stack

Tool Support

PMIx Launch Sequence

*RM daemon, mpirun-daemon, etc.

PMIx/SLURM*

#nodes

M
PI

_I
ni

t (
se

c)

*LANL/Buffy cluster, 1ppn

PRS**

**PMIx Reference Server v2.0, direct-fetch/async

srun/PMI2

Performance papers coming in 2018!

Similar Requirements

• Notifications/response
§ Errors, resource changes
§ Negotiated response

• Request allocation changes
§ shrink/expand

• Workflow management
§ Steered/conditional execution

• QoS requests
§ Power, file system, fabric

Multiple,
use-

specific
libs?

(difficult for RM
community to

support)

Single,
multi-

purpose
lib?

PMIx “Standards” Process

• Modifications/additions
§ Proposed as RFC
§ Include prototype implementation

• Pull request to reference library

§ Notification sent to mailing list
• Reviews conducted

§ RFC and implementation
§ Continues until consensus emerges

• Approval given
§ Developer telecon (weekly)

Standards Doc
under

development!

Philosophy

• Generalized APIs
§ Few hard parameters
§ “Info” arrays to pass information, specify directives

• Easily extended
§ Add “keys” instead of modifying API

• Async operations
• Thread safe
• SMS always has right to say “not supported”

§ Allow each backend to evaluate what and when to
support something

• Generalized APIs
§ Few hard parameters
§ “Info” arrays to pass information, specify directives

• Easily extended
§ Add “keys” instead of modifying API

• Async operations
• Thread safe
• SMS always has right to say “not supported”

§ Allow each backend to evaluate what and when to
support something

Messenger not Doer

APPSMS

Tool

Current Support

• Typical startup operations
§ Put, get, commit, barrier,

spawn, [dis]connect,
publish/lookup

• Tool connections
§ Debugger, job submission,

query

• Generalized query
support
§ Job status, layout, system

data, resource availability

• Event notification
§ App, system generated
§ Subscribe, chained
§ Pre-emption, failures,

timeout warning, …

• Logging (job record)
§ Status reports, error output

• Flexible allocations
§ Release resources, request

resources

Event Notification Use Case

• Fault detection and reporting
w/ULFM MPI
§ ULFM MPI is a fault tolerant

flavor of Open MPI

• Failures may be detected from
the SMS, RAS, or directly by
MPI communications

• Components produce a PMIx
event when detecting an error

• Fault Tolerant components
register for the fault event

• Components propagate fault
events which are then
delivered to registered clients

MPI MPI

PMIx
Server

PMIx
Server

RAS
PMIx

In Pipeline

• Network support
§ Security keys, pre-spawn local

driver setup, fabric topology
and status, traffic reports,
fabric manager interaction

• Obsolescence protection
§ Automatic cross-version

compatibility
§ Container support

• Job control
§ Pause, kill, signal, heartbeat,

resilience support
• Generalized data store

• File system support
§ Dependency detection
§ Tiered storage caching strategies

• Debugger/tool support++

§ Automatic rendezvous
§ Single interface to all launchers
§ Co-launch daemons
§ Access fabric info, etc.

• Cross-library interoperation

Summary

We now have an interface library RMs will
support for application-directed requests

Need to collaboratively define
what we want to do with it

Project: https://pmix.github.io/pmix
Reference Implementation: https://github.com/pmix/pmix
Reference Server: https://github.com/pmix/pmix-reference-server

https://pmix.github.io/pmix
https://github.com/pmix/pmix
https://github.com/pmix/pmix-reference-server

