i
PMIx10

(&85 J

PMIx: Bridging the Container Boundary

Ralph H. Castain
Intel

M
P X I

Origin: Changing Landscape

Launch time limiting scale Programming model &
5 runtime proliferation

Legion ¢
Q e A

sssssssssssssssssss

A7 NP

OpenMP

Hybrid applications Model-spcific tools

Container technologies

Resolve launch scaling

* Pre-load information
known to RM/scheduler

= Pre-assign
communication endpoints

= Eliminate data exchange
during init

= Orchestrate launch
procedure

PMIx Launch Sequence

Create shared
memory storage
for job info &

topology

Files &
retrieval
times

N
\ Files served
‘\ from cache

Request
file
caching Notify caching

- complete

A/ Tnfo as™
requeste

~
\

d \\ |‘
. VY

SM location

e ————

Script Obtain fabric Spawn
‘ configuration | Launch int:rFf,aTeT
o : Cmd FM-provided : PMIx
X Fabric ' Configure local envars 1 Client NIC

Server I L - |
Mgr i fabric interfaces Fabric i
1 1
1 1 1
1 1
1 1
| nic |
1 1
i |

Stage 1 Stage 2 : Stage 3 : Stage 4

*RM daemon, mpirun-daemon, etc.

Three Distinct Entities

PMIx Standard

= Defined set of APls, attribute strings
= Nothing about implementation

PMIx Reference Library

= A full-featured implementation of the Standard
* |[ntended to ease adoption

PMIx Reference RTE

= Full-featured “shim” to a non-PMIx RM
* Provides development environment

v3.1 just
released!

Where Is It Used?

Libraries New use-cases
= OMPI, MPICH, Intel MPI, HPE-MPI, = Spark, TensorFlow
Spectrum MPI, Fujitsu MPI = Debuggers (TotalView, DDT)
= OSHMEM, SOS, OpenSHMEM, ... = MPI
RMs Re-ordering for load balance
= Slurm, Fujitsu, (UTK/ECP)
IBM’s JSM. Fault management (UTK)
PBSPro (2019), Kubernetes(?) On-the-fly session

formation/teardown (MPIF)
Logging information

Containers
Singularity, Docker, Amazon

= Slurm enhancement (LANL/ECP)

(o)le

P

Build Upon It

Async event notification

Cross-model notification Y
= Announce model type, characteristics ~ OpenMP

= Coordinate resource utilization,
programming blocks

Generalized tool support
= Co-launch daemons with job
= Forward stdio channels

= Query job, system info, network traffic,
process counters, etc.

= Standardized attachment, launch methods

Allocation support
= Dynamically add/remove/loan nodes

= Register pre-emption acceptance,
handshake

Dynamic process groups
= Async group construct/destruct
= Notification of process departure/failure

File system integration
= Pre-cache files, specify storage strategies

PMIx-SMS Interactions

System

/ \ Management Stack

5
FS

Orchestration
Requests

Fabric
i Mgr

Fabric 4

PMIx
Client

N

e

Responses

Tool Support

PMIx-SMS Interactions

System
Management Stack

o

5
FS

Fabric
i Mgr

Fabric 4

Orchestration
Requests

PMIx

Client NIC

Responses

Container! " ool Support

Container Issues

Version tracking across container boundary

= Different pieces moving at different rates
Container managers vs HPC schedulers

= Dynamic, service related vs static, application focus

Uneven adoption rates

= Different environments adopt features at different
times, different combinations

Version Tracking

Auto-negotiate messaging protocol

Client starts
= Envar indicates server capabilities
= Select highest support in common

= Convey selection in connection
handshake

Server follows client’s lead
= Per-client messaging protocol
= Support mix of client versions

Container Issues

Version tracking across container boundary
= Different pieces moving at different rates

Uneven adoption rates

» Different environments adopt features at different times,
different combinations

Container managers vs HPC schedulers

= Dynamic, service related vs static, application focus
= Mismatched capabilities

EPYX

-

System
Management Stack

PMIx relay daemon/server
Integrated into container
Sense what SMS supports

= From nothing to everything
Supported requests

= Relay requests/responses
Unsupported requests

= Execute internally
= Return “not supported”

EPYX

/ System
Management Stack

FS

Fabric -

,' From nothir Q/q' ning
R NIC O/b(/ 2

S C(NX)

[RaS / Rel. ™ .equests/responses

Execute internally

*RM can perform request, but doesn't Return “not supported
have PMIx backend support for it

EPYX: Filling the Gaps

/ System
/ \ Management Stack

Fabric (

Fabric
H Mgr

R o
/

"Who writes these drivers?

Call intrinsic APIs to execute
PMIx requests from client

Treat the RM as an equal
member of SMS

Pros

= Allows more transparent movement of
containers across systems

= Reduces obstacles

Cons

= Reduces pressure on SMS vendors to
integrate

HPC on Container Mgrs

N Allocation request

= Stabilize allocation for some
period of time

Event notification

= Handshake need to break
commitment

= Notify when restored

= Use new FT/Sessions
methods for flexible members

~

Services on HPC Systems

= Register as a service
= Request auto-restart, multiple replicas
= Setup parallel duplicate IO streams

|O Forwarding APIs

= Construct data flows between
processes

Storage APls
Publish/Lookup APIls

= Service discovery, rendezvous

/ \ Job control API
-~

Why Enable This?

L - HY

Client ! 5|UI'ITI

aaaaaaaaaaaaaaa

Interchangeable

Avoid having to write entire runtimes just to do
something a little different

Portability (HPC <= Service Mgrs)
Generalized tools

Scalable operations

Async event notification

Full system orchestration

Come Join Us!

(inteD M ===

Mellanox

TECHNOLOGIES

: N,

ICLOr
[e2))
&J FUIITSU ~ %QakRipce - LosAlamos

RIST

Slack: pmix-workspace.slack.com https.//pmix.org https.//qithub.com/pmix

https://pmix.org/
https://github.com/pmix

o

e
PMI<10:¢
16985

Q&A

Useful Links:

General Information: https://pmix.org/

PMIx Library: https://github.com/pmix/pmix

PMIx Reference RunTime Environment (PRRTE): https://github.com/pmix/prrie
PMIx Standard: hiips://github.com/pmix/pmix-standard

Slack: pmix-workspace.slack.com

https://pmix.org/
https://github.com/pmix/pmix
https://github.com/pmix/prrte
https://github.com/pmix/pmix-standard

Overview Paper

PMIx: Process Management for Exascale Environments

Ralph H. Castain®, Aurelien Bouteiller®!, Joshua Hursey®, David Solt®

¢ Intel, Inc.
Y The University of Tennessee, Knoxville
¢IBM

Abstract

High-Performance Computing (HPC) applications have historically executed in static resource allocations,
using programming models that ran independently from the resident system management stack (SMS).
Achieving exascale performance that is both cost-effective and fits within site-level environmental constraints
will, however, require that the application and SMS collaboratively orchestrate the flow of work to optimize
resource utilization and compensate for on-the-fly faults. The Process Management Interface - Exascale
(PMIx) community is committed to establishing scalable workflow orchestration by defining an abstract
set of interfaces by which not only applications and tools can interact with the resident SMS, but also the
various SMS components can interact with each other. This paper presents a high-level overview of the
goals and current state of the PMIx standard, and lays out a roadmap for future directions.

Ralph H. Castain, Aurelien Bouteiller, Joshua Hursey, David Solt, “PMIx: Process management for exascale
environments”, Parallel Computing, 2018.

https://doi.org/10.1016/j.parco.2018.08.002

https://doi.org/10.1016/j.parco.2018.08.002

